0c2c845f33
can run the pmf stuff in thread context.
3443 lines
94 KiB
C
3443 lines
94 KiB
C
/* $NetBSD: arn9003.c,v 1.3 2013/04/06 14:57:38 martin Exp $ */
|
|
/* $OpenBSD: ar9003.c,v 1.25 2012/10/20 09:53:32 stsp Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2010 Damien Bergamini <damien.bergamini@free.fr>
|
|
* Copyright (c) 2010 Atheros Communications Inc.
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
/*
|
|
* Driver for Atheros 802.11a/g/n chipsets.
|
|
* Routines for AR9003 family.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: arn9003.c,v 1.3 2013/04/06 14:57:38 martin Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/device.h>
|
|
|
|
#include <sys/bus.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/intr.h>
|
|
|
|
#include <net/bpf.h>
|
|
#include <net/if.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_ether.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_types.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/in_var.h>
|
|
#include <netinet/ip.h>
|
|
|
|
#include <net80211/ieee80211_var.h>
|
|
#include <net80211/ieee80211_amrr.h>
|
|
#include <net80211/ieee80211_radiotap.h>
|
|
|
|
#include <dev/ic/athnreg.h>
|
|
#include <dev/ic/athnvar.h>
|
|
#include <dev/ic/arn9003reg.h>
|
|
#include <dev/ic/arn9003.h>
|
|
|
|
#define Static static
|
|
|
|
Static void ar9003_calib_iq(struct athn_softc *);
|
|
Static int ar9003_calib_tx_iq(struct athn_softc *);
|
|
Static int ar9003_compute_predistortion(struct athn_softc *,
|
|
const uint32_t *, const uint32_t *);
|
|
Static void ar9003_disable_ofdm_weak_signal(struct athn_softc *);
|
|
Static void ar9003_disable_phy(struct athn_softc *);
|
|
Static int ar9003_dma_alloc(struct athn_softc *);
|
|
Static void ar9003_dma_free(struct athn_softc *);
|
|
Static void ar9003_do_calib(struct athn_softc *);
|
|
Static void ar9003_do_noisefloor_calib(struct athn_softc *);
|
|
Static void ar9003_enable_antenna_diversity(struct athn_softc *);
|
|
Static void ar9003_enable_ofdm_weak_signal(struct athn_softc *);
|
|
Static void ar9003_enable_predistorter(struct athn_softc *, int);
|
|
Static int ar9003_find_rom(struct athn_softc *);
|
|
Static void ar9003_force_txgain(struct athn_softc *, uint32_t);
|
|
Static int ar9003_get_desired_txgain(struct athn_softc *, int, int);
|
|
Static int ar9003_get_iq_corr(struct athn_softc *, int32_t[], int32_t[]);
|
|
Static void ar9003_gpio_config_input(struct athn_softc *, int);
|
|
Static void ar9003_gpio_config_output(struct athn_softc *, int, int);
|
|
Static int ar9003_gpio_read(struct athn_softc *, int);
|
|
Static void ar9003_gpio_write(struct athn_softc *, int, int);
|
|
Static void ar9003_hw_init(struct athn_softc *, struct ieee80211_channel *,
|
|
struct ieee80211_channel *);
|
|
Static void ar9003_init_baseband(struct athn_softc *);
|
|
Static void ar9003_init_chains(struct athn_softc *);
|
|
Static int ar9003_intr(struct athn_softc *);
|
|
Static void ar9003_next_calib(struct athn_softc *);
|
|
Static void ar9003_paprd_enable(struct athn_softc *);
|
|
Static int ar9003_paprd_tx_tone(struct athn_softc *);
|
|
Static void ar9003_paprd_tx_tone_done(struct athn_softc *);
|
|
Static int ar9003_read_eep_data(struct athn_softc *, uint32_t, void *,
|
|
int);
|
|
Static int ar9003_read_eep_word(struct athn_softc *, uint32_t,
|
|
uint16_t *);
|
|
Static int ar9003_read_otp_data(struct athn_softc *, uint32_t, void *,
|
|
int);
|
|
Static int ar9003_read_otp_word(struct athn_softc *, uint32_t,
|
|
uint32_t *);
|
|
Static int ar9003_read_rom(struct athn_softc *);
|
|
Static void ar9003_reset_rx_gain(struct athn_softc *,
|
|
struct ieee80211_channel *);
|
|
Static void ar9003_reset_tx_gain(struct athn_softc *,
|
|
struct ieee80211_channel *);
|
|
Static int ar9003_restore_rom_block(struct athn_softc *, uint8_t,
|
|
uint8_t, const uint8_t *, size_t);
|
|
Static void ar9003_rf_bus_release(struct athn_softc *);
|
|
Static int ar9003_rf_bus_request(struct athn_softc *);
|
|
Static void ar9003_rfsilent_init(struct athn_softc *);
|
|
Static int ar9003_rx_alloc(struct athn_softc *, int, int);
|
|
Static void ar9003_rx_enable(struct athn_softc *);
|
|
Static void ar9003_rx_free(struct athn_softc *, int);
|
|
Static void ar9003_rx_intr(struct athn_softc *, int);
|
|
Static int ar9003_rx_process(struct athn_softc *, int);
|
|
Static void ar9003_rx_radiotap(struct athn_softc *, struct mbuf *,
|
|
struct ar_rx_status *);
|
|
Static void ar9003_set_cck_weak_signal(struct athn_softc *, int);
|
|
Static void ar9003_set_delta_slope(struct athn_softc *,
|
|
struct ieee80211_channel *, struct ieee80211_channel *);
|
|
Static void ar9003_set_firstep_level(struct athn_softc *, int);
|
|
Static void ar9003_set_noise_immunity_level(struct athn_softc *, int);
|
|
Static void ar9003_set_phy(struct athn_softc *, struct ieee80211_channel *,
|
|
struct ieee80211_channel *);
|
|
Static void ar9003_set_rf_mode(struct athn_softc *,
|
|
struct ieee80211_channel *);
|
|
Static void ar9003_set_rxchains(struct athn_softc *);
|
|
Static void ar9003_set_spur_immunity_level(struct athn_softc *, int);
|
|
Static void ar9003_set_training_gain(struct athn_softc *, int);
|
|
Static int ar9003_swba_intr(struct athn_softc *);
|
|
Static int ar9003_tx(struct athn_softc *, struct mbuf *,
|
|
struct ieee80211_node *, int);
|
|
Static int ar9003_tx_alloc(struct athn_softc *);
|
|
Static void ar9003_tx_free(struct athn_softc *);
|
|
Static void ar9003_tx_intr(struct athn_softc *);
|
|
Static int ar9003_tx_process(struct athn_softc *);
|
|
|
|
#ifdef notused
|
|
Static void ar9003_bb_load_noisefloor(struct athn_softc *);
|
|
Static void ar9003_get_noisefloor(struct athn_softc *,
|
|
struct ieee80211_channel *);
|
|
Static void ar9003_paprd_calib(struct athn_softc *,
|
|
struct ieee80211_channel *);
|
|
Static void ar9003_read_noisefloor(struct athn_softc *, int16_t *,
|
|
int16_t *);
|
|
Static void ar9003_write_noisefloor(struct athn_softc *, int16_t *,
|
|
int16_t *);
|
|
Static void ar9300_noisefloor_calib(struct athn_softc *);
|
|
#endif /* notused */
|
|
|
|
/*
|
|
* XXX: See if_iwn.c:MCLGETIalt() for a better solution.
