NetBSD/lib/libcrypto/man/openssl_des.3

524 lines
23 KiB
Groff

.\" $NetBSD: openssl_des.3,v 1.1 2001/04/12 10:45:47 itojun Exp $
.\"
.\" Automatically generated by Pod::Man version 1.02
.\" Thu Apr 12 19:27:10 2001
.\"
.\" Standard preamble:
.\" ======================================================================
.de Sh \" Subsection heading
.br
.if t .Sp
.ne 5
.PP
\fB\\$1\fR
.PP
..
.de Sp \" Vertical space (when we can't use .PP)
.if t .sp .5v
.if n .sp
..
.de Ip \" List item
.br
.ie \\n(.$>=3 .ne \\$3
.el .ne 3
.IP "\\$1" \\$2
..
.de Vb \" Begin verbatim text
.ft CW
.nf
.ne \\$1
..
.de Ve \" End verbatim text
.ft R
.fi
..
.\" Set up some character translations and predefined strings. \*(-- will
.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
.\" double quote, and \*(R" will give a right double quote. | will give a
.\" real vertical bar. \*(C+ will give a nicer C++. Capital omega is used
.\" to do unbreakable dashes and therefore won't be available. \*(C` and
.\" \*(C' expand to `' in nroff, nothing in troff, for use with C<>
.tr \(*W-|\(bv\*(Tr
.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
.ie n \{\
. ds -- \(*W-
. ds PI pi
. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
. ds L" ""
. ds R" ""
. ds C` `
. ds C' '
'br\}
.el\{\
. ds -- \|\(em\|
. ds PI \(*p
. ds L" ``
. ds R" ''
'br\}
.\"
.\" If the F register is turned on, we'll generate index entries on stderr
.\" for titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and
.\" index entries marked with X<> in POD. Of course, you'll have to process
.\" the output yourself in some meaningful fashion.
.if \nF \{\
. de IX
. tm Index:\\$1\t\\n%\t"\\$2"
. .
. nr % 0
. rr F
.\}
.\"
.\" For nroff, turn off justification. Always turn off hyphenation; it
.\" makes way too many mistakes in technical documents.
.hy 0
.if n .na
.\"
.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
.\" Fear. Run. Save yourself. No user-serviceable parts.
.bd B 3
. \" fudge factors for nroff and troff
.if n \{\
. ds #H 0
. ds #V .8m
. ds #F .3m
. ds #[ \f1
. ds #] \fP
.\}
.if t \{\
. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
. ds #V .6m
. ds #F 0
. ds #[ \&
. ds #] \&
.\}
. \" simple accents for nroff and troff
.if n \{\
. ds ' \&
. ds ` \&
. ds ^ \&
. ds , \&
. ds ~ ~
. ds /
.\}
.if t \{\
. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
.\}
. \" troff and (daisy-wheel) nroff accents
.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
.ds ae a\h'-(\w'a'u*4/10)'e
.ds Ae A\h'-(\w'A'u*4/10)'E
. \" corrections for vroff
.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
. \" for low resolution devices (crt and lpr)
.if \n(.H>23 .if \n(.V>19 \
\{\
. ds : e
. ds 8 ss
. ds o a
. ds d- d\h'-1'\(ga
. ds D- D\h'-1'\(hy
. ds th \o'bp'
. ds Th \o'LP'
. ds ae ae
. ds Ae AE
.\}
.rm #[ #] #H #V #F C
.\" ======================================================================
.\"
.IX Title "des 3"
.TH des 3 "0.9.6a" "2001-04-12" "OpenSSL"
.UC
.SH "NAME"
des_random_key, des_set_key, des_key_sched, des_set_key_checked,
des_set_key_unchecked, des_set_odd_parity, des_is_weak_key,
des_ecb_encrypt, des_ecb2_encrypt, des_ecb3_encrypt, des_ncbc_encrypt,
des_cfb_encrypt, des_ofb_encrypt, des_pcbc_encrypt, des_cfb64_encrypt,
des_ofb64_encrypt, des_xcbc_encrypt, des_ede2_cbc_encrypt,
des_ede2_cfb64_encrypt, des_ede2_ofb64_encrypt, des_ede3_cbc_encrypt,
des_ede3_cbcm_encrypt, des_ede3_cfb64_encrypt, des_ede3_ofb64_encrypt,
des_read_password, des_read_2passwords, des_read_pw_string,
des_cbc_cksum, des_quad_cksum, des_string_to_key, des_string_to_2keys,
