NetBSD/sys/arch/vax/vsa/hdc9224.c
gehenna 77a6b82b27 Merge the gehenna-devsw branch into the trunk.
This merge changes the device switch tables from static array to
dynamically generated by config(8).

- All device switches is defined as a constant structure in device drivers.

- The new grammer ``device-major'' is introduced to ``files''.

	device-major <prefix> char <num> [block <num>] [<rules>]

- All device major numbers must be listed up in port dependent majors.<arch>
  by using this grammer.

- Added the new naming convention.
  The name of the device switch must be <prefix>_[bc]devsw for auto-generation
  of device switch tables.

- The backward compatibility of loading block/character device
  switch by LKM framework is broken. This is necessary to convert
  from block/character device major to device name in runtime and vice versa.

- The restriction to assign device major by LKM is completely removed.
  We don't need to reserve LKM entries for dynamic loading of device switch.

- In compile time, device major numbers list is packed into the kernel and
  the LKM framework will refer it to assign device major number dynamically.
2002-09-06 13:18:43 +00:00

861 lines
21 KiB
C

/* $NetBSD: hdc9224.c,v 1.19 2002/09/06 13:18:43 gehenna Exp $ */
/*
* Copyright (c) 1996 Ludd, University of Lule}, Sweden.
* All rights reserved.
*
* This code is derived from software contributed to Ludd by Bertram Barth.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed at Ludd, University of
* Lule}, Sweden and its contributors.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* with much help from (in alphabetical order):
* Jeremy
* Roger Ivie
* Rick Macklem
* Mike Young
*
* Rewritten by Ragge 25 Jun 2000. New features:
* - Uses interrupts instead of polling to signal ready.
* - Can cooperate with the SCSI routines WRT. the DMA area.
*
* TODO:
* - Floppy support missing.
* - Bad block forwarding missing.
* - Statistics collection.
*/
#undef RDDEBUG
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/conf.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <sys/buf.h>
#include <sys/proc.h>
#include <sys/user.h>
#include <sys/map.h>
#include <sys/device.h>
#include <sys/dkstat.h>
#include <sys/disklabel.h>
#include <sys/disk.h>
#include <sys/syslog.h>
#include <sys/reboot.h>
#include <uvm/uvm_extern.h>
#include <ufs/ufs/dinode.h> /* For BBSIZE */
#include <ufs/ffs/fs.h>
#include <machine/pte.h>
#include <machine/sid.h>
#include <machine/cpu.h>
#include <machine/uvax.h>
#include <machine/ka410.h>
#include <machine/vsbus.h>
#include <machine/rpb.h>
#include <machine/scb.h>
#include <dev/mscp/mscp.h> /* For DEC disk encoding */
#include <vax/vsa/hdc9224.h>
#include "ioconf.h"
#include "locators.h"
/*
* on-disk geometry block
*/
#define _aP __attribute__ ((packed)) /* force byte-alignment */
struct rdgeom {
char mbz[10]; /* 10 bytes of zero */
long xbn_count _aP; /* number of XBNs */
long dbn_count _aP; /* number of DBNs */
long lbn_count _aP; /* number of LBNs (Logical-Block-Numbers) */
long rbn_count _aP; /* number of RBNs (Replacement-Block-Numbers) */
short nspt; /* number of sectors per track */
short ntracks; /* number of tracks */
short ncylinders; /* number of cylinders */
short precomp; /* first cylinder for write precompensation */
short reduced; /* first cylinder for reduced write current */
short seek_rate; /* seek rate or zero for buffered seeks */
short crc_eec; /* 0 if CRC, 1 if ECC is being used */
short rct; /* "replacement control table" (RCT) */
short rct_ncopies; /* number of copies of the RCT */
long media_id _aP; /* media identifier */