|
|
* XXX: Put this in a header or in athn.c so it can be shared between
|
|
* ar5008.c and ar9003.c?
|
|
*/
|
|
static struct mbuf *
|
|
MCLGETI(struct athn_softc *sc __unused, int how,
|
|
struct ifnet *ifp __unused, u_int size)
|
|
{
|
|
struct mbuf *m;
|
|
|
|
MGETHDR(m, how, MT_DATA);
|
|
if (m == NULL)
|
|
return NULL;
|
|
|
|
MEXTMALLOC(m, size, how);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
m_freem(m);
|
|
return NULL;
|
|
}
|
|
return m;
|
|
}
|
|
|
|
PUBLIC int
|
|
ar9003_attach(struct athn_softc *sc)
|
|
{
|
|
struct athn_ops *ops = &sc->sc_ops;
|
|
int error;
|
|
|
|
/* Set callbacks for AR9003 family. */
|
|
ops->gpio_read = ar9003_gpio_read;
|
|
ops->gpio_write = ar9003_gpio_write;
|
|
ops->gpio_config_input = ar9003_gpio_config_input;
|
|
ops->gpio_config_output = ar9003_gpio_config_output;
|
|
ops->rfsilent_init = ar9003_rfsilent_init;
|
|
|
|
ops->dma_alloc = ar9003_dma_alloc;
|
|
ops->dma_free = ar9003_dma_free;
|
|
ops->rx_enable = ar9003_rx_enable;
|
|
ops->intr = ar9003_intr;
|
|
ops->tx = ar9003_tx;
|
|
|
|
ops->set_rf_mode = ar9003_set_rf_mode;
|
|
ops->rf_bus_request = ar9003_rf_bus_request;
|
|
ops->rf_bus_release = ar9003_rf_bus_release;
|
|
ops->set_phy = ar9003_set_phy;
|
|
ops->set_delta_slope = ar9003_set_delta_slope;
|
|
ops->enable_antenna_diversity = ar9003_enable_antenna_diversity;
|
|
ops->init_baseband = ar9003_init_baseband;
|
|
ops->disable_phy = ar9003_disable_phy;
|
|
ops->set_rxchains = ar9003_set_rxchains;
|
|
ops->noisefloor_calib = ar9003_do_noisefloor_calib;
|
|
ops->do_calib = ar9003_do_calib;
|
|
ops->next_calib = ar9003_next_calib;
|
|
ops->hw_init = ar9003_hw_init;
|
|
|
|
ops->set_noise_immunity_level = ar9003_set_noise_immunity_level;
|
|
ops->enable_ofdm_weak_signal = ar9003_enable_ofdm_weak_signal;
|
|
ops->disable_ofdm_weak_signal = ar9003_disable_ofdm_weak_signal;
|
|
ops->set_cck_weak_signal = ar9003_set_cck_weak_signal;
|
|
ops->set_firstep_level = ar9003_set_firstep_level;
|
|
ops->set_spur_immunity_level = ar9003_set_spur_immunity_level;
|
|
|
|
/* Set MAC registers offsets. */
|
|
sc->sc_obs_off = AR_OBS;
|
|
sc->sc_gpio_input_en_off = AR_GPIO_INPUT_EN_VAL;
|
|
|
|
if (!(sc->sc_flags & ATHN_FLAG_PCIE))
|
|
athn_config_nonpcie(sc);
|
|
else
|
|
athn_config_pcie(sc);
|
|
|
|
/* Determine ROM type and location. */
|
|
if ((error = ar9003_find_rom(sc)) != 0) {
|
|
printf("%s: could not find ROM\n", device_xname(sc->sc_dev));
|
|
return error;
|
|
}
|
|
/* Read entire ROM content in memory. */
|
|
if ((error = ar9003_read_rom(sc)) != 0) {
|
|
printf("%s: could not read ROM\n", device_xname(sc->sc_dev));
|
|
return error;
|
|
}
|
|
|
|
/* Determine if it is a non-enterprise AR9003 card. */
|
|
if (AR_READ(sc, AR_ENT_OTP) & AR_ENT_OTP_MPSD)
|
|
sc->sc_flags |= ATHN_FLAG_NON_ENTERPRISE;
|
|
|
|
ops->setup(sc);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Read 16-bit word from EEPROM.
|
|
*/
|
|
Static int
|
|
ar9003_read_eep_word(struct athn_softc *sc, uint32_t addr, uint16_t *val)
|
|
{
|
|
uint32_t reg;
|
|
int ntries;
|
|
|
|
reg = AR_READ(sc, AR_EEPROM_OFFSET(addr));
|
|
for (ntries = 0; ntries < 1000; ntries++) {
|
|
reg = AR_READ(sc, AR_EEPROM_STATUS_DATA);
|
|
if (!(reg & (AR_EEPROM_STATUS_DATA_BUSY |
|
|
AR_EEPROM_STATUS_DATA_PROT_ACCESS))) {
|
|
*val = MS(reg, AR_EEPROM_STATUS_DATA_VAL);
|
|
return 0;
|
|
}
|
|
DELAY(10);
|
|
}
|
|
*val = 0xffff;
|
|
return ETIMEDOUT;
|
|
}
|
|
|
|
/*
|
|
* Read an arbitrary number of bytes at a specified address in EEPROM.
|
|
* NB: The address may not be 16-bit aligned.
