NetBSD/sys/arch/arm32/arm32/clock.c

404 lines
8.8 KiB
C

/* $NetBSD: clock.c,v 1.5 1996/06/03 21:41:09 mark Exp $ */
/*
* Copyright (c) 1994-1996 Mark Brinicombe.
* Copyright (c) 1994 Brini.
* All rights reserved.
*
* This code is derived from software written for Brini by Mark Brinicombe
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Brini.
* 4. The name of the company nor the name of the author may be used to
* endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* RiscBSD kernel project
*
* clock.c
*
* Timer related machine specific code
*
* Created : 29/09/94
*/
/* Include header files */
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/time.h>
#include <machine/katelib.h>
#include <machine/iomd.h>
#include <machine/irqhandler.h>
#include <machine/cpu.h>
#include <machine/rtc.h>
#define TIMER0_COUNT 20000 /* 100Hz */
#define TIMER_FREQUENCY 20000000 /* 2MHz clock */
#define TICKS_PER_MICROSECOND (TIMER_FREQUENCY / 10000000)
static irqhandler_t clockirq;
static irqhandler_t statclockirq;
/*
* int clockhandler(struct clockframe *frame)
*
* Function called by timer 0 interrupts. This just calls
* hardclock(). Eventually the irqhandler can call hardclock() directly
* but for now we use this function so that we can debug IRQ's
*/
int
clockhandler(frame)
struct clockframe *frame;
{
#ifdef RC7500
extern void setleds();
static int leds = 0;
setleds(1 << leds);
leds++;
if (leds >> 3)
leds = 0;
#endif
hardclock(frame);
return(1);
}
/*
* int statclockhandler(struct clockframe *frame)
*
* Function called by timer 1 interrupts. This just calls
* statclock(). Eventually the irqhandler can call statclock() directly
* but for now we use this function so that we can debug IRQ's
*/
int
statclockhandler(frame)
struct clockframe *frame;
{
statclock(frame);
return(1);
}
/*
* void setstatclockrate(int hz)
*
* Set the stat clock rate. The stat clock uses timer1
*/
void
setstatclockrate(hz)
int hz;
{
int count;
count = TIMER_FREQUENCY / hz;
printf("Setting statclock to %dHz (%d ticks)\n", hz, count);
WriteByte(IOMD_T1LOW, (count >> 0) & 0xff);
WriteByte(IOMD_T1HIGH, (count >> 8) & 0xff);
/* reload the counter */
WriteByte(IOMD_T1GO, 0);
}
/*
* void cpu_initclocks(void)
*
* Initialise the clocks.
* This sets up the two timers in the IOMD and installs the IRQ handlers
*
* NOTE: Currently only timer 0 is setup and the IRQ handler is not installed
*/
void
cpu_initclocks()
{
/*
* Load timer 0 with count down value
* This timer generates 100Hz interrupts for the system clock
*/
printf("clock: hz=%d stathz = %d profhz = %d\n", hz, stathz, profhz);
WriteByte(IOMD_T0LOW, (TIMER0_COUNT >> 0) & 0xff);
WriteByte(IOMD_T0HIGH, (TIMER0_COUNT >> 8) & 0xff);
/* reload the counter */
WriteByte(IOMD_T0GO, 0);
clockirq.ih_func = clockhandler;
clockirq.ih_arg = 0;
clockirq.ih_level = IPL_CLOCK;
clockirq.ih_name = "TMR0 hard clk";
if (irq_claim(IRQ_TIMER0, &clockirq) == -1)
panic("Cannot installer timer 0 IRQ handler\n");
if (stathz) {
setstatclockrate(stathz);
statclockirq.ih_func = statclockhandler;
statclockirq.ih_arg = 0;
statclockirq.ih_level = IPL_CLOCK;
if (irq_claim(IRQ_TIMER1, &clockirq) == -1)
panic("Cannot installer timer 1 IRQ handler\n");
}
}
/*
* void microtime(struct timeval *tvp)
*
* Fill in the specified timeval struct with the current time
* accurate to the microsecond.
*/
void
microtime(tvp)
struct timeval *tvp;
{
int s;
int tm;
int deltatm;
static int oldtm;
static struct timeval oldtv;
s = splhigh();
/*
* Latch the current value of the timer and then read it. This garentees
* an atmoic reading of the time.
