NetBSD/sys/dev/ic/spdmem.c
msaitoh bc91867bec Add code to select page "0" for DDR4 and newer SPD ROM. If the value read
is not suitable as SPD ROM, try to select page 0 and try again. The passed
arguments of iic_exec(SPDCTL_SPA) might not be correct and/or our API of
iic_exec() should be improved. See the comment for the detail.

Use this change until we find a better (or correct?) way.
2016-09-09 05:36:59 +00:00

962 lines
27 KiB
C

/* $NetBSD: spdmem.c,v 1.22 2016/09/09 05:36:59 msaitoh Exp $ */
/*
* Copyright (c) 2007 Nicolas Joly
* Copyright (c) 2007 Paul Goyette
* Copyright (c) 2007 Tobias Nygren
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Serial Presence Detect (SPD) memory identification
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: spdmem.c,v 1.22 2016/09/09 05:36:59 msaitoh Exp $");
#include <sys/param.h>
#include <sys/device.h>
#include <sys/endian.h>
#include <sys/sysctl.h>
#include <machine/bswap.h>
#include <dev/i2c/i2cvar.h>
#include <dev/ic/spdmemreg.h>
#include <dev/ic/spdmemvar.h>
/* Routines for decoding spd data */
static void decode_edofpm(const struct sysctlnode *, device_t, struct spdmem *);
static void decode_rom(const struct sysctlnode *, device_t, struct spdmem *);
static void decode_sdram(const struct sysctlnode *, device_t, struct spdmem *,
int);
static void decode_ddr(const struct sysctlnode *, device_t, struct spdmem *);
static void decode_ddr2(const struct sysctlnode *, device_t, struct spdmem *);
static void decode_ddr3(const struct sysctlnode *, device_t, struct spdmem *);
static void decode_ddr4(const struct sysctlnode *, device_t, struct spdmem *);
static void decode_fbdimm(const struct sysctlnode *, device_t, struct spdmem *);
static void decode_size_speed(device_t, const struct sysctlnode *,
int, int, int, int, bool, const char *, int);
static void decode_voltage_refresh(device_t, struct spdmem *);
#define IS_RAMBUS_TYPE (s->sm_len < 4)
static const char* const spdmem_basic_types[] = {
"unknown",
"FPM",
"EDO",
"Pipelined Nibble",
"SDRAM",
"ROM",
"DDR SGRAM",
"DDR SDRAM",
"DDR2 SDRAM",
"DDR2 SDRAM FB",
"DDR2 SDRAM FB Probe",
"DDR3 SDRAM",
"DDR4 SDRAM",
"unknown",
"DDR4E SDRAM",
"LPDDR3 SDRAM",
"LPDDR4 SDRAM"
};
static const char* const spdmem_ddr4_module_types[] = {
"DDR4 Extended",
"DDR4 RDIMM",
"DDR4 UDIMM",
"DDR4 SO-DIMM",
"DDR4 Load-Reduced DIMM",
"DDR4 Mini-RDIMM",
"DDR4 Mini-UDIMM",
"DDR4 Reserved",
"DDR4 72Bit SO-RDIMM",
"DDR4 72Bit SO-UDIMM",
"DDR4 Undefined",
"DDR4 Reserved",
"DDR4 16Bit SO-DIMM",
"DDR4 32Bit SO-DIMM",
"DDR4 Reserved",
"DDR4 Undefined"
};
static const char* const spdmem_superset_types[] = {
"unknown",
"ESDRAM",
"DDR ESDRAM",
"PEM EDO",
"PEM SDRAM"
};
static const char* const spdmem_voltage_types[] = {
"TTL (5V tolerant)",
"LvTTL (not 5V tolerant)",
"HSTL 1.5V",
"SSTL 3.3V",
"SSTL 2.5V",
"SSTL 1.8V"
};
static const char* const spdmem_refresh_types[] = {
"15.625us",
"3.9us",
"7.8us",
"31.3us",
"62.5us",
"125us"
};
static const char* const spdmem_parity_types[] = {