|
|
*/
|
|
Static int
|
|
ar9003_read_eep_data(struct athn_softc *sc, uint32_t addr, void *buf, int len)
|
|
{
|
|
uint8_t *dst = buf;
|
|
uint16_t val;
|
|
int error;
|
|
|
|
if (len > 0 && (addr & 1)) {
|
|
/* Deal with non-aligned reads. */
|
|
addr >>= 1;
|
|
error = ar9003_read_eep_word(sc, addr, &val);
|
|
if (error != 0)
|
|
return error;
|
|
*dst++ = val & 0xff;
|
|
addr--;
|
|
len--;
|
|
}
|
|
else
|
|
addr >>= 1;
|
|
for (; len >= 2; addr--, len -= 2) {
|
|
error = ar9003_read_eep_word(sc, addr, &val);
|
|
if (error != 0)
|
|
return error;
|
|
*dst++ = val >> 8;
|
|
*dst++ = val & 0xff;
|
|
}
|
|
if (len > 0) {
|
|
error = ar9003_read_eep_word(sc, addr, &val);
|
|
if (error != 0)
|
|
return error;
|
|
*dst++ = val >> 8;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Read 32-bit word from OTPROM.
|
|
*/
|
|
Static int
|
|
ar9003_read_otp_word(struct athn_softc *sc, uint32_t addr, uint32_t *val)
|
|
{
|
|
uint32_t reg;
|
|
int ntries;
|
|
|
|
reg = AR_READ(sc, AR_OTP_BASE(addr));
|
|
for (ntries = 0; ntries < 1000; ntries++) {
|
|
reg = AR_READ(sc, AR_OTP_STATUS);
|
|
if (MS(reg, AR_OTP_STATUS_TYPE) == AR_OTP_STATUS_VALID) {
|
|
*val = AR_READ(sc, AR_OTP_READ_DATA);
|
|
return 0;
|
|
}
|
|
DELAY(10);
|
|
}
|
|
return ETIMEDOUT;
|
|
}
|
|
|
|
/*
|
|
* Read an arbitrary number of bytes at a specified address in OTPROM.
|
|
* NB: The address may not be 32-bit aligned.
|
|
*/
|
|
Static int
|
|
ar9003_read_otp_data(struct athn_softc *sc, uint32_t addr, void *buf, int len)
|
|
{
|
|
uint8_t *dst = buf;
|
|
uint32_t val;
|
|
int error;
|
|
|
|
/* NB: not optimal for non-aligned reads, but correct. */
|
|
for (; len > 0; addr--, len--) {
|
|
error = ar9003_read_otp_word(sc, addr >> 2, &val);
|
|
if (error != 0)
|
|
return error;
|
|
*dst++ = (val >> ((addr & 3) * 8)) & 0xff;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Determine if the chip has an external EEPROM or an OTPROM and its size.
|
|
*/
|
|
Static int
|
|
ar9003_find_rom(struct athn_softc *sc)
|
|
{
|
|
struct athn_ops *ops = &sc->sc_ops;
|
|
uint32_t hdr;
|
|
int error;
|
|
|
|
/* Try EEPROM. */
|
|
ops->read_rom_data = ar9003_read_eep_data;
|
|
|
|
sc->sc_eep_size = AR_SREV_9485(sc) ? 4096 : 1024;
|
|
sc->sc_eep_base = sc->sc_eep_size - 1;
|
|
error = ops->read_rom_data(sc, sc->sc_eep_base, &hdr, sizeof(hdr));
|
|
if (error == 0 && hdr != 0 && hdr != 0xffffffff)
|
|
return 0;
|
|
|
|
sc->sc_eep_size = 512;
|
|
sc->sc_eep_base = sc->sc_eep_size - 1;
|
|
error = ops->read_rom_data(sc, sc->sc_eep_base, &hdr, sizeof(hdr));
|
|
if (error == 0 && hdr != 0 && hdr != 0xffffffff)
|
|
return 0;
|
|
|
|
/* Try OTPROM. */
|
|
ops->read_rom_data = ar9003_read_otp_data;
|
|
|
|
sc->sc_eep_size = 1024;
|
|
sc->sc_eep_base = sc->sc_eep_size - 1;
|
|
error = ops->read_rom_data(sc, sc->sc_eep_base, &hdr, sizeof(hdr));
|
|
if (error == 0 && hdr != 0 && hdr != 0xffffffff)
|
|
return 0;
|
|
|
|
sc->sc_eep_size = 512;
|
|
sc->sc_eep_base = sc->sc_eep_size - 1;
|
|
error = ops->read_rom_data(sc, sc->sc_eep_base, &hdr, sizeof(hdr));
|
|
if (error == 0 && hdr != 0 && hdr != 0xffffffff)
|
|
return 0;
|
|
|
|
return EIO; /* Not found. */
|
|
}
|
|
|
|
Static int
|
|
ar9003_restore_rom_block(struct athn_softc *sc, uint8_t alg, uint8_t ref,
|
|
const uint8_t *buf, size_t len)
|
|
{
|
|
const uint8_t *def, *ptr, *end;
|
|
uint8_t *eep = sc->sc_eep;
|
|
size_t off, clen;
|
|
|
|
if (alg == AR_EEP_COMPRESS_BLOCK) {
|
|
/* Block contains chunks that shadow ROM template. */
|
|
def = sc->sc_ops.get_rom_template(sc, ref);
|
|
if (def == NULL) {
|
|
DPRINTFN(DBG_INIT, sc, "unknown template image %d\n",
|
|
ref);
|
|
return EINVAL;
|
|
}
|
|
/* Start with template. */
|
|
memcpy(eep, def, sc->sc_eep_size);
|
|
/* Shadow template with chunks. */
|
|
off = 0; /* Offset in ROM image. */
|
|
ptr = buf; /* Offset in block. */
|
|
end = buf + len;
|
|
/* Process chunks. */
|
|
while (ptr + 2 <= end) {
|
|
off += *ptr++; /* Gap with previous chunk. */
|
|
clen = *ptr++; /* Chunk length. */
|
|
/* Make sure block is large enough. */
|
|
if (ptr + clen > end)
|
|
return EINVAL;
|
|
/* Make sure chunk fits in ROM image. */
|
|
if (off + clen > sc->sc_eep_size)
|
|
return EINVAL;
|
|
/* Restore chunk. */
|
|
DPRINTFN(DBG_INIT, sc, "ROM chunk @%zd/%zd\n",
|
|
off, clen);
|
|
memcpy(&eep[off], ptr, clen);
|
|
ptr += clen;
|
|
off += clen;
|
|
}
|
|
}
|
|
else if (alg == AR_EEP_COMPRESS_NONE) {
|
|
/* Block contains full ROM image. */
|
|
if (len != sc->sc_eep_size) {
|
|
DPRINTFN(DBG_INIT, sc, "block length mismatch %zd\n",
|
|
len);
|
|
return EINVAL;
|
|
}
|
|
memcpy(eep, buf, len);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
Static int
|
|
ar9003_read_rom(struct athn_softc *sc)
|
|
{
|
|
struct athn_ops *ops = &sc->sc_ops;
|
|
uint8_t *buf, *ptr, alg, ref;
|
|