des_fcrypt, des_crypt, des_enc_read, des_enc_write \- \s-1DES\s0 encryption
.SH "LIBRARY"
libcrypto, -lcrypto
.SH "SYNOPSIS"
.IX Header "SYNOPSIS"
.Vb 1
\& #include <openssl/des.h>
.Ve
.Vb 1
\& void des_random_key(des_cblock *ret);
.Ve
.Vb 6
\& int des_set_key(const_des_cblock *key, des_key_schedule schedule);
\& int des_key_sched(const_des_cblock *key, des_key_schedule schedule);
\& int des_set_key_checked(const_des_cblock *key,
\& des_key_schedule schedule);
\& void des_set_key_unchecked(const_des_cblock *key,
\& des_key_schedule schedule);
.Ve
.Vb 2
\& void des_set_odd_parity(des_cblock *key);
\& int des_is_weak_key(const_des_cblock *key);
.Ve
.Vb 7
\& void des_ecb_encrypt(const_des_cblock *input, des_cblock *output,
\& des_key_schedule ks, int enc);
\& void des_ecb2_encrypt(const_des_cblock *input, des_cblock *output,
\& des_key_schedule ks1, des_key_schedule ks2, int enc);
\& void des_ecb3_encrypt(const_des_cblock *input, des_cblock *output,
\& des_key_schedule ks1, des_key_schedule ks2,
\& des_key_schedule ks3, int enc);
.Ve
.Vb 18
\& void des_ncbc_encrypt(const unsigned char *input, unsigned char *output,
\& long length, des_key_schedule schedule, des_cblock *ivec,
\& int enc);
\& void des_cfb_encrypt(const unsigned char *in, unsigned char *out,
\& int numbits, long length, des_key_schedule schedule,
\& des_cblock *ivec, int enc);
\& void des_ofb_encrypt(const unsigned char *in, unsigned char *out,
\& int numbits, long length, des_key_schedule schedule,
\& des_cblock *ivec);
\& void des_pcbc_encrypt(const unsigned char *input, unsigned char *output,
\& long length, des_key_schedule schedule, des_cblock *ivec,
\& int enc);
\& void des_cfb64_encrypt(const unsigned char *in, unsigned char *out,
\& long length, des_key_schedule schedule, des_cblock *ivec,
\& int *num, int enc);
\& void des_ofb64_encrypt(const unsigned char *in, unsigned char *out,
\& long length, des_key_schedule schedule, des_cblock *ivec,
\& int *num);
.Ve
.Vb 3
\& void des_xcbc_encrypt(const unsigned char *input, unsigned char *output,
\& long length, des_key_schedule schedule, des_cblock *ivec,
\& const_des_cblock *inw, const_des_cblock *outw, int enc);
.Ve
.Vb 9
\& void des_ede2_cbc_encrypt(const unsigned char *input,
\& unsigned char *output, long length, des_key_schedule ks1,
\& des_key_schedule ks2, des_cblock *ivec, int enc);
\& void des_ede2_cfb64_encrypt(const unsigned char *in,
\& unsigned char *out, long length, des_key_schedule ks1,
\& des_key_schedule ks2, des_cblock *ivec, int *num, int enc);
\& void des_ede2_ofb64_encrypt(const unsigned char *in,
\& unsigned char *out, long length, des_key_schedule ks1,
\& des_key_schedule ks2, des_cblock *ivec, int *num);
.Ve
.Vb 15
\& void des_ede3_cbc_encrypt(const unsigned char *input,
\& unsigned char *output, long length, des_key_schedule ks1,
\& des_key_schedule ks2, des_key_schedule ks3, des_cblock *ivec,
\& int enc);
\& void des_ede3_cbcm_encrypt(const unsigned char *in, unsigned char *out,
\& long length, des_key_schedule ks1, des_key_schedule ks2,
\& des_key_schedule ks3, des_cblock *ivec1, des_cblock *ivec2,
\& int enc);
\& void des_ede3_cfb64_encrypt(const unsigned char *in, unsigned char *out,
\& long length, des_key_schedule ks1, des_key_schedule ks2,
\& des_key_schedule ks3, des_cblock *ivec, int *num, int enc);
\& void des_ede3_ofb64_encrypt(const unsigned char *in, unsigned char *out,
\& long length, des_key_schedule ks1,
\& des_key_schedule ks2, des_key_schedule ks3,
\& des_cblock *ivec, int *num);
.Ve
.Vb 5