"no parity or ECC",
"data parity",
"data ECC",
"data parity and ECC",
"cmd/addr parity",
"cmd/addr/data parity",
"cmd/addr parity, data ECC",
"cmd/addr/data parity, data ECC"
};
int spd_rom_sizes[] = { 0, 128, 256, 384, 512 };
/* Cycle time fractional values (units of .001 ns) for DDR2 SDRAM */
static const uint16_t spdmem_cycle_frac[] = {
0, 100, 200, 300, 400, 500, 600, 700, 800, 900,
250, 333, 667, 750, 999, 999
};
/* Format string for timing info */
#define LATENCY "tAA-tRCD-tRP-tRAS: %d-%d-%d-%d\n"
/* CRC functions used for certain memory types */
static uint16_t
spdcrc16(struct spdmem_softc *sc, int count)
{
uint16_t crc;
int i, j;
uint8_t val;
crc = 0;
for (j = 0; j <= count; j++) {
(sc->sc_read)(sc, j, &val);
crc = crc ^ val << 8;
for (i = 0; i < 8; ++i)
if (crc & 0x8000)
crc = crc << 1 ^ 0x1021;
else
crc = crc << 1;
}
return (crc & 0xFFFF);
}
int
spdmem_common_probe(struct spdmem_softc *sc)
{
int cksum = 0;
uint8_t i, val, spd_type;
int spd_len, spd_crc_cover;
uint16_t crc_calc, crc_spd;
/* Read failed means a device doesn't exist */
if ((sc->sc_read)(sc, 2, &spd_type) != 0)
return 0;
/* Memory type should not be 0 */
if (spd_type == 0x00)
return 0;
/* For older memory types, validate the checksum over 1st 63 bytes */
if (spd_type <= SPDMEM_MEMTYPE_DDR2SDRAM) {
for (i = 0; i < 63; i++) {
(sc->sc_read)(sc, i, &val);
cksum += val;
}
(sc->sc_read)(sc, 63, &val);
if ((cksum & 0xff) != val) {
aprint_debug("spd checksum failed, calc = 0x%02x, "
"spd = 0x%02x\n", cksum, val);
return 0;
} else
return 1;
}
/* For DDR3 and FBDIMM, verify the CRC */
else if (spd_type <= SPDMEM_MEMTYPE_DDR3SDRAM) {
(sc->sc_read)(sc, 0, &val);
spd_len = val;
if (spd_len & SPDMEM_SPDCRC_116)
spd_crc_cover = 116;
else
spd_crc_cover = 125;
switch (spd_len & SPDMEM_SPDLEN_MASK) {
case SPDMEM_SPDLEN_128:
spd_len = 128;
break;
case SPDMEM_SPDLEN_176:
spd_len = 176;
break;
case SPDMEM_SPDLEN_256:
spd_len = 256;
break;
default:
return 0;
}
if (spd_crc_cover > spd_len)
return 0;
crc_calc = spdcrc16(sc, spd_crc_cover);
(sc->sc_read)(sc, 127, &val);
crc_spd = val << 8;
(sc->sc_read)(sc, 126, &val);
crc_spd |= val;
if (crc_calc != crc_spd) {
aprint_debug("crc16 failed, covers %d bytes, "
"calc = 0x%04x, spd = 0x%04x\n",
spd_crc_cover, crc_calc, crc_spd);
return 0;
}
return 1;
} else if (spd_type == SPDMEM_MEMTYPE_DDR4SDRAM) {
(sc->sc_read)(sc, 0, &val);
spd_len = val & 0x0f;
if ((unsigned int)spd_len > __arraycount(spd_rom_sizes))
return 0;
spd_len = spd_rom_sizes[spd_len];
spd_crc_cover = 125; /* For byte 0 to 125 */
if (spd_crc_cover > spd_len)
return 0;
crc_calc = spdcrc16(sc, spd_crc_cover);
(sc->sc_read)(sc, 127, &val);
crc_spd = val << 8;
(sc->sc_read)(sc, 126, &val);
crc_spd |= val;
if (crc_calc != crc_spd) {
aprint_debug("crc16 failed, covers %d bytes, "
"calc = 0x%04x, spd = 0x%04x\n",
spd_crc_cover, crc_calc, crc_spd);
return 0;
}
/*
* We probably could also verify the CRC for the other
* "pages" of SPD data in blocks 1 and 2, but we'll do
* it some other time.