short interleave; /* sector-to-sector interleave */
short headskew; /* head-to-head skew */
short cylskew; /* cylinder-to-cylinder skew */
short gap0_size; /* size of GAP 0 in the MFM format */
short gap1_size; /* size of GAP 1 in the MFM format */
short gap2_size; /* size of GAP 2 in the MFM format */
short gap3_size; /* size of GAP 3 in the MFM format */
short sync_value; /* sync value used when formatting */
char reserved[32]; /* reserved for use by the RQDX formatter */
short serial_number; /* serial number */
#if 0 /* we don't need these 412 useless bytes ... */
char fill[412-2]; /* Filler bytes to the end of the block */
short checksum; /* checksum over the XBN */
#endif
};
/*
* Software status
*/
struct rdsoftc {
struct device sc_dev; /* must be here! (pseudo-OOP:) */
struct disk sc_disk; /* disklabel etc. */
struct rdgeom sc_xbn; /* on-disk geometry information */
int sc_drive; /* physical unit number */
};
struct hdcsoftc {
struct device sc_dev; /* must be here (pseudo-OOP:) */
struct evcnt sc_intrcnt;
struct vsbus_dma sc_vd;
vaddr_t sc_regs; /* register addresses */
struct bufq_state sc_q;
struct buf *sc_active;
struct hdc9224_UDCreg sc_creg; /* (command) registers to be written */
struct hdc9224_UDCreg sc_sreg; /* (status) registers being read */
caddr_t sc_dmabase; /* */
int sc_dmasize;
caddr_t sc_bufaddr; /* Current in-core address */
int sc_diskblk; /* Current block on disk */
int sc_bytecnt; /* How much left to transfer */
int sc_xfer; /* Current transfer size */
int sc_retries;
volatile u_char sc_status; /* last status from interrupt */
char sc_intbit;
};
struct hdc_attach_args {
int ha_drive;
};
/*
* prototypes for (almost) all the internal routines
*/
static int hdcmatch(struct device *, struct cfdata *, void *);
static void hdcattach(struct device *, struct device *, void *);
static int hdcprint(void *, const char *);
static int rdmatch(struct device *, struct cfdata *, void *);
static void rdattach(struct device *, struct device *, void *);
static void hdcintr(void *);
static int hdc_command(struct hdcsoftc *, int);
static void rd_readgeom(struct hdcsoftc *, struct rdsoftc *);
#ifdef RDDEBUG
static void hdc_printgeom( struct rdgeom *);
#endif
static void hdc_writeregs(struct hdcsoftc *);
static void hdcstart(struct hdcsoftc *, struct buf *);
static int hdc_rdselect(struct hdcsoftc *, int);
static void rdmakelabel(struct disklabel *, struct rdgeom *);
static void hdc_writeregs(struct hdcsoftc *);
static void hdc_readregs(struct hdcsoftc *);
static void hdc_qstart(void *);
struct cfattach hdc_ca = {
sizeof(struct hdcsoftc), hdcmatch, hdcattach
};
struct cfattach rd_ca = {
sizeof(struct rdsoftc), rdmatch, rdattach
};
dev_type_open(rdopen);
dev_type_close(rdclose);
dev_type_read(rdread);
dev_type_write(rdwrite);
dev_type_ioctl(rdioctl);
dev_type_strategy(rdstrategy);
dev_type_size(rdsize);
const struct bdevsw rd_bdevsw = {
rdopen, rdclose, rdstrategy, rdioctl, nulldump, rdsize, D_DISK
};
const struct cdevsw rd_cdevsw = {
rdopen, rdclose, rdread, rdwrite, rdioctl,
nostop, notty, nopoll, nommap, D_DISK
};
/* At least 0.7 uS between register accesses */
static int rd_dmasize, inq = 0;
static int u;
#define WAIT asm("movl %0,%0;movl %0,%0;movl %0,%0; movl %0,%0" :: "m"(u))
#define HDC_WREG(x) *(volatile char *)(sc->sc_regs) = (x)
#define HDC_RREG *(volatile char *)(sc->sc_regs)
#define HDC_WCMD(x) *(volatile char *)(sc->sc_regs + 4) = (x)
#define HDC_RSTAT *(volatile char *)(sc->sc_regs + 4)
/*
* new-config's hdcmatch() is similiar to old-config's hdcprobe(),
* thus we probe for the existence of the controller and reset it.