\& int des_read_password(des_cblock *key, const char *prompt, int verify);
\& int des_read_2passwords(des_cblock *key1, des_cblock *key2,
\& const char *prompt, int verify);
\& int des_read_pw_string(char *buf, int length, const char *prompt,
\& int verify);
.Ve
.Vb 8
\& DES_LONG des_cbc_cksum(const unsigned char *input, des_cblock *output,
\& long length, des_key_schedule schedule,
\& const_des_cblock *ivec);
\& DES_LONG des_quad_cksum(const unsigned char *input, des_cblock output[],
\& long length, int out_count, des_cblock *seed);
\& void des_string_to_key(const char *str, des_cblock *key);
\& void des_string_to_2keys(const char *str, des_cblock *key1,
\& des_cblock *key2);
.Ve
.Vb 3
\& char *des_fcrypt(const char *buf, const char *salt, char *ret);
\& char *des_crypt(const char *buf, const char *salt);
\& char *crypt(const char *buf, const char *salt);
.Ve
.Vb 4
\& int des_enc_read(int fd, void *buf, int len, des_key_schedule sched,
\& des_cblock *iv);
\& int des_enc_write(int fd, const void *buf, int len,
\& des_key_schedule sched, des_cblock *iv);
.Ve
.SH "DESCRIPTION"
.IX Header "DESCRIPTION"
This library contains a fast implementation of the \s-1DES\s0 encryption
algorithm.
.PP
There are two phases to the use of \s-1DES\s0 encryption. The first is the
generation of a \fIdes_key_schedule\fR from a key, the second is the
actual encryption. A \s-1DES\s0 key is of type \fIdes_cblock\fR. This type is
consists of 8 bytes with odd parity. The least significant bit in
each byte is the parity bit. The key schedule is an expanded form of
the key; it is used to speed the encryption process.
.PP
\&\fIdes_random_key()\fR generates a random key. The \s-1PRNG\s0 must be seeded
prior to using this function (see openssl_rand(3); for backward
compatibility the function \fIdes_random_seed()\fR is available as well).
If the \s-1PRNG\s0 could not generate a secure key, 0 is returned. In
earlier versions of the library, \fIdes_random_key()\fR did not generate
secure keys.
.PP
Before a \s-1DES\s0 key can be used, it must be converted into the
architecture dependent \fIdes_key_schedule\fR via the
\&\fIdes_set_key_checked()\fR or \fIdes_set_key_unchecked()\fR function.
.PP
\&\fIdes_set_key_checked()\fR will check that the key passed is of odd parity
and is not a week or semi-weak key. If the parity is wrong, then \-1
is returned. If the key is a weak key, then \-2 is returned. If an
error is returned, the key schedule is not generated.
.PP
\&\fIdes_set_key()\fR (called \fIdes_key_sched()\fR in the \s-1MIT\s0 library) works like
\&\fIdes_set_key_checked()\fR if the \fIdes_check_key\fR flag is non-zero,
otherwise like \fIdes_set_key_unchecked()\fR. These functions are available
for compatibility; it is recommended to use a function that does not
depend on a global variable.
.PP
\&\fIdes_set_odd_parity()\fR (called \fIdes_fixup_key_parity()\fR in the \s-1MIT\s0
library) sets the parity of the passed \fIkey\fR to odd.
.PP
\&\fIdes_is_weak_key()\fR returns 1 is the passed key is a weak key, 0 if it
is ok. The probability that a randomly generated key is weak is
1/2^52, so it is not really worth checking for them.
.PP
The following routines mostly operate on an input and output stream of
\&\fIdes_cblock\fRs.
.PP
\&\fIdes_ecb_encrypt()\fR is the basic \s-1DES\s0 encryption routine that encrypts or
decrypts a single 8\-byte \fIdes_cblock\fR in \fIelectronic code book\fR
(\s-1ECB\s0) mode. It always transforms the input data, pointed to by
\&\fIinput\fR, into the output data, pointed to by the \fIoutput\fR argument.