*/
return 1;
}
/* For unrecognized memory types, don't match at all */
return 0;
}
void
spdmem_common_attach(struct spdmem_softc *sc, device_t self)
{
struct spdmem *s = &(sc->sc_spd_data);
const char *type;
const char *rambus_rev = "Reserved";
int dimm_size;
unsigned int i, spd_len, spd_size;
const struct sysctlnode *node = NULL;
(sc->sc_read)(sc, 0, &s->sm_len);
(sc->sc_read)(sc, 1, &s->sm_size);
(sc->sc_read)(sc, 2, &s->sm_type);
if (s->sm_type == SPDMEM_MEMTYPE_DDR4SDRAM) {
/*
* An even newer encoding with one byte holding both
* the used-size and capacity values
*/
spd_len = s->sm_len & 0x0f;
spd_size = (s->sm_len >> 4) & 0x07;
spd_len = spd_rom_sizes[spd_len];
spd_size *= 512;
} else if (s->sm_type >= SPDMEM_MEMTYPE_FBDIMM) {
/*
* FBDIMM and DDR3 (and probably all newer) have a different
* encoding of the SPD EEPROM used/total sizes
*/
spd_size = 64 << (s->sm_len & SPDMEM_SPDSIZE_MASK);
switch (s->sm_len & SPDMEM_SPDLEN_MASK) {
case SPDMEM_SPDLEN_128:
spd_len = 128;
break;
case SPDMEM_SPDLEN_176:
spd_len = 176;
break;
case SPDMEM_SPDLEN_256:
spd_len = 256;
break;
default:
spd_len = 64;
break;
}
} else {
spd_size = 1 << s->sm_size;
spd_len = s->sm_len;
if (spd_len < 64)
spd_len = 64;
}
if (spd_len > spd_size)
spd_len = spd_size;
if (spd_len > sizeof(struct spdmem))
spd_len = sizeof(struct spdmem);
for (i = 3; i < spd_len; i++)
(sc->sc_read)(sc, i, &((uint8_t *)s)[i]);
/*
* Setup our sysctl subtree, hw.spdmemN
*/
sc->sc_sysctl_log = NULL;
sysctl_createv(&sc->sc_sysctl_log, 0, NULL, &node,
0, CTLTYPE_NODE,
device_xname(self), NULL, NULL, 0, NULL, 0,
CTL_HW, CTL_CREATE, CTL_EOL);
if (node != NULL && spd_len != 0)
sysctl_createv(&sc->sc_sysctl_log, 0, NULL, NULL,
0,
CTLTYPE_STRUCT, "spd_data",
SYSCTL_DESCR("raw spd data"), NULL,
0, s, spd_len,
CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
/*
* Decode and print key SPD contents
*/
if (IS_RAMBUS_TYPE) {
if (s->sm_type == SPDMEM_MEMTYPE_RAMBUS)
type = "Rambus";
else if (s->sm_type == SPDMEM_MEMTYPE_DIRECTRAMBUS)
type = "Direct Rambus";
else
type = "Rambus (unknown)";
switch (s->sm_len) {
case 0:
rambus_rev = "Invalid";
break;
case 1:
rambus_rev = "0.7";
break;
case 2:
rambus_rev = "1.0";
break;
default:
rambus_rev = "Reserved";
break;
}
} else {
if (s->sm_type < __arraycount(spdmem_basic_types))
type = spdmem_basic_types[s->sm_type];
else
type = "unknown memory type";
if (s->sm_type == SPDMEM_MEMTYPE_EDO &&
s->sm_fpm.fpm_superset == SPDMEM_SUPERSET_EDO_PEM)
type = spdmem_superset_types[SPDMEM_SUPERSET_EDO_PEM];
if (s->sm_type == SPDMEM_MEMTYPE_SDRAM &&
s->sm_sdr.sdr_superset == SPDMEM_SUPERSET_SDRAM_PEM)
type = spdmem_superset_types[SPDMEM_SUPERSET_SDRAM_PEM];
if (s->sm_type == SPDMEM_MEMTYPE_DDRSDRAM &&
s->sm_ddr.ddr_superset == SPDMEM_SUPERSET_DDR_ESDRAM)
type =
spdmem_superset_types[SPDMEM_SUPERSET_DDR_ESDRAM];
if (s->sm_type == SPDMEM_MEMTYPE_SDRAM &&
s->sm_sdr.sdr_superset == SPDMEM_SUPERSET_ESDRAM) {
type = spdmem_superset_types[SPDMEM_SUPERSET_ESDRAM];
}
if (s->sm_type == SPDMEM_MEMTYPE_DDR4SDRAM &&
s->sm_ddr4.ddr4_mod_type <
__arraycount(spdmem_ddr4_module_types)) {
type = spdmem_ddr4_module_types[s->sm_ddr4.ddr4_mod_type];
}
}
strlcpy(sc->sc_type, type, SPDMEM_TYPE_MAXLEN);
if (s->sm_type == SPDMEM_MEMTYPE_DDR4SDRAM) {
/*
* The latest spec (DDR4 SPD Document Release 3) defines
* NVDIMM Hybrid only.