* NB: we can't initialize the controller yet, since space for hdcsoftc
* is not yet allocated. Thus we do this in hdcattach()...
*/
int
hdcmatch(struct device *parent, struct cfdata *cf, void *aux)
{
struct vsbus_attach_args *va = aux;
volatile char *hdc_csr = (char *)va->va_addr;
int i;
u = 8; /* !!! - GCC */
if (vax_boardtype == VAX_BTYP_49 || vax_boardtype == VAX_BTYP_46
|| vax_boardtype == VAX_BTYP_48 || vax_boardtype == VAX_BTYP_53)
return 0;
hdc_csr[4] = DKC_CMD_RESET; /* reset chip */
for (i = 0; i < 1000; i++) {
DELAY(1000);
if (hdc_csr[4] & DKC_ST_DONE)
break;
}
if (i == 100)
return 0; /* No response to reset */
hdc_csr[4] = DKC_CMD_SETREGPTR|UDC_TERM;
WAIT;
hdc_csr[0] = UDC_TC_CRCPRE|UDC_TC_INTDONE;
WAIT;
hdc_csr[4] = DKC_CMD_DRDESELECT; /* Should be harmless */
DELAY(1000);
return (1);
}
int
hdcprint(void *aux, const char *name)
{
struct hdc_attach_args *ha = aux;
if (name)
printf ("RD?? at %s drive %d", name, ha->ha_drive);
return UNCONF;
}
/*
* hdc_attach() probes for all possible devices
*/
void
hdcattach(struct device *parent, struct device *self, void *aux)
{
struct vsbus_attach_args *va = aux;
struct hdcsoftc *sc = (void *)self;
struct hdc_attach_args ha;
int status, i;
printf ("\n");
/*
* Get interrupt vector, enable instrumentation.
*/
scb_vecalloc(va->va_cvec, hdcintr, sc, SCB_ISTACK, &sc->sc_intrcnt);
evcnt_attach_dynamic(&sc->sc_intrcnt, EVCNT_TYPE_INTR, NULL,
self->dv_xname, "intr");
sc->sc_regs = vax_map_physmem(va->va_paddr, 1);
sc->sc_dmabase = (caddr_t)va->va_dmaaddr;
sc->sc_dmasize = va->va_dmasize;
sc->sc_intbit = va->va_maskno;
rd_dmasize = min(MAXPHYS, sc->sc_dmasize); /* Used in rd_minphys */
sc->sc_vd.vd_go = hdc_qstart;
sc->sc_vd.vd_arg = sc;
/*
* Reset controller.
*/
HDC_WCMD(DKC_CMD_RESET);
DELAY(1000);
status = HDC_RSTAT;
if (status != (DKC_ST_DONE|DKC_TC_SUCCESS)) {
printf("%s: RESET failed, status 0x%x\n",
sc->sc_dev.dv_xname, status);
return;
}
bufq_alloc(&sc->sc_q, BUFQ_DISKSORT|BUFQ_SORT_CYLINDER);
/*
* now probe for all possible hard drives
*/
for (i = 0; i < 4; i++) {
if (i == 2) /* Floppy, needs special handling */
continue;
HDC_WCMD(DKC_CMD_DRSELECT | i);
DELAY(1000);
status = HDC_RSTAT;
ha.ha_drive = i;
if ((status & DKC_ST_TERMCOD) == DKC_TC_SUCCESS)
config_found(self, (void *)&ha, hdcprint);
}
}
/*
* rdmatch() probes for the existence of a RD-type disk/floppy
*/
int
rdmatch(parent, cf, aux)
struct device *parent;
struct cfdata *cf;
void *aux;
{
struct hdc_attach_args *ha = aux;
if (cf->cf_loc[HDCCF_DRIVE] != HDCCF_DRIVE_DEFAULT &&
cf->cf_loc[HDCCF_DRIVE] != ha->ha_drive)
return 0;
if (ha->ha_drive == 2) /* Always floppy, not supported */
return 0;
return 1;
}
void
rdattach(struct device *parent, struct device *self, void *aux)
{
struct hdcsoftc *sc = (void*)parent;
struct rdsoftc *rd = (void*)self;
struct hdc_attach_args *ha = aux;
struct disklabel *dl;
char *msg;
rd->sc_drive = ha->ha_drive;
/*
* Initialize and attach the disk structure.