*/
WriteByte(IOMD_T0LATCH, 0);
tm = ReadByte(IOMD_T0LOW) + (ReadByte(IOMD_T0HIGH) << 8);
deltatm = tm - oldtm;
if (deltatm < 0) deltatm += TIMER0_COUNT;
if (deltatm < 0) {
printf("opps deltatm < 0 tm=%d oldtm=%d deltatm=%d\n",
tm, oldtm, deltatm);
}
oldtm = tm;
/* Fill in the timeval struct */
*tvp = time;
tvp->tv_usec += (deltatm / TICKS_PER_MICROSECOND);
/* Make sure the micro seconds don't overflow. */
while (tvp->tv_usec > 1000000) {
tvp->tv_usec -= 1000000;
++tvp->tv_sec;
}
/* Make sure the time has advanced. */
if (tvp->tv_sec == oldtv.tv_sec &&
tvp->tv_usec <= oldtv.tv_usec) {
tvp->tv_usec = oldtv.tv_usec + 1;
if (tvp->tv_usec > 1000000) {
tvp->tv_usec -= 1000000;
++tvp->tv_sec;
}
}
oldtv = *tvp;
(void)splx(s);
}
void
need_proftick(p)
struct proc *p;
{
}
static inline int
yeartoday(year)
int year;
{
return((year % 4) ? 365 : 366);
}
static int month[12] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
static int timeset = 0;
#define SECPERDAY (24*60*60)
#define SECPERNYEAR (365*SECPERDAY)
#define SECPER4YEARS (4*SECPERNYEAR+SECPERDAY)
#define EPOCHYEAR 1970
/*
* Write back the time of day to the rtc
*/
void
resettodr()
{
int s;
time_t year, mon, day, hour, min, sec;
rtc_t rtc;
if (!timeset)
return;
sec = time.tv_sec;
year = (sec / SECPER4YEARS) * 4;
sec %= SECPER4YEARS;
/* year now hold the number of years rounded down 4 */
while (sec > (yeartoday(EPOCHYEAR+year) * SECPERDAY)) {
sec -= yeartoday(EPOCHYEAR+year)*SECPERDAY;
year++;
}
/* year is now a correct offset from the EPOCHYEAR */
year+=EPOCHYEAR;
mon=0;
if (yeartoday(year) == 366)
month[1]=29;
else
month[1]=28;
while ((sec/SECPERDAY) > month[mon]) {
sec -= month[mon]*SECPERDAY;
mon++;
}
day = sec / SECPERDAY;
sec %= SECPERDAY;
hour = sec / 3600;
sec %= 3600;
min = sec / 60;
sec %= 60;
rtc.rtc_cen = year / 100;
rtc.rtc_year = year % 100;
rtc.rtc_mon = mon+1;
rtc.rtc_day = day+1;
rtc.rtc_hour = hour;
rtc.rtc_min = min;
rtc.rtc_sec = sec;
rtc.rtc_centi =
rtc.rtc_micro = 0;
/*
printf("resettod: %d/%d/%d%d %d:%d:%d\n", rtc.rtc_day,
rtc.rtc_mon, rtc.rtc_cen, rtc.rtc_year, rtc.rtc_hour,
rtc.rtc_min, rtc.rtc_sec);
*/
s = splclock();
rtc_write(&rtc);
(void)splx(s);
}
/*
* Initialise the time of day register, based on the time base which is, e.g.
* from a filesystem.
*/
void
inittodr(base)
time_t base;
{
time_t n;
int i, days = 0;
int s;
int year;
rtc_t rtc;
/*
* We ignore the suggested time for now and go for the RTC
* clock time stored in the CMOS RAM.
*/
s = splclock();
if (rtc_read(&rtc) == 0) {
(void)splx(s);
return;
}
(void)splx(s);
n = rtc.rtc_sec + 60 * rtc.rtc_min + 3600 * rtc.rtc_hour;
n += (rtc.rtc_day - 1) * 3600 * 24;
year = (rtc.rtc_year + rtc.rtc_cen * 100) - 1900;
if (yeartoday(year) == 366)
month[1] = 29;
for (i = rtc.rtc_mon - 2; i >= 0; i--)
days += month[i];
month[1] = 28;
for (i = 70; i < year; i++)
days += yeartoday(i);
n += days * 3600 * 24;
n += tz.tz_minuteswest * 60;
if (tz.tz_dsttime)
n -= 3600;
time.tv_sec = n;
time.tv_usec = 0;
/* timeset is used to ensure the time is valid before a resettodr() */
timeset = 1;
/* If the base was 0 then keep quiet */
if (base) {
printf("inittodr: %02d:%02d:%02d.%02d%02d %02d/%02d/%02d%02d\n",
rtc.rtc_hour, rtc.rtc_min, rtc.rtc_sec, rtc.rtc_centi,
rtc.rtc_micro, rtc.rtc_day, rtc.rtc_mon, rtc.rtc_cen,
rtc.rtc_year);
if (n > base + 60) {
days = (n - base) / SECPERDAY;
printf("Clock has gained %d day%c %ld hours %ld minutes %ld secs\n",
days, ((days == 1) ? 0 : 's'), ((n - base) / 3600) % 24,
((n - base) / 60) % 60, (n - base) % 60);
}
}
}
/* End of clock.c */