*/
if ((s->sm_ddr4.ddr4_hybrid)
&& (s->sm_ddr4.ddr4_hybrid_media == 1))
strlcat(sc->sc_type, " NVDIMM hybrid",
SPDMEM_TYPE_MAXLEN);
}
if (node != NULL)
sysctl_createv(&sc->sc_sysctl_log, 0, NULL, NULL,
0,
CTLTYPE_STRING, "mem_type",
SYSCTL_DESCR("memory module type"), NULL,
0, sc->sc_type, 0,
CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
if (IS_RAMBUS_TYPE) {
aprint_naive("\n");
aprint_normal("\n");
aprint_normal_dev(self, "%s, SPD Revision %s", type, rambus_rev);
dimm_size = 1 << (s->sm_rdr.rdr_rows + s->sm_rdr.rdr_cols - 13);
if (dimm_size >= 1024)
aprint_normal(", %dGB\n", dimm_size / 1024);
else
aprint_normal(", %dMB\n", dimm_size);
/* No further decode for RAMBUS memory */
return;
}
switch (s->sm_type) {
case SPDMEM_MEMTYPE_EDO:
case SPDMEM_MEMTYPE_FPM:
decode_edofpm(node, self, s);
break;
case SPDMEM_MEMTYPE_ROM:
decode_rom(node, self, s);
break;
case SPDMEM_MEMTYPE_SDRAM:
decode_sdram(node, self, s, spd_len);
break;
case SPDMEM_MEMTYPE_DDRSDRAM:
decode_ddr(node, self, s);
break;
case SPDMEM_MEMTYPE_DDR2SDRAM:
decode_ddr2(node, self, s);
break;
case SPDMEM_MEMTYPE_DDR3SDRAM:
decode_ddr3(node, self, s);
break;
case SPDMEM_MEMTYPE_FBDIMM:
case SPDMEM_MEMTYPE_FBDIMM_PROBE:
decode_fbdimm(node, self, s);
break;
case SPDMEM_MEMTYPE_DDR4SDRAM:
decode_ddr4(node, self, s);
break;
}
/* Dump SPD */
for (i = 0; i < spd_len; i += 16) {
unsigned int j, k;
aprint_debug_dev(self, "0x%02x:", i);
k = (spd_len > (i + 16)) ? i + 16 : spd_len;
for (j = i; j < k; j++)
aprint_debug(" %02x", ((uint8_t *)s)[j]);
aprint_debug("\n");
}
}
int
spdmem_common_detach(struct spdmem_softc *sc, device_t self)
{
sysctl_teardown(&sc->sc_sysctl_log);
return 0;
}
static void
decode_size_speed(device_t self, const struct sysctlnode *node,
int dimm_size, int cycle_time, int d_clk, int bits,
bool round, const char *ddr_type_string, int speed)
{
int p_clk;
struct spdmem_softc *sc = device_private(self);
if (dimm_size < 1024)
aprint_normal("%dMB", dimm_size);
else
aprint_normal("%dGB", dimm_size / 1024);
if (node != NULL)
sysctl_createv(&sc->sc_sysctl_log, 0, NULL, NULL,
CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "size",
SYSCTL_DESCR("module size in MB"), NULL,
dimm_size, NULL, 0,
CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
if (cycle_time == 0) {
aprint_normal("\n");
return;
}
/*
* Calculate p_clk first, since for DDR3 we need maximum significance.
* DDR3 rating is not rounded to a multiple of 100. This results in
* cycle_time of 1.5ns displayed as PC3-10666.
*
* For SDRAM, the speed is provided by the caller so we use it.