*/
rd->sc_disk.dk_name = rd->sc_dev.dv_xname;
disk_attach(&rd->sc_disk);
/*
* if it's not a floppy then evaluate the on-disk geometry.
* if necessary correct the label...
*/
rd_readgeom(sc, rd);
disk_printtype(rd->sc_drive, rd->sc_xbn.media_id);
dl = rd->sc_disk.dk_label;
rdmakelabel(dl, &rd->sc_xbn);
printf("%s", rd->sc_dev.dv_xname);
msg = readdisklabel(MAKEDISKDEV(cdevsw_lookup_major(&rd_cdevsw),
rd->sc_dev.dv_unit, RAW_PART),
rdstrategy, dl, NULL);
if (msg)
printf(": %s", msg);
printf(": size %d sectors\n", dl->d_secperunit);
#ifdef RDDEBUG
hdc_printgeom(&rd->sc_xbn);
#endif
}
void
hdcintr(void *arg)
{
struct hdcsoftc *sc = arg;
struct buf *bp;
sc->sc_status = HDC_RSTAT;
if (sc->sc_active == 0)
return; /* Complain? */
if ((sc->sc_status & (DKC_ST_INTPEND|DKC_ST_DONE)) !=
(DKC_ST_INTPEND|DKC_ST_DONE))
return; /* Why spurious ints sometimes??? */
bp = sc->sc_active;
sc->sc_active = 0;
if ((sc->sc_status & DKC_ST_TERMCOD) != DKC_TC_SUCCESS) {
int i;
u_char *g = (u_char *)&sc->sc_sreg;
if (sc->sc_retries++ < 3) { /* Allow 3 retries */
hdcstart(sc, bp);
return;
}
printf("%s: failed, status 0x%x\n",
sc->sc_dev.dv_xname, sc->sc_status);
hdc_readregs(sc);
for (i = 0; i < 10; i++)
printf("%i: %x\n", i, g[i]);
bp->b_flags |= B_ERROR;
bp->b_error = ENXIO;
bp->b_resid = bp->b_bcount;
biodone(bp);
vsbus_dma_intr();
return;
}
if (bp->b_flags & B_READ) {
vsbus_copytoproc(bp->b_proc, sc->sc_dmabase, sc->sc_bufaddr,
sc->sc_xfer);
}
sc->sc_diskblk += (sc->sc_xfer/DEV_BSIZE);
sc->sc_bytecnt -= sc->sc_xfer;
sc->sc_bufaddr += sc->sc_xfer;
if (sc->sc_bytecnt == 0) { /* Finished transfer */
biodone(bp);
vsbus_dma_intr();
} else
hdcstart(sc, bp);
}
/*
*
*/
void
rdstrategy(struct buf *bp)
{
struct rdsoftc *rd;
struct hdcsoftc *sc;
struct disklabel *lp;
int unit, s;
unit = DISKUNIT(bp->b_dev);
if (unit > rd_cd.cd_ndevs || (rd = rd_cd.cd_devs[unit]) == NULL) {
bp->b_error = ENXIO;
bp->b_flags |= B_ERROR;
goto done;
}
sc = (void *)rd->sc_dev.dv_parent;
lp = rd->sc_disk.dk_label;
if ((bounds_check_with_label(bp, lp, 1)) <= 0)
goto done;
if (bp->b_bcount == 0)
goto done;
bp->b_rawblkno =
bp->b_blkno + lp->d_partitions[DISKPART(bp->b_dev)].p_offset;
bp->b_cylinder = bp->b_rawblkno / lp->d_secpercyl;
s = splbio();
BUFQ_PUT(&sc->sc_q, bp);
if (inq == 0) {
inq = 1;
vsbus_dma_start(&sc->sc_vd);
}
splx(s);
return;
done: biodone(bp);
}
void
hdc_qstart(void *arg)
{
struct hdcsoftc *sc = arg;
inq = 0;
hdcstart(sc, 0);
if (BUFQ_PEEK(&sc->sc_q)) {
vsbus_dma_start(&sc->sc_vd); /* More to go */
inq = 1;
}
}
void
hdcstart(struct hdcsoftc *sc, struct buf *ob)
{
struct hdc9224_UDCreg *p = &sc->sc_creg;
struct disklabel *lp;
struct rdsoftc *rd;
struct buf *bp;
int cn, sn, tn, bn, blks;
volatile char ch;
if (sc->sc_active)
return; /* Already doing something */
if (ob == 0) {
bp = BUFQ_GET(&sc->sc_q);