If the \fIencrypt\fR argument is non-zero (\s-1DES_ENCRYPT\s0), the \fIinput\fR
(cleartext) is encrypted in to the \fIoutput\fR (ciphertext) using the
key_schedule specified by the \fIschedule\fR argument, previously set via
\&\fIdes_set_key\fR. If \fIencrypt\fR is zero (\s-1DES_DECRYPT\s0), the \fIinput\fR (now
ciphertext) is decrypted into the \fIoutput\fR (now cleartext). Input
and output may overlap. \fIdes_ecb_encrypt()\fR does not return a value.
.PP
\&\fIdes_ecb3_encrypt()\fR encrypts/decrypts the \fIinput\fR block by using
three-key Triple-DES encryption in \s-1ECB\s0 mode. This involves encrypting
the input with \fIks1\fR, decrypting with the key schedule \fIks2\fR, and
then encrypting with \fIks3\fR. This routine greatly reduces the chances
of brute force breaking of \s-1DES\s0 and has the advantage of if \fIks1\fR,
\&\fIks2\fR and \fIks3\fR are the same, it is equivalent to just encryption
using \s-1ECB\s0 mode and \fIks1\fR as the key.
.PP
The macro \fIdes_ecb2_encrypt()\fR is provided to perform two-key Triple-DES
encryption by using \fIks1\fR for the final encryption.
.PP
\&\fIdes_ncbc_encrypt()\fR encrypts/decrypts using the \fIcipher-block-chaining\fR
(\s-1CBC\s0) mode of \s-1DES\s0. If the \fIencrypt\fR argument is non-zero, the
routine cipher-block-chain encrypts the cleartext data pointed to by
the \fIinput\fR argument into the ciphertext pointed to by the \fIoutput\fR
argument, using the key schedule provided by the \fIschedule\fR argument,
and initialization vector provided by the \fIivec\fR argument. If the
\&\fIlength\fR argument is not an integral multiple of eight bytes, the
last block is copied to a temporary area and zero filled. The output
is always an integral multiple of eight bytes.
.PP
\&\fIdes_xcbc_encrypt()\fR is \s-1RSA\s0's \s-1DESX\s0 mode of \s-1DES\s0. It uses \fIinw\fR and
\&\fIoutw\fR to 'whiten' the encryption. \fIinw\fR and \fIoutw\fR are secret
(unlike the iv) and are as such, part of the key. So the key is sort
of 24 bytes. This is much better than \s-1CBC\s0 \s-1DES\s0.
.PP
\&\fIdes_ede3_cbc_encrypt()\fR implements outer triple \s-1CBC\s0 \s-1DES\s0 encryption with
three keys. This means that each \s-1DES\s0 operation inside the \s-1CBC\s0 mode is
really an \f(CW\*(C`C=E(ks3,D(ks2,E(ks1,M)))\*(C'\fR. This mode is used by \s-1SSL\s0.
.PP
The \fIdes_ede2_cbc_encrypt()\fR macro implements two-key Triple-DES by
reusing \fIks1\fR for the final encryption. \f(CW\*(C`C=E(ks1,D(ks2,E(ks1,M)))\*(C'\fR.
This form of Triple-DES is used by the \s-1RSAREF\s0 library.
.PP
\&\fIdes_pcbc_encrypt()\fR encrypt/decrypts using the propagating cipher block
chaining mode used by Kerberos v4. Its parameters are the same as
\&\fIdes_ncbc_encrypt()\fR.
.PP
\&\fIdes_cfb_encrypt()\fR encrypt/decrypts using cipher feedback mode. This
method takes an array of characters as input and outputs and array of
characters. It does not require any padding to 8 character groups.
Note: the \fIivec\fR variable is changed and the new changed value needs to
be passed to the next call to this function. Since this function runs
a complete \s-1DES\s0 \s-1ECB\s0 encryption per \fInumbits\fR, this function is only
suggested for use when sending small numbers of characters.
.PP
\&\fIdes_cfb64_encrypt()\fR
implements \s-1CFB\s0 mode of \s-1DES\s0 with 64bit feedback. Why is this
useful you ask? Because this routine will allow you to encrypt an
arbitrary number of bytes, no 8 byte padding. Each call to this
routine will encrypt the input bytes to output and then update ivec
and num. num contains 'how far' we are though ivec. If this does
not make much sense, read more about cfb mode of \s-1DES\s0 :\-).