*/
d_clk *= 1000 * 1000;
if (speed)
p_clk = speed;
else
p_clk = (d_clk * bits) / 8 / cycle_time;
d_clk = ((d_clk + cycle_time / 2) ) / cycle_time;
if (round) {
if ((p_clk % 100) >= 50)
p_clk += 50;
p_clk -= p_clk % 100;
}
aprint_normal(", %dMHz (%s-%d)\n",
d_clk, ddr_type_string, p_clk);
if (node != NULL)
sysctl_createv(&sc->sc_sysctl_log, 0, NULL, NULL,
CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "speed",
SYSCTL_DESCR("memory speed in MHz"),
NULL, d_clk, NULL, 0,
CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
}
static void
decode_voltage_refresh(device_t self, struct spdmem *s)
{
const char *voltage, *refresh;
if (s->sm_voltage < __arraycount(spdmem_voltage_types))
voltage = spdmem_voltage_types[s->sm_voltage];
else
voltage = "unknown";
if (s->sm_refresh < __arraycount(spdmem_refresh_types))
refresh = spdmem_refresh_types[s->sm_refresh];
else
refresh = "unknown";
aprint_verbose_dev(self, "voltage %s, refresh time %s%s\n",
voltage, refresh,
s->sm_selfrefresh?" (self-refreshing)":"");
}
static void
decode_edofpm(const struct sysctlnode *node, device_t self, struct spdmem *s)
{
aprint_naive("\n");
aprint_normal("\n");
aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
aprint_normal("\n");
aprint_verbose_dev(self,
"%d rows, %d cols, %d banks, %dns tRAC, %dns tCAC\n",
s->sm_fpm.fpm_rows, s->sm_fpm.fpm_cols, s->sm_fpm.fpm_banks,
s->sm_fpm.fpm_tRAC, s->sm_fpm.fpm_tCAC);
}
static void
decode_rom(const struct sysctlnode *node, device_t self, struct spdmem *s)
{
aprint_naive("\n");
aprint_normal("\n");
aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
aprint_normal("\n");
aprint_verbose_dev(self, "%d rows, %d cols, %d banks\n",
s->sm_rom.rom_rows, s->sm_rom.rom_cols, s->sm_rom.rom_banks);
}
static void
decode_sdram(const struct sysctlnode *node, device_t self, struct spdmem *s,
int spd_len)
{
int dimm_size, cycle_time, bits, tAA, i, speed, freq;
aprint_naive("\n");
aprint_normal("\n");
aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
aprint_normal("%s, %s, ",
(s->sm_sdr.sdr_mod_attrs & SPDMEM_SDR_MASK_REG)?
" (registered)":"",
(s->sm_config < __arraycount(spdmem_parity_types))?
spdmem_parity_types[s->sm_config]:"invalid parity");
dimm_size = 1 << (s->sm_sdr.sdr_rows + s->sm_sdr.sdr_cols - 17);
dimm_size *= s->sm_sdr.sdr_banks * s->sm_sdr.sdr_banks_per_chip;
cycle_time = s->sm_sdr.sdr_cycle_whole * 1000 +
s->sm_sdr.sdr_cycle_tenths * 100;
bits = le16toh(s->sm_sdr.sdr_datawidth);
if (s->sm_config == 1 || s->sm_config == 2)
bits -= 8;
/* Calculate speed here - from OpenBSD */
if (spd_len >= 128)
freq = ((uint8_t *)s)[126];
else
freq = 0;
switch (freq) {
/*
* Must check cycle time since some PC-133 DIMMs
* actually report PC-100
*/
case 100:
case 133:
if (cycle_time < 8000)
speed = 133;
else
speed = 100;
break;
case 0x66: /* Legacy DIMMs use _hex_ 66! */
default:
speed = 66;
}
decode_size_speed(self, node, dimm_size, cycle_time, 1, bits, FALSE,
"PC", speed);
aprint_verbose_dev(self,
"%d rows, %d cols, %d banks, %d banks/chip, %d.%dns cycle time\n",
s->sm_sdr.sdr_rows, s->sm_sdr.sdr_cols, s->sm_sdr.sdr_banks,
s->sm_sdr.sdr_banks_per_chip, cycle_time/1000,
(cycle_time % 1000) / 100);
tAA = 0;
for (i = 0; i < 8; i++)
if (s->sm_sdr.sdr_tCAS & (1 << i))
tAA = i;
tAA++;
aprint_verbose_dev(self, LATENCY, tAA, s->sm_sdr.sdr_tRCD,
s->sm_sdr.sdr_tRP, s->sm_sdr.sdr_tRAS);
decode_voltage_refresh(self, s);
}
static void
decode_ddr(const struct sysctlnode *node, device_t self, struct spdmem *s)
{
int dimm_size, cycle_time, bits, tAA, i;
aprint_naive("\n");
aprint_normal("\n");
aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
aprint_normal("%s, %s, ",
(s->sm_ddr.ddr_mod_attrs & SPDMEM_DDR_MASK_REG)?