if (bp == NULL)
return; /* Nothing to do */
sc->sc_bufaddr = bp->b_data;
sc->sc_diskblk = bp->b_rawblkno;
sc->sc_bytecnt = bp->b_bcount;
sc->sc_retries = 0;
bp->b_resid = 0;
} else
bp = ob;
rd = rd_cd.cd_devs[DISKUNIT(bp->b_dev)];
hdc_rdselect(sc, rd->sc_drive);
sc->sc_active = bp;
bn = sc->sc_diskblk;
lp = rd->sc_disk.dk_label;
if (bn) {
cn = bn / lp->d_secpercyl;
sn = bn % lp->d_secpercyl;
tn = sn / lp->d_nsectors;
sn = sn % lp->d_nsectors;
} else
cn = sn = tn = 0;
cn++; /* first cylinder is reserved */
bzero(p, sizeof(struct hdc9224_UDCreg));
/*
* Tricky thing: the controller do itself only increase the sector
* number, not the track or cylinder number. Therefore the driver
* is not allowed to have transfers that crosses track boundaries.
*/
blks = sc->sc_bytecnt/DEV_BSIZE;
if ((sn + blks) > lp->d_nsectors)
blks = lp->d_nsectors - sn;
p->udc_dsect = sn;
p->udc_dcyl = cn & 0xff;
p->udc_dhead = ((cn >> 4) & 0x70) | tn;
p->udc_scnt = blks;
p->udc_rtcnt = UDC_RC_RTRYCNT;
p->udc_mode = UDC_MD_HDD;
p->udc_term = UDC_TC_CRCPRE|UDC_TC_INTDONE|UDC_TC_TDELDAT|UDC_TC_TWRFLT;
hdc_writeregs(sc);
/* Count up vars */
sc->sc_xfer = blks * DEV_BSIZE;
ch = HDC_RSTAT; /* Avoid pending interrupts */
WAIT;
vsbus_clrintr(sc->sc_intbit); /* Clear pending int's */
if (bp->b_flags & B_READ) {
HDC_WCMD(DKC_CMD_READ_HDD);
} else {
vsbus_copyfromproc(bp->b_proc, sc->sc_bufaddr, sc->sc_dmabase,
sc->sc_xfer);
HDC_WCMD(DKC_CMD_WRITE_HDD);
}
}
void
rd_readgeom(struct hdcsoftc *sc, struct rdsoftc *rd)
{
struct hdc9224_UDCreg *p = &sc->sc_creg;
hdc_rdselect(sc, rd->sc_drive); /* select drive right now */
bzero(p, sizeof(struct hdc9224_UDCreg));
p->udc_scnt = 1;
p->udc_rtcnt = UDC_RC_RTRYCNT;
p->udc_mode = UDC_MD_HDD;
p->udc_term = UDC_TC_CRCPRE|UDC_TC_INTDONE|UDC_TC_TDELDAT|UDC_TC_TWPROT;
hdc_writeregs(sc);
sc->sc_status = 0;
HDC_WCMD(DKC_CMD_READ_HDD|2);
while ((sc->sc_status & DKC_ST_INTPEND) == 0)
;
bcopy(sc->sc_dmabase, &rd->sc_xbn, sizeof(struct rdgeom));
}
#ifdef RDDEBUG
/*
* display the contents of the on-disk geometry structure
*/
void
hdc_printgeom(p)
struct rdgeom *p;
{
printf ("**DiskData** XBNs: %ld, DBNs: %ld, LBNs: %ld, RBNs: %ld\n",
p->xbn_count, p->dbn_count, p->lbn_count, p->rbn_count);
printf ("sec/track: %d, tracks: %d, cyl: %d, precomp/reduced: %d/%d\n",
p->nspt, p->ntracks, p->ncylinders, p->precomp, p->reduced);
printf ("seek-rate: %d, crc/eec: %s, RCT: %d, RCT-copies: %d\n",
p->seek_rate, p->crc_eec?"EEC":"CRC", p->rct, p->rct_ncopies);
printf ("media-ID: %lx, interleave: %d, headskew: %d, cylskew: %d\n",
p->media_id, p->interleave, p->headskew, p->cylskew);
printf ("gap0: %d, gap1: %d, gap2: %d, gap3: %d, sync-value: %d\n",
p->gap0_size, p->gap1_size, p->gap2_size, p->gap3_size,
p->sync_value);
}
#endif
/*
* Return the size of a partition, if known, or -1 if not.