.PP
\&\fIdes_ede3_cfb64_encrypt()\fR and \fIdes_ede2_cfb64_encrypt()\fR is the same as
\&\fIdes_cfb64_encrypt()\fR except that Triple-DES is used.
.PP
\&\fIdes_ofb_encrypt()\fR encrypts using output feedback mode. This method
takes an array of characters as input and outputs and array of
characters. It does not require any padding to 8 character groups.
Note: the \fIivec\fR variable is changed and the new changed value needs to
be passed to the next call to this function. Since this function runs
a complete \s-1DES\s0 \s-1ECB\s0 encryption per numbits, this function is only
suggested for use when sending small numbers of characters.
.PP
\&\fIdes_ofb64_encrypt()\fR is the same as \fIdes_cfb64_encrypt()\fR using Output
Feed Back mode.
.PP
\&\fIdes_ede3_ofb64_encrypt()\fR and \fIdes_ede2_ofb64_encrypt()\fR is the same as
\&\fIdes_ofb64_encrypt()\fR, using Triple-DES.
.PP
The following functions are included in the \s-1DES\s0 library for
compatibility with the \s-1MIT\s0 Kerberos library. \fIdes_read_pw_string()\fR
is also available under the name \fIEVP_read_pw_string()\fR.
.PP
\&\fIdes_read_pw_string()\fR writes the string specified by \fIprompt\fR to
standard output, turns echo off and reads in input string from the
terminal. The string is returned in \fIbuf\fR, which must have space for
at least \fIlength\fR bytes. If \fIverify\fR is set, the user is asked for
the password twice and unless the two copies match, an error is
returned. A return code of \-1 indicates a system error, 1 failure due
to use interaction, and 0 is success.
.PP
\&\fIdes_read_password()\fR does the same and converts the password to a \s-1DES\s0
key by calling \fIdes_string_to_key()\fR; \fIdes_read_2password()\fR operates in
the same way as \fIdes_read_password()\fR except that it generates two keys
by using the \fIdes_string_to_2key()\fR function. \fIdes_string_to_key()\fR is
available for backward compatibility with the \s-1MIT\s0 library. New
applications should use a cryptographic hash function. The same
applies for \fIdes_string_to_2key()\fR.
.PP
\&\fIdes_cbc_cksum()\fR produces an 8 byte checksum based on the input stream
(via \s-1CBC\s0 encryption). The last 4 bytes of the checksum are returned
and the complete 8 bytes are placed in \fIoutput\fR. This function is
used by Kerberos v4. Other applications should use
EVP_DigestInit(3) etc. instead.
.PP
\&\fIdes_quad_cksum()\fR is a Kerberos v4 function. It returns a 4 byte
checksum from the input bytes. The algorithm can be iterated over the
input, depending on \fIout_count\fR, 1, 2, 3 or 4 times. If \fIoutput\fR is
non-NULL, the 8 bytes generated by each pass are written into
\&\fIoutput\fR.
.PP
The following are DES-based transformations:
.PP
\&\fIdes_fcrypt()\fR is a fast version of the Unix \fIcrypt\fR\|(3) function. This
version takes only a small amount of space relative to other fast
\&\fIcrypt()\fR implementations. This is different to the normal crypt in
that the third parameter is the buffer that the return value is
written into. It needs to be at least 14 bytes long. This function
is thread safe, unlike the normal crypt.
.PP
\&\fIdes_crypt()\fR is a faster replacement for the normal system \fIcrypt()\fR.
This function calls \fIdes_fcrypt()\fR with a static array passed as the
third parameter. This emulates the normal non-thread safe semantics
of \fIcrypt\fR\|(3).
.PP
\&\fIdes_enc_write()\fR writes \fIlen\fR bytes to file descriptor \fIfd\fR from
buffer \fIbuf\fR. The data is encrypted via \fIpcbc_encrypt\fR (default)
using \fIsched\fR for the key and \fIiv\fR as a starting vector. The actual
data send down \fIfd\fR consists of 4 bytes (in network byte order)
containing the length of the following encrypted data. The encrypted
data then follows, padded with random data out to a multiple of 8
bytes.
.PP
\&\fIdes_enc_read()\fR is used to read \fIlen\fR bytes from file descriptor
\&\fIfd\fR into buffer \fIbuf\fR. The data being read from \fIfd\fR is assumed to
have come from \fIdes_enc_write()\fR and is decrypted using \fIsched\fR for
the key schedule and \fIiv\fR for the initial vector.