" (registered)":"",
(s->sm_config < __arraycount(spdmem_parity_types))?
spdmem_parity_types[s->sm_config]:"invalid parity");
dimm_size = 1 << (s->sm_ddr.ddr_rows + s->sm_ddr.ddr_cols - 17);
dimm_size *= s->sm_ddr.ddr_ranks * s->sm_ddr.ddr_banks_per_chip;
cycle_time = s->sm_ddr.ddr_cycle_whole * 1000 +
spdmem_cycle_frac[s->sm_ddr.ddr_cycle_tenths];
bits = le16toh(s->sm_ddr.ddr_datawidth);
if (s->sm_config == 1 || s->sm_config == 2)
bits -= 8;
decode_size_speed(self, node, dimm_size, cycle_time, 2, bits, TRUE,
"PC", 0);
aprint_verbose_dev(self,
"%d rows, %d cols, %d ranks, %d banks/chip, %d.%dns cycle time\n",
s->sm_ddr.ddr_rows, s->sm_ddr.ddr_cols, s->sm_ddr.ddr_ranks,
s->sm_ddr.ddr_banks_per_chip, cycle_time/1000,
(cycle_time % 1000 + 50) / 100);
tAA = 0;
for (i = 2; i < 8; i++)
if (s->sm_ddr.ddr_tCAS & (1 << i))
tAA = i;
tAA /= 2;
#define __DDR_ROUND(scale, field) \
((scale * s->sm_ddr.field + cycle_time - 1) / cycle_time)
aprint_verbose_dev(self, LATENCY, tAA, __DDR_ROUND(250, ddr_tRCD),
__DDR_ROUND(250, ddr_tRP), __DDR_ROUND(1000, ddr_tRAS));
#undef __DDR_ROUND
decode_voltage_refresh(self, s);
}
static void
decode_ddr2(const struct sysctlnode *node, device_t self, struct spdmem *s)
{
int dimm_size, cycle_time, bits, tAA, i;
aprint_naive("\n");
aprint_normal("\n");
aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
aprint_normal("%s, %s, ",
(s->sm_ddr2.ddr2_mod_attrs & SPDMEM_DDR2_MASK_REG)?
" (registered)":"",
(s->sm_config < __arraycount(spdmem_parity_types))?
spdmem_parity_types[s->sm_config]:"invalid parity");
dimm_size = 1 << (s->sm_ddr2.ddr2_rows + s->sm_ddr2.ddr2_cols - 17);
dimm_size *= (s->sm_ddr2.ddr2_ranks + 1) *
s->sm_ddr2.ddr2_banks_per_chip;
cycle_time = s->sm_ddr2.ddr2_cycle_whole * 1000 +
spdmem_cycle_frac[s->sm_ddr2.ddr2_cycle_frac];
bits = s->sm_ddr2.ddr2_datawidth;
if ((s->sm_config & 0x03) != 0)
bits -= 8;
decode_size_speed(self, node, dimm_size, cycle_time, 2, bits, TRUE,
"PC2", 0);
aprint_verbose_dev(self,
"%d rows, %d cols, %d ranks, %d banks/chip, %d.%02dns cycle time\n",
s->sm_ddr2.ddr2_rows, s->sm_ddr2.ddr2_cols,
s->sm_ddr2.ddr2_ranks + 1, s->sm_ddr2.ddr2_banks_per_chip,
cycle_time / 1000, (cycle_time % 1000 + 5) /10 );
tAA = 0;
for (i = 2; i < 8; i++)
if (s->sm_ddr2.ddr2_tCAS & (1 << i))
tAA = i;
#define __DDR2_ROUND(scale, field) \
((scale * s->sm_ddr2.field + cycle_time - 1) / cycle_time)
aprint_verbose_dev(self, LATENCY, tAA, __DDR2_ROUND(250, ddr2_tRCD),
__DDR2_ROUND(250, ddr2_tRP), __DDR2_ROUND(1000, ddr2_tRAS));
#undef __DDR_ROUND
decode_voltage_refresh(self, s);
}
static void
decode_ddr3(const struct sysctlnode *node, device_t self, struct spdmem *s)
{
int dimm_size, cycle_time, bits;
aprint_naive("\n");
aprint_normal(": %18s\n", s->sm_ddr3.ddr3_part);
aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
if (s->sm_ddr3.ddr3_mod_type ==
SPDMEM_DDR3_TYPE_MINI_RDIMM ||
s->sm_ddr3.ddr3_mod_type == SPDMEM_DDR3_TYPE_RDIMM)
aprint_normal(" (registered)");
aprint_normal(", %sECC, %stemp-sensor, ",
(s->sm_ddr3.ddr3_hasECC)?"":"no ",
(s->sm_ddr3.ddr3_has_therm_sensor)?"":"no ");