uint16_t sum, rsum;
|
|
uint32_t hdr;
|
|
int error, addr;
|
|
size_t len, i, j;
|
|
|
|
/* Allocate space to store ROM in host memory. */
|
|
sc->sc_eep = malloc(sc->sc_eep_size, M_DEVBUF, M_NOWAIT);
|
|
if (sc->sc_eep == NULL)
|
|
return ENOMEM;
|
|
|
|
/* Allocate temporary buffer to store ROM blocks. */
|
|
buf = malloc(2048, M_DEVBUF, M_NOWAIT);
|
|
if (buf == NULL)
|
|
return ENOMEM;
|
|
|
|
/* Restore vendor-specified ROM blocks. */
|
|
addr = sc->sc_eep_base;
|
|
for (i = 0; i < 100; i++) {
|
|
/* Read block header. */
|
|
error = ops->read_rom_data(sc, addr, &hdr, sizeof(hdr));
|
|
if (error != 0)
|
|
break;
|
|
if (hdr == 0 || hdr == 0xffffffff)
|
|
break;
|
|
addr -= sizeof(hdr);
|
|
|
|
/* Extract bits from header. */
|
|
ptr = (uint8_t *)&hdr;
|
|
alg = (ptr[0] & 0xe0) >> 5;
|
|
ref = (ptr[1] & 0x80) >> 2 | (ptr[0] & 0x1f);
|
|
len = (ptr[1] & 0x7f) << 4 | (ptr[2] & 0xf0) >> 4;
|
|
DPRINTFN(DBG_INIT, sc,
|
|
"ROM block %zd: alg=%d ref=%d len=%zd\n",
|
|
i, alg, ref, len);
|
|
|
|
/* Read block data (len <= 0x7ff). */
|
|
error = ops->read_rom_data(sc, addr, buf, len);
|
|
if (error != 0)
|
|
break;
|
|
addr -= len;
|
|
|
|
/* Read block checksum. */
|
|
error = ops->read_rom_data(sc, addr, &sum, sizeof(sum));
|
|
if (error != 0)
|
|
break;
|
|
addr -= sizeof(sum);
|
|
|
|
/* Compute block checksum. */
|
|
rsum = 0;
|
|
for (j = 0; j < len; j++)
|
|
rsum += buf[j];
|
|
/* Compare to that in ROM. */
|
|
if (le16toh(sum) != rsum) {
|
|
DPRINTFN(DBG_INIT, sc,
|
|
"bad block checksum 0x%x/0x%x\n",
|
|
le16toh(sum), rsum);
|
|
continue; /* Skip bad block. */
|
|
}
|
|
/* Checksum is correct, restore block. */
|
|
ar9003_restore_rom_block(sc, alg, ref, buf, len);
|
|
}
|
|
#if BYTE_ORDER == BIG_ENDIAN
|
|
/* NB: ROM is always little endian. */
|
|
if (error == 0)
|
|
ops->swap_rom(sc);
|
|
#endif
|
|
free(buf, M_DEVBUF);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Access to General Purpose Input/Output ports.
|
|
*/
|
|
Static int
|
|
ar9003_gpio_read(struct athn_softc *sc, int pin)
|
|
{
|
|
|
|
KASSERT(pin < sc->sc_ngpiopins);
|
|
return ((AR_READ(sc, AR_GPIO_IN) & AR9300_GPIO_IN_VAL) &
|
|
(1 << pin)) != 0;
|
|
}
|
|
|
|
Static void
|
|
ar9003_gpio_write(struct athn_softc *sc, int pin, int set)
|
|
{
|
|
uint32_t reg;
|
|
|
|
KASSERT(pin < sc->sc_ngpiopins);
|
|
reg = AR_READ(sc, AR_GPIO_IN_OUT);
|
|
if (set)
|
|
reg |= 1 << pin;
|
|
else
|
|
reg &= ~(1 << pin);
|
|
AR_WRITE(sc, AR_GPIO_IN_OUT, reg);
|
|
AR_WRITE_BARRIER(sc);
|
|
}
|
|
|
|
Static void
|
|
ar9003_gpio_config_input(struct athn_softc *sc, int pin)
|
|
{
|
|
uint32_t reg;
|
|
|
|
reg = AR_READ(sc, AR_GPIO_OE_OUT);
|
|
reg &= ~(AR_GPIO_OE_OUT_DRV_M << (pin * 2));
|
|
reg |= AR_GPIO_OE_OUT_DRV_NO << (pin * 2);
|
|
AR_WRITE(sc, AR_GPIO_OE_OUT, reg);
|
|
AR_WRITE_BARRIER(sc);
|
|
}
|
|
|
|
Static void
|
|
ar9003_gpio_config_output(struct athn_softc *sc, int pin, int type)
|
|
{
|
|
uint32_t reg;
|
|
int mux, off;
|
|
|
|
mux = pin / 6;
|
|
off = pin % 6;
|
|
|
|
reg = AR_READ(sc, AR_GPIO_OUTPUT_MUX(mux));
|
|
reg &= ~(0x1f << (off * 5));
|
|
reg |= (type & 0x1f) << (off * 5);
|
|
AR_WRITE(sc, AR_GPIO_OUTPUT_MUX(mux), reg);
|
|
|
|
reg = AR_READ(sc, AR_GPIO_OE_OUT);
|
|
reg &= ~(AR_GPIO_OE_OUT_DRV_M << (pin * 2));
|
|
reg |= AR_GPIO_OE_OUT_DRV_ALL << (pin * 2);
|
|
AR_WRITE(sc, AR_GPIO_OE_OUT, reg);
|
|
AR_WRITE_BARRIER(sc);
|
|
}
|
|
|
|
Static void
|
|
ar9003_rfsilent_init(struct athn_softc *sc)
|
|
{
|
|
uint32_t reg;
|
|
|
|
/* Configure hardware radio switch. */
|
|
AR_SETBITS(sc, AR_GPIO_INPUT_EN_VAL, AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
|
|
reg = AR_READ(sc, AR_GPIO_INPUT_MUX2);
|
|
reg = RW(reg, AR_GPIO_INPUT_MUX2_RFSILENT, 0);
|
|
AR_WRITE(sc, AR_GPIO_INPUT_MUX2, reg);
|
|
ar9003_gpio_config_input(sc, sc->sc_rfsilent_pin);
|
|
AR_SETBITS(sc, AR_PHY_TEST, AR_PHY_TEST_RFSILENT_BB);
|
|
if (!(sc->sc_flags & ATHN_FLAG_RFSILENT_REVERSED)) {
|
|
AR_SETBITS(sc, AR_GPIO_INTR_POL,
|
|
AR_GPIO_INTR_POL_PIN(sc->sc_rfsilent_pin));
|
|
}
|
|
AR_WRITE_BARRIER(sc);
|
|
}
|
|
|
|
Static int
|
|
ar9003_dma_alloc(struct athn_softc *sc)
|
|
{
|
|
int error;
|
|
|
|
error = ar9003_tx_alloc(sc);
|
|
if (error != 0)
|
|
return error;
|
|
|
|
error = ar9003_rx_alloc(sc, ATHN_QID_LP, AR9003_RX_LP_QDEPTH);
|
|
if (error != 0)
|
|
return error;
|
|
|
|
error = ar9003_rx_alloc(sc, ATHN_QID_HP, AR9003_RX_HP_QDEPTH);
|
|
if (error != 0)
|
|
return error;
|
|
|
|
return 0;
|
|
}
|
|
|
|
Static void
|
|
ar9003_dma_free(struct athn_softc *sc)
|
|
{
|
|
|
|
ar9003_tx_free(sc);
|
|
ar9003_rx_free(sc, ATHN_QID_LP);
|
|
ar9003_rx_free(sc, ATHN_QID_HP);
|
|
}
|
|
|
|
Static int
|
|
ar9003_tx_alloc(struct athn_softc *sc)
|
|
{
|
|
struct athn_tx_buf *bf;
|
|
bus_size_t size;
|
|
int error, nsegs, i;
|
|
|
|
/*
|
|
* Allocate Tx status ring.