*/
int
rdsize(dev_t dev)
{
struct rdsoftc *rd;
int unit = DISKUNIT(dev);
int size;
if (unit >= rd_cd.cd_ndevs || rd_cd.cd_devs[unit] == 0)
return -1;
rd = rd_cd.cd_devs[unit];
size = rd->sc_disk.dk_label->d_partitions[DISKPART(dev)].p_size *
(rd->sc_disk.dk_label->d_secsize / DEV_BSIZE);
return (size);
}
/*
*
*/
int
rdopen(dev_t dev, int flag, int fmt, struct proc *p)
{
struct rdsoftc *rd;
int unit, part;
unit = DISKUNIT(dev);
if (unit >= rd_cd.cd_ndevs)
return ENXIO;
rd = rd_cd.cd_devs[unit];
if (rd == 0)
return ENXIO;
part = DISKPART(dev);
if (part >= rd->sc_disk.dk_label->d_npartitions)
return ENXIO;
switch (fmt) {
case S_IFCHR:
rd->sc_disk.dk_copenmask |= (1 << part);
break;
case S_IFBLK:
rd->sc_disk.dk_bopenmask |= (1 << part);
break;
}
rd->sc_disk.dk_openmask =
rd->sc_disk.dk_copenmask | rd->sc_disk.dk_bopenmask;
return 0;
}
/*
*
*/
int
rdclose(dev_t dev, int flag, int fmt, struct proc *p)
{
struct rdsoftc *rd;
int part;
rd = rd_cd.cd_devs[DISKUNIT(dev)];
part = DISKPART(dev);
switch (fmt) {
case S_IFCHR:
rd->sc_disk.dk_copenmask &= ~(1 << part);
break;
case S_IFBLK:
rd->sc_disk.dk_bopenmask &= ~(1 << part);
break;
}
rd->sc_disk.dk_openmask =
rd->sc_disk.dk_copenmask | rd->sc_disk.dk_bopenmask;
return (0);
}
/*
*
*/
int
rdioctl(dev_t dev, u_long cmd, caddr_t addr, int flag, struct proc *p)
{
struct rdsoftc *rd = rd_cd.cd_devs[DISKUNIT(dev)];
struct disklabel *lp = rd->sc_disk.dk_label;
int err = 0;
switch (cmd) {
case DIOCGDINFO:
bcopy(lp, addr, sizeof (struct disklabel));
break;
case DIOCGPART:
((struct partinfo *)addr)->disklab = lp;
((struct partinfo *)addr)->part =
&lp->d_partitions[DISKPART(dev)];
break;
case DIOCWDINFO:
case DIOCSDINFO:
if ((flag & FWRITE) == 0)
return EBADF;
else
err = (cmd == DIOCSDINFO ?