/*
* DDR3 size specification is quite different from others
*
* Module capacity is defined as
* Chip_Capacity_in_bits / 8bits-per-byte *
* external_bus_width / internal_bus_width
* We further divide by 2**20 to get our answer in MB
*/
dimm_size = (s->sm_ddr3.ddr3_chipsize + 28 - 20) - 3 +
(s->sm_ddr3.ddr3_datawidth + 3) -
(s->sm_ddr3.ddr3_chipwidth + 2);
dimm_size = (1 << dimm_size) * (s->sm_ddr3.ddr3_physbanks + 1);
cycle_time = (1000 * s->sm_ddr3.ddr3_mtb_dividend +
(s->sm_ddr3.ddr3_mtb_divisor / 2)) /
s->sm_ddr3.ddr3_mtb_divisor;
cycle_time *= s->sm_ddr3.ddr3_tCKmin;
bits = 1 << (s->sm_ddr3.ddr3_datawidth + 3);
decode_size_speed(self, node, dimm_size, cycle_time, 2, bits, FALSE,
"PC3", 0);
aprint_verbose_dev(self,
"%d rows, %d cols, %d log. banks, %d phys. banks, "
"%d.%03dns cycle time\n",
s->sm_ddr3.ddr3_rows + 9, s->sm_ddr3.ddr3_cols + 12,
1 << (s->sm_ddr3.ddr3_logbanks + 3),
s->sm_ddr3.ddr3_physbanks + 1,
cycle_time/1000, cycle_time % 1000);
#define __DDR3_CYCLES(field) (s->sm_ddr3.field / s->sm_ddr3.ddr3_tCKmin)
aprint_verbose_dev(self, LATENCY, __DDR3_CYCLES(ddr3_tAAmin),
__DDR3_CYCLES(ddr3_tRCDmin), __DDR3_CYCLES(ddr3_tRPmin),
(s->sm_ddr3.ddr3_tRAS_msb * 256 + s->sm_ddr3.ddr3_tRAS_lsb) /
s->sm_ddr3.ddr3_tCKmin);
#undef __DDR3_CYCLES
/* For DDR3, Voltage is written in another area */
if (!s->sm_ddr3.ddr3_NOT15V || s->sm_ddr3.ddr3_135V
|| s->sm_ddr3.ddr3_125V) {
aprint_verbose("%s:", device_xname(self));
if (!s->sm_ddr3.ddr3_NOT15V)
aprint_verbose(" 1.5V");
if (s->sm_ddr3.ddr3_135V)
aprint_verbose(" 1.35V");
if (s->sm_ddr3.ddr3_125V)
aprint_verbose(" 1.25V");
aprint_verbose(" operable\n");
}
}
static void
decode_fbdimm(const struct sysctlnode *node, device_t self, struct spdmem *s)
{
int dimm_size, cycle_time, bits;
aprint_naive("\n");
aprint_normal("\n");
aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
/*
* FB-DIMM module size calculation is very much like DDR3
*/
dimm_size = s->sm_fbd.fbdimm_rows + 12 +
s->sm_fbd.fbdimm_cols + 9 - 20 - 3;
dimm_size = (1 << dimm_size) * (1 << (s->sm_fbd.fbdimm_banks + 2));
cycle_time = (1000 * s->sm_fbd.fbdimm_mtb_dividend +
(s->sm_fbd.fbdimm_mtb_divisor / 2)) /
s->sm_fbd.fbdimm_mtb_divisor;
bits = 1 << (s->sm_fbd.fbdimm_dev_width + 2);
decode_size_speed(self, node, dimm_size, cycle_time, 2, bits, TRUE,
"PC2", 0);
aprint_verbose_dev(self,
"%d rows, %d cols, %d banks, %d.%02dns cycle time\n",
s->sm_fbd.fbdimm_rows, s->sm_fbd.fbdimm_cols,
1 << (s->sm_fbd.fbdimm_banks + 2),
cycle_time / 1000, (cycle_time % 1000 + 5) /10 );
#define __FBDIMM_CYCLES(field) (s->sm_fbd.field / s->sm_fbd.fbdimm_tCKmin)
aprint_verbose_dev(self, LATENCY, __FBDIMM_CYCLES(fbdimm_tAAmin),
__FBDIMM_CYCLES(fbdimm_tRCDmin), __FBDIMM_CYCLES(fbdimm_tRPmin),
(s->sm_fbd.fbdimm_tRAS_msb * 256 + s->sm_fbd.fbdimm_tRAS_lsb) /
s->sm_fbd.fbdimm_tCKmin);
#undef __FBDIMM_CYCLES
decode_voltage_refresh(self, s);
}
static void
decode_ddr4(const struct sysctlnode *node, device_t self, struct spdmem *s)
{
int dimm_size, cycle_time;
int tAA_clocks, tRCD_clocks,tRP_clocks, tRAS_clocks;
aprint_naive("\n");