|
|
*/
|
|
size = AR9003_NTXSTATUS * sizeof(struct ar_tx_status);
|
|
|
|
error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
|
|
BUS_DMA_NOWAIT, &sc->sc_txsmap);
|
|
if (error != 0)
|
|
goto fail;
|
|
|
|
error = bus_dmamem_alloc(sc->sc_dmat, size, 4, 0, &sc->sc_txsseg, 1,
|
|
// XXX &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO);
|
|
&nsegs, BUS_DMA_NOWAIT);
|
|
if (error != 0)
|
|
goto fail;
|
|
|
|
error = bus_dmamem_map(sc->sc_dmat, &sc->sc_txsseg, 1, size,
|
|
(void **)&sc->sc_txsring, BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
|
|
if (error != 0)
|
|
goto fail;
|
|
|
|
error = bus_dmamap_load_raw(sc->sc_dmat, sc->sc_txsmap, &sc->sc_txsseg,
|
|
1, size, BUS_DMA_NOWAIT | BUS_DMA_READ);
|
|
if (error != 0)
|
|
goto fail;
|
|
|
|
/*
|
|
* Allocate a pool of Tx descriptors shared between all Tx queues.
|
|
*/
|
|
size = ATHN_NTXBUFS * sizeof(struct ar_tx_desc);
|
|
|
|
error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
|
|
BUS_DMA_NOWAIT, &sc->sc_map);
|
|
if (error != 0)
|
|
goto fail;
|
|
|
|
error = bus_dmamem_alloc(sc->sc_dmat, size, 4, 0, &sc->sc_seg, 1,
|
|
// XXX &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO);
|
|
&nsegs, BUS_DMA_NOWAIT);
|
|
if (error != 0)
|
|
goto fail;
|
|
|
|
error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, 1, size,
|
|
(void **)&sc->sc_descs, BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
|
|
if (error != 0)
|
|
goto fail;
|
|
|
|
error = bus_dmamap_load_raw(sc->sc_dmat, sc->sc_map, &sc->sc_seg, 1, size,
|
|
BUS_DMA_NOWAIT | BUS_DMA_WRITE);
|
|
if (error != 0)
|
|
goto fail;
|
|
|
|
SIMPLEQ_INIT(&sc->sc_txbufs);
|
|
for (i = 0; i < ATHN_NTXBUFS; i++) {
|
|
bf = &sc->sc_txpool[i];
|
|
|
|
error = bus_dmamap_create(sc->sc_dmat, ATHN_TXBUFSZ,
|
|
AR9003_MAX_SCATTER, ATHN_TXBUFSZ, 0, BUS_DMA_NOWAIT,
|
|
&bf->bf_map);
|
|
if (error != 0) {
|
|
printf("%s: could not create Tx buf DMA map\n",
|
|
device_xname(sc->sc_dev));
|
|
goto fail;
|
|
}
|
|
|
|
bf->bf_descs = &((struct ar_tx_desc *)sc->sc_descs)[i];
|
|
bf->bf_daddr = sc->sc_map->dm_segs[0].ds_addr +
|
|
i * sizeof(struct ar_tx_desc);
|
|
|
|
SIMPLEQ_INSERT_TAIL(&sc->sc_txbufs, bf, bf_list);
|
|
}
|
|
return 0;
|
|
fail:
|
|
ar9003_tx_free(sc);
|
|
return error;
|
|
}
|
|
|
|
Static void
|
|
ar9003_tx_free(struct athn_softc *sc)
|
|
{
|
|
struct athn_tx_buf *bf;
|
|
int i;
|
|
|
|
for (i = 0; i < ATHN_NTXBUFS; i++) {
|
|
bf = &sc->sc_txpool[i];
|
|
|
|
if (bf->bf_map != NULL)
|
|
bus_dmamap_destroy(sc->sc_dmat, bf->bf_map);
|
|
}
|
|
/* Free Tx descriptors. */
|
|
if (sc->sc_map != NULL) {
|
|
if (sc->sc_descs != NULL) {
|
|
bus_dmamap_unload(sc->sc_dmat, sc->sc_map);
|
|
bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_descs,
|
|
ATHN_NTXBUFS * sizeof(struct ar_tx_desc));
|
|
bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
|
|
}
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_map);
|
|
}
|
|
/* Free Tx status ring. */
|
|
if (sc->sc_txsmap != NULL) {
|
|
if (sc->sc_txsring != NULL) {
|
|
bus_dmamap_unload(sc->sc_dmat, sc->sc_txsmap);
|
|
bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_txsring,
|
|
AR9003_NTXSTATUS * sizeof(struct ar_tx_status));
|
|
bus_dmamem_free(sc->sc_dmat, &sc->sc_txsseg, 1);
|
|
}
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsmap);
|
|
}
|
|
}
|
|
|
|
Static int
|
|
ar9003_rx_alloc(struct athn_softc *sc, int qid, int count)
|
|
{
|
|
struct athn_rxq *rxq = &sc->sc_rxq[qid];
|
|
struct athn_rx_buf *bf;
|
|
struct ar_rx_status *ds;
|
|
int error, i;
|
|
|
|
rxq->bf = malloc(count * sizeof(*bf), M_DEVBUF, M_NOWAIT | M_ZERO);
|
|
if (rxq->bf == NULL)
|
|
return ENOMEM;
|
|
|
|
rxq->count = count;
|
|
|
|
for (i = 0; i < rxq->count; i++) {
|
|
bf = &rxq->bf[i];
|
|
|
|
error = bus_dmamap_create(sc->sc_dmat, ATHN_RXBUFSZ, 1,
|
|
ATHN_RXBUFSZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
|
|
&bf->bf_map);
|
|
if (error != 0) {
|
|
printf("%s: could not create Rx buf DMA map\n",
|
|
device_xname(sc->sc_dev));
|
|
goto fail;
|
|
}
|
|
/*
|
|
* Assumes MCLGETI returns cache-line-size aligned buffers.