.PP
\&\fBWarning:\fR The data format used by \fIdes_enc_write()\fR and \fIdes_enc_read()\fR
has a cryptographic weakness: When asked to write more than \s-1MAXWRITE\s0
bytes, \fIdes_enc_write()\fR will split the data into several chunks that
are all encrypted using the same \s-1IV\s0. So don't use these functions
unless you are sure you know what you do (in which case you might not
want to use them anyway). They cannot handle non-blocking sockets.
\&\fIdes_enc_read()\fR uses an internal state and thus cannot be used on
multiple files.
.PP
\&\fIdes_rw_mode\fR is used to specify the encryption mode to use with
\&\fIdes_enc_read()\fR and \fIdes_end_write()\fR. If set to \fI\s-1DES_PCBC_MODE\s0\fR (the
default), des_pcbc_encrypt is used. If set to \fI\s-1DES_CBC_MODE\s0\fR
des_cbc_encrypt is used.
.SH "NOTES"
.IX Header "NOTES"
Single-key \s-1DES\s0 is insecure due to its short key size. \s-1ECB\s0 mode is
not suitable for most applications; see des_modes(7).
.PP
The openssl_evp(3) library provides higher-level encryption functions.
.SH "BUGS"
.IX Header "BUGS"
\&\fIdes_3cbc_encrypt()\fR is flawed and must not be used in applications.
.PP
\&\fIdes_cbc_encrypt()\fR does not modify \fBivec\fR; use \fIdes_ncbc_encrypt()\fR
instead.
.PP
\&\fIdes_cfb_encrypt()\fR and \fIdes_ofb_encrypt()\fR operates on input of 8 bits.
What this means is that if you set numbits to 12, and length to 2, the
first 12 bits will come from the 1st input byte and the low half of
the second input byte. The second 12 bits will have the low 8 bits
taken from the 3rd input byte and the top 4 bits taken from the 4th
input byte. The same holds for output. This function has been
implemented this way because most people will be using a multiple of 8
and because once you get into pulling bytes input bytes apart things
get ugly!
.PP
\&\fIdes_read_pw_string()\fR is the most machine/OS dependent function and
normally generates the most problems when porting this code.
.SH "CONFORMING TO"
.IX Header "CONFORMING TO"
\&\s-1ANSI\s0 X3.106
.PP
The \fBdes\fR library was written to be source code compatible with
the \s-1MIT\s0 Kerberos library.
.SH "SEE ALSO"
.IX Header "SEE ALSO"
\&\fIcrypt\fR\|(3), des_modes(7), openssl_evp(3), openssl_rand(3)
.SH "HISTORY"
.IX Header "HISTORY"
\&\fIdes_cbc_cksum()\fR, \fIdes_cbc_encrypt()\fR, \fIdes_ecb_encrypt()\fR,
\&\fIdes_is_weak_key()\fR, \fIdes_key_sched()\fR, \fIdes_pcbc_encrypt()\fR,
\&\fIdes_quad_cksum()\fR, \fIdes_random_key()\fR, \fIdes_read_password()\fR and
\&\fIdes_string_to_key()\fR are available in the \s-1MIT\s0 Kerberos library;
\&\fIdes_check_key_parity()\fR, \fIdes_fixup_key_parity()\fR and \fIdes_is_weak_key()\fR
are available in newer versions of that library.
.PP
\&\fIdes_set_key_checked()\fR and \fIdes_set_key_unchecked()\fR were added in
OpenSSL 0.9.5.
.PP
\&\fIdes_generate_random_block()\fR, \fIdes_init_random_number_generator()\fR,
\&\fIdes_new_random_key()\fR, \fIdes_set_random_generator_seed()\fR and
\&\fIdes_set_sequence_number()\fR and \fIdes_rand_data()\fR are used in newer
versions of Kerberos but are not implemented here.
.PP
\&\fIdes_random_key()\fR generated cryptographically weak random data in
SSLeay and in OpenSSL prior version 0.9.5, as well as in the original
\&\s-1MIT\s0 library.
.SH "AUTHOR"
.IX Header "AUTHOR"
Eric Young (eay@cryptsoft.com). Modified for the OpenSSL project
(http://www.openssl.org).