aprint_normal(": %20s\n", s->sm_ddr4.ddr4_part_number);
aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
if (s->sm_ddr4.ddr4_mod_type < __arraycount(spdmem_ddr4_module_types))
aprint_normal(" (%s)",
spdmem_ddr4_module_types[s->sm_ddr4.ddr4_mod_type]);
aprint_normal(", %stemp-sensor, ",
(s->sm_ddr4.ddr4_has_therm_sensor)?"":"no ");
/*
* DDR4 size calculation from JEDEC spec
*
* Module capacity in bytes is defined as
* Chip_Capacity_in_bits / 8bits-per-byte *
* primary_bus_width / DRAM_width *
* logical_ranks_per_DIMM
*
* logical_ranks_per DIMM equals package_ranks, but multiply
* by diecount for 3DS packages
*
* We further divide by 2**20 to get our answer in MB
*/
dimm_size = (s->sm_ddr4.ddr4_capacity + 28) /* chip_capacity */
- 20 /* convert to MB */
- 3 /* bits --> bytes */
+ (s->sm_ddr4.ddr4_primary_bus_width + 3); /* bus width */
switch (s->sm_ddr4.ddr4_device_width) { /* DRAM width */
case 0: dimm_size -= 2;
break;
case 1: dimm_size -= 3;
break;
case 2: dimm_size -= 4;
break;
case 4: dimm_size -= 5;
break;
default:
dimm_size = -1; /* flag invalid value */
}
if (dimm_size >= 0) {
dimm_size = (1 << dimm_size) *
(s->sm_ddr4.ddr4_package_ranks + 1); /* log.ranks/DIMM */
if (s->sm_ddr4.ddr4_signal_loading == 2) {
dimm_size *= (s->sm_ddr4.ddr4_diecount + 1);
}
}
#define __DDR4_VALUE(field) ((s->sm_ddr4.ddr4_##field##_mtb * 125 + \
s->sm_ddr4.ddr4_##field##_ftb) - \
((s->sm_ddr4.ddr4_##field##_ftb > 127)?256:0))
/*
* For now, the only value for mtb is 1 = 125ps, and ftp = 1ps
* so we don't need to figure out the time-base units - just
* hard-code them for now.
*/
cycle_time = __DDR4_VALUE(tCKAVGmin);
decode_size_speed(self, node, dimm_size, cycle_time, 2,
1 << (s->sm_ddr4.ddr4_primary_bus_width + 3),
TRUE, "PC4", 0);
aprint_verbose_dev(self,
"%d rows, %d cols, %d banks, %d bank groups, "
"%d.%03dns cycle time\n",
s->sm_ddr4.ddr4_rows + 9, s->sm_ddr4.ddr4_cols + 12,
1 << (2 + s->sm_ddr4.ddr4_logbanks),
1 << s->sm_ddr4.ddr4_bankgroups,
cycle_time / 1000, cycle_time % 1000);
/*
* Note that the ddr4_xxx_ftb fields are actually signed offsets from
* the corresponding mtb value, so we might have to subtract 256!
*/
tAA_clocks = __DDR4_VALUE(tAAmin) * 1000 / cycle_time;
tRCD_clocks = __DDR4_VALUE(tRCDmin) * 1000 / cycle_time;
tRP_clocks = __DDR4_VALUE(tRPmin) * 1000 / cycle_time;
tRAS_clocks = (s->sm_ddr4.ddr4_tRASmin_msb * 256 +
s->sm_ddr4.ddr4_tRASmin_lsb) * 125 * 1000 / cycle_time;
/*
* Per JEDEC spec, rounding is done by taking the time value, dividing
* by the cycle time, subtracting .010 from the result, and then
* rounded up to the nearest integer. Unfortunately, none of their
* examples say what to do when the result of the subtraction is already
* an integer. For now, assume that we still round up (so an interval
* of exactly 12.010 clock cycles will be printed as 13).
*/
#define __DDR4_ROUND(value) ((value - 10) / 1000 + 1)
aprint_verbose_dev(self, LATENCY, __DDR4_ROUND(tAA_clocks),
__DDR4_ROUND(tRCD_clocks),
__DDR4_ROUND(tRP_clocks),
__DDR4_ROUND(tRAS_clocks));
#undef __DDR4_VALUE
#undef __DDR4_ROUND
}