|
|
*/
|
|
bf->bf_m = MCLGETI(NULL, M_DONTWAIT, NULL, ATHN_RXBUFSZ);
|
|
if (bf->bf_m == NULL) {
|
|
printf("%s: could not allocate Rx mbuf\n",
|
|
device_xname(sc->sc_dev));
|
|
error = ENOBUFS;
|
|
goto fail;
|
|
}
|
|
|
|
error = bus_dmamap_load(sc->sc_dmat, bf->bf_map,
|
|
mtod(bf->bf_m, void *), ATHN_RXBUFSZ, NULL,
|
|
BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
printf("%s: could not DMA map Rx buffer\n",
|
|
device_xname(sc->sc_dev));
|
|
goto fail;
|
|
}
|
|
|
|
ds = mtod(bf->bf_m, struct ar_rx_status *);
|
|
memset(ds, 0, sizeof(*ds));
|
|
bf->bf_desc = ds;
|
|
bf->bf_daddr = bf->bf_map->dm_segs[0].ds_addr;
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ,
|
|
BUS_DMASYNC_PREREAD);
|
|
}
|
|
return 0;
|
|
fail:
|
|
ar9003_rx_free(sc, qid);
|
|
return error;
|
|
}
|
|
|
|
Static void
|
|
ar9003_rx_free(struct athn_softc *sc, int qid)
|
|
{
|
|
struct athn_rxq *rxq = &sc->sc_rxq[qid];
|
|
struct athn_rx_buf *bf;
|
|
int i;
|
|
|
|
if (rxq->bf == NULL)
|
|
return;
|
|
for (i = 0; i < rxq->count; i++) {
|
|
bf = &rxq->bf[i];
|
|
|
|
if (bf->bf_map != NULL)
|
|
bus_dmamap_destroy(sc->sc_dmat, bf->bf_map);
|
|
if (bf->bf_m != NULL)
|
|
m_freem(bf->bf_m);
|
|
}
|
|
free(rxq->bf, M_DEVBUF);
|
|
}
|
|
|
|
PUBLIC void
|
|
ar9003_reset_txsring(struct athn_softc *sc)
|
|
{
|
|
|
|
sc->sc_txscur = 0;
|
|
memset(sc->sc_txsring, 0, AR9003_NTXSTATUS * sizeof(struct ar_tx_status));
|
|
AR_WRITE(sc, AR_Q_STATUS_RING_START,
|
|
sc->sc_txsmap->dm_segs[0].ds_addr);
|
|
AR_WRITE(sc, AR_Q_STATUS_RING_END,
|
|
sc->sc_txsmap->dm_segs[0].ds_addr + sc->sc_txsmap->dm_segs[0].ds_len);
|
|
AR_WRITE_BARRIER(sc);
|
|
}
|
|
|
|
Static void
|
|
ar9003_rx_enable(struct athn_softc *sc)
|
|
{
|
|
struct athn_rxq *rxq;
|
|
struct athn_rx_buf *bf;
|
|
struct ar_rx_status *ds;
|
|
uint32_t reg;
|
|
int qid, i;
|
|
|
|
reg = AR_READ(sc, AR_RXBP_THRESH);
|
|
reg = RW(reg, AR_RXBP_THRESH_HP, 1);
|
|
reg = RW(reg, AR_RXBP_THRESH_LP, 1);
|
|
AR_WRITE(sc, AR_RXBP_THRESH, reg);
|
|
|
|
/* Set Rx buffer size. */
|
|
AR_WRITE(sc, AR_DATABUF_SIZE, ATHN_RXBUFSZ - sizeof(*ds));
|
|
|
|
for (qid = 0; qid < 2; qid++) {
|
|
rxq = &sc->sc_rxq[qid];
|
|
|
|
/* Setup Rx status descriptors. */
|
|
SIMPLEQ_INIT(&rxq->head);
|
|
for (i = 0; i < rxq->count; i++) {
|
|
bf = &rxq->bf[i];
|
|
ds = bf->bf_desc;
|
|
|
|
memset(ds, 0, sizeof(*ds));
|
|
if (qid == ATHN_QID_LP)
|
|
AR_WRITE(sc, AR_LP_RXDP, bf->bf_daddr);
|
|
else
|
|
AR_WRITE(sc, AR_HP_RXDP, bf->bf_daddr);
|
|
AR_WRITE_BARRIER(sc);
|
|
SIMPLEQ_INSERT_TAIL(&rxq->head, bf, bf_list);
|
|
}
|
|
}
|
|
/* Enable Rx. */
|
|
AR_WRITE(sc, AR_CR, 0);
|
|
AR_WRITE_BARRIER(sc);
|
|
}
|
|
|
|
Static void
|
|
ar9003_rx_radiotap(struct athn_softc *sc, struct mbuf *m,
|
|
struct ar_rx_status *ds)
|
|
{
|
|
struct athn_rx_radiotap_header *tap = &sc->sc_rxtap;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
uint64_t tsf;
|
|
uint32_t tstamp;
|
|
uint8_t rate;
|
|
|
|
/* Extend the 15-bit timestamp from Rx status to 64-bit TSF. */
|
|
tstamp = ds->ds_status3;
|
|
tsf = AR_READ(sc, AR_TSF_U32);
|
|
tsf = tsf << 32 | AR_READ(sc, AR_TSF_L32);
|
|
if ((tsf & 0x7fff) < tstamp)
|
|
tsf -= 0x8000;
|
|
tsf = (tsf & ~0x7fff) | tstamp;
|
|
|
|
tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
|
|
tap->wr_tsft = htole64(tsf);
|
|
tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
|
|
tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
|
|
tap->wr_dbm_antsignal = MS(ds->ds_status5, AR_RXS5_RSSI_COMBINED);
|
|
/* XXX noise. */
|
|
tap->wr_antenna = MS(ds->ds_status4, AR_RXS4_ANTENNA);
|
|
tap->wr_rate = 0; /* In case it can't be found below. */
|
|
rate = MS(ds->ds_status1, AR_RXS1_RATE);
|
|
if (rate & 0x80) { /* HT. */
|
|
/* Bit 7 set means HT MCS instead of rate. */
|
|
tap->wr_rate = rate;
|
|
if (!(ds->ds_status4 & AR_RXS4_GI))
|
|
tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
|
|
|
|
}
|
|
else if (rate & 0x10) { /* CCK. */
|
|
if (rate & 0x04)
|
|
tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