setdisklabel(lp, (struct disklabel *)addr, 0, 0) :
writedisklabel(dev, rdstrategy, lp, 0));
break;
case DIOCGDEFLABEL:
bzero(lp, sizeof(struct disklabel));
rdmakelabel(lp, &rd->sc_xbn);
break;
case DIOCWLABEL:
if ((flag & FWRITE) == 0)
err = EBADF;
break;
default:
err = ENOTTY;
}
return err;
}
/*
*
*/
int
rdread(dev_t dev, struct uio *uio, int flag)
{
return (physio (rdstrategy, NULL, dev, B_READ, minphys, uio));
}
/*
*
*/
int
rdwrite(dev_t dev, struct uio *uio, int flag)
{
return (physio (rdstrategy, NULL, dev, B_WRITE, minphys, uio));
}
/*
* we have to wait 0.7 usec between two accesses to any of the
* dkc-registers, on a VS2000 with 1 MIPS, this is roughly one
* instruction. Thus the loop-overhead will be enough...
*/
static void
hdc_readregs(struct hdcsoftc *sc)
{
int i;
char *p;
HDC_WCMD(DKC_CMD_SETREGPTR);
WAIT;
p = (void*)&sc->sc_sreg;
for (i=0; i<10; i++) {
*p++ = HDC_RREG; /* dkc_reg auto-increments */
WAIT;
}
}
static void
hdc_writeregs(struct hdcsoftc *sc)
{
int i;
char *p;
HDC_WCMD(DKC_CMD_SETREGPTR);
p = (void*)&sc->sc_creg;
for (i=0; i<10; i++) {
HDC_WREG(*p++); /* dkc_reg auto-increments */
WAIT;
}
}
/*
* hdc_command() issues a command and polls the intreq-register
* to find when command has completed
*/
int
hdc_command(struct hdcsoftc *sc, int cmd)
{
hdc_writeregs(sc); /* write the prepared registers */
HDC_WCMD(cmd);
WAIT;
return (0);
}
int
hdc_rdselect(struct hdcsoftc *sc, int unit)
{
struct hdc9224_UDCreg *p = &sc->sc_creg;
int error;
/*
* bring "creg" in some known-to-work state and
* select the drive with the DRIVE SELECT command.
*/
bzero(p, sizeof(struct hdc9224_UDCreg));
p->udc_rtcnt = UDC_RC_HDD_READ;
p->udc_mode = UDC_MD_HDD;
p->udc_term = UDC_TC_HDD;
error = hdc_command(sc, DKC_CMD_DRSEL_HDD | unit);
return (error);
}
void
rdmakelabel(struct disklabel *dl, struct rdgeom *g)
{
int n, p = 0;
dl->d_bbsize = BBSIZE;
dl->d_sbsize = SBSIZE;
dl->d_typename[p++] = MSCP_MID_CHAR(2, g->media_id);
dl->d_typename[p++] = MSCP_MID_CHAR(1, g->media_id);
if (MSCP_MID_ECH(0, g->media_id))
dl->d_typename[p++] = MSCP_MID_CHAR(0, g->media_id);
n = MSCP_MID_NUM(g->media_id);
if (n > 99) {
dl->d_typename[p++] = '1';
n -= 100;
}
if (n > 9) {
dl->d_typename[p++] = (n / 10) + '0';
n %= 10;
}
dl->d_typename[p++] = n + '0';
dl->d_typename[p] = 0;
dl->d_type = DTYPE_MSCP; /* XXX - what to use here??? */
dl->d_rpm = 3600;
dl->d_secsize = DEV_BSIZE;
dl->d_secperunit = g->lbn_count;
dl->d_nsectors = g->nspt;
dl->d_ntracks = g->ntracks;
dl->d_secpercyl = dl->d_nsectors * dl->d_ntracks;
dl->d_ncylinders = dl->d_secperunit / dl->d_secpercyl;
dl->d_npartitions = MAXPARTITIONS;
dl->d_partitions[0].p_size = dl->d_partitions[2].p_size =
dl->d_secperunit;
dl->d_partitions[0].p_offset = dl->d_partitions[2].p_offset = 0;
dl->d_interleave = dl->d_headswitch = 1;
dl->d_magic = dl->d_magic2 = DISKMAGIC;
dl->d_checksum = dkcksum(dl);
}