|
|
switch (rate & ~0x14) {
|
|
case 0xb: tap->wr_rate = 2; break;
|
|
case 0xa: tap->wr_rate = 4; break;
|
|
case 0x9: tap->wr_rate = 11; break;
|
|
case 0x8: tap->wr_rate = 22; break;
|
|
}
|
|
}
|
|
else { /* OFDM. */
|
|
switch (rate) {
|
|
case 0xb: tap->wr_rate = 12; break;
|
|
case 0xf: tap->wr_rate = 18; break;
|
|
case 0xa: tap->wr_rate = 24; break;
|
|
case 0xe: tap->wr_rate = 36; break;
|
|
case 0x9: tap->wr_rate = 48; break;
|
|
case 0xd: tap->wr_rate = 72; break;
|
|
case 0x8: tap->wr_rate = 96; break;
|
|
case 0xc: tap->wr_rate = 108; break;
|
|
}
|
|
}
|
|
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
|
|
}
|
|
|
|
Static int
|
|
ar9003_rx_process(struct athn_softc *sc, int qid)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = &sc->sc_if;
|
|
struct athn_rxq *rxq = &sc->sc_rxq[qid];
|
|
struct athn_rx_buf *bf;
|
|
struct ar_rx_status *ds;
|
|
struct ieee80211_frame *wh;
|
|
struct ieee80211_node *ni;
|
|
struct mbuf *m, *m1;
|
|
size_t len;
|
|
u_int32_t rstamp;
|
|
int error, rssi;
|
|
|
|
bf = SIMPLEQ_FIRST(&rxq->head);
|
|
if (__predict_false(bf == NULL)) { /* Should not happen. */
|
|
printf("%s: Rx queue is empty!\n", device_xname(sc->sc_dev));
|
|
return ENOENT;
|
|
}
|
|
bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ,
|
|
BUS_DMASYNC_POSTREAD);
|
|
|
|
ds = mtod(bf->bf_m, struct ar_rx_status *);
|
|
if (!(ds->ds_status1 & AR_RXS1_DONE))
|
|
return EBUSY;
|
|
|
|
/* Check that it is a valid Rx status descriptor. */
|
|
if ((ds->ds_info & (AR_RXI_DESC_ID_M | AR_RXI_DESC_TX |
|
|
AR_RXI_CTRL_STAT)) != SM(AR_RXI_DESC_ID, AR_VENDOR_ATHEROS))
|
|
goto skip;
|
|
|
|
if (!(ds->ds_status11 & AR_RXS11_FRAME_OK)) {
|
|
if (ds->ds_status11 & AR_RXS11_CRC_ERR)
|
|
DPRINTFN(DBG_RX, sc, "CRC error\n");
|
|
else if (ds->ds_status11 & AR_RXS11_PHY_ERR)
|
|
DPRINTFN(DBG_RX, sc, "PHY error=0x%x\n",
|
|
MS(ds->ds_status11, AR_RXS11_PHY_ERR_CODE));
|
|
else if (ds->ds_status11 & AR_RXS11_DECRYPT_CRC_ERR)
|
|
DPRINTFN(DBG_RX, sc, "Decryption CRC error\n");
|
|
else if (ds->ds_status11 & AR_RXS11_MICHAEL_ERR) {
|
|
DPRINTFN(DBG_RX, sc, "Michael MIC failure\n");
|
|
/* Report Michael MIC failures to net80211. */
|
|
|
|
len = MS(ds->ds_status2, AR_RXS2_DATA_LEN);
|
|
m = bf->bf_m;
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_data = (void *)&ds[1];
|
|
m->m_pkthdr.len = m->m_len = len;
|
|
wh = mtod(m, struct ieee80211_frame *);
|
|
|
|
ieee80211_notify_michael_failure(ic, wh,
|
|
0 /* XXX: keyix */);
|
|
}
|
|
ifp->if_ierrors++;
|
|
goto skip;
|
|
}
|
|
|
|
len = MS(ds->ds_status2, AR_RXS2_DATA_LEN);
|
|
if (__predict_false(len < IEEE80211_MIN_LEN ||
|
|
len > ATHN_RXBUFSZ - sizeof(*ds))) {
|
|
DPRINTFN(DBG_RX, sc, "corrupted descriptor length=%zd\n",
|
|
len);
|
|
ifp->if_ierrors++;
|
|
goto skip;
|
|
}
|
|
|
|
/* Allocate a new Rx buffer. */
|
|
m1 = MCLGETI(NULL, M_DONTWAIT, NULL, ATHN_RXBUFSZ);
|
|
if (__predict_false(m1 == NULL)) {
|
|
ic->ic_stats.is_rx_nobuf++;
|
|
ifp->if_ierrors++;
|
|
goto skip;
|
|
}
|
|
|
|
/* Unmap the old Rx buffer. */
|
|
bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
|
|
|
|
/* Map the new Rx buffer. */
|
|
error = bus_dmamap_load(sc->sc_dmat, bf->bf_map, mtod(m1, void *),
|
|
ATHN_RXBUFSZ, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
|
|
if (__predict_false(error != 0)) {
|
|
m_freem(m1);
|
|
|
|
/* Remap the old Rx buffer or panic. */
|
|
error = bus_dmamap_load(sc->sc_dmat, bf->bf_map,
|
|
mtod(bf->bf_m, void *), ATHN_RXBUFSZ, NULL,
|
|
BUS_DMA_NOWAIT | BUS_DMA_READ);
|
|
KASSERT(error != 0);
|
|
bf->bf_daddr = bf->bf_map->dm_segs[0].ds_addr;
|
|
ifp->if_ierrors++;
|
|
goto skip;
|
|
}
|
|
bf->bf_desc = mtod(m1, struct ar_rx_status *);
|
|
bf->bf_daddr = bf->bf_map->dm_segs[0].ds_addr;
|
|
|
|
m = bf->bf_m;
|
|
bf->bf_m = m1;
|
|
|
|
/* Finalize mbuf. */
|
|
m->m_pkthdr.rcvif = ifp;
|
|
/* Strip Rx status descriptor from head. */
|
|
m->m_data = (void *)&ds[1];
|
|
m->m_pkthdr.len = m->m_len = len;
|
|
|
|
/* Grab a reference to the source node. */
|
|
wh = mtod(m, struct ieee80211_frame *);
|
|
ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
|
|
|
|
/* Remove any HW padding after the 802.11 header. */
|
|
if (!(wh->i_fc[0] & IEEE80211_FC0_TYPE_CTL)) {
|
|
u_int hdrlen = ieee80211_anyhdrsize(wh);
|
|
if (hdrlen & 3) {
|
|
ovbcopy(wh, (uint8_t *)wh + 2, hdrlen);
|
|
m_adj(m, 2);
|
|
}
|
|
}
|
|
if (__predict_false(sc->sc_drvbpf != NULL))
|
|
ar9003_rx_radiotap(sc, m, ds);
|
|
/* Trim 802.11 FCS after radiotap. */
|
|
m_adj(m, -IEEE80211_CRC_LEN);
|
|
|
|
/* Send the frame to the 802.11 layer. */
|
|
rssi = MS(ds->ds_status5, AR_RXS5_RSSI_COMBINED);
|
|
rstamp = ds->ds_status3;
|
|
ieee80211_input(ic, m, ni, rssi, rstamp);
|
|
|
|
/* Node is no longer needed. */
|
|
ieee80211_free_node(ni);
|
|
|
|
skip:
|
|
/* Unlink this descriptor from head. */
|
|
SIMPLEQ_REMOVE_HEAD(&rxq->head, bf_list);
|
|
memset(bf->bf_desc, 0, sizeof(*ds));
|
|
|
|
/* Re-use this descriptor and link it to tail. */
|
|
bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ,
|
|
BUS_DMASYNC_PREREAD);
|
|
|
|
if (qid == ATHN_QID_LP)
|
|
AR_WRITE(sc, AR_LP_RXDP, bf->bf_daddr);
|
|
else
|
|
AR_WRITE(sc, AR_HP_RXDP, bf->bf_daddr);
|
|
AR_WRITE_BARRIER(sc);
|
|
SIMPLEQ_INSERT_TAIL(&rxq->head, bf, bf_list);
|
|
|
|
/* Re-enable Rx. */
|
|
AR_WRITE(sc, AR_CR, 0);
|
|
AR_WRITE_BARRIER(sc);
|
|
return 0;
|
|
}
|
|
|
|
Static void
|
|
ar9003_rx_intr(struct athn_softc *sc, int qid)
|
|
{
|
|
|
|
while (ar9003_rx_process(sc, qid) == 0)
|
|
continue;
|
|
}
|
|
|
|
Static int
|
|
ar9003_tx_process(struct athn_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_if;
|
|
struct athn_txq *txq;
|
|
struct athn_node *an;
|
|
struct athn_tx_buf *bf;
|
|
struct ar_tx_status *ds;
|
|
uint8_t qid, failcnt;
|
|
|
|
ds = &((struct ar_tx_status *)sc->sc_txsring)[sc->sc_txscur];
|
|
if (!(ds->ds_status8 & AR_TXS8_DONE))
|
|
return EBUSY;
|
|
|
|
sc->sc_txscur = (sc->sc_txscur + 1) % AR9003_NTXSTATUS;
|
|
|
|
/* Check that it is a valid Tx status descriptor. */
|
|
if ((ds->ds_info & (AR_TXI_DESC_ID_M | AR_TXI_DESC_TX)) !=
|
|
(SM(AR_TXI_DESC_ID, AR_VENDOR_ATHEROS) | AR_TXI_DESC_TX)) {
|
|
memset(ds, 0, sizeof(*ds));
|
|
return 0;
|
|
}
|
|
/* Retrieve the queue that was used to send this PDU. */
|
|
qid = MS(ds->ds_info, AR_TXI_QCU_NUM);
|
|
txq = &sc->sc_txq[qid];
|
|
|
|
bf = SIMPLEQ_FIRST(&txq->head);
|
|
if (bf == NULL || bf == txq->wait) {
|
|
memset(ds, 0, sizeof(*ds));
|
|
return 0;
|
|
}
|
|
SIMPLEQ_REMOVE_HEAD(&txq->head, bf_list);
|
|
ifp->if_opackets++;
|
|
|
|
sc->sc_tx_timer = 0;
|
|
|
|
if (ds->ds_status3 & AR_TXS3_EXCESSIVE_RETRIES)
|
|
ifp->if_oerrors++;
|
|
|
|
if (ds->ds_status3 & AR_TXS3_UNDERRUN)
|
|
athn_inc_tx_trigger_level(sc);
|
|
|
|
/* Wakeup PA predistortion state machine. */
|
|
if (bf->bf_txflags & ATHN_TXFLAG_PAPRD)
|
|
ar9003_paprd_tx_tone_done(sc);
|
|
|
|
an = (struct athn_node *)bf->bf_ni;
|
|
/*
|
|
* NB: the data fail count contains the number of un-acked tries
|
|
* for the final series used. We must add the number of tries for
|
|
* each series that was fully processed.
|
|
*/
|
|
failcnt = MS(ds->ds_status3, AR_TXS3_DATA_FAIL_CNT);
|
|
/* NB: Assume two tries per series. */
|
|
failcnt += MS(ds->ds_status8, AR_TXS8_FINAL_IDX) * 2;
|
|
|
|
/* Update rate control statistics. */
|
|
an->amn.amn_txcnt++;
|
|
if (failcnt > 0)
|
|
an->amn.amn_retrycnt++;
|
|
|
|
DPRINTFN(DBG_TX, sc, "Tx done qid=%d status3=%d fail count=%d\n",
|
|
qid, ds->ds_status3, failcnt);
|
|
|
|
/* Reset Tx status descriptor. */
|
|
memset(ds, 0, sizeof(*ds));
|
|
|
|
/* Unmap Tx buffer. */
|
|
bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
|
|
|
|
m_freem(bf->bf_m);
|
|
bf->bf_m = NULL;
|
|
ieee80211_free_node(bf->bf_ni);
|
|
bf->bf_ni = NULL;
|
|
|
|
/* Link Tx buffer back to global free list. */
|
|
SIMPLEQ_INSERT_TAIL(&sc->sc_txbufs, bf, bf_list);
|
|
|
|
/* Queue buffers that are waiting if there is new room. */
|
|
if (--txq->queued < AR9003_TX_QDEPTH && txq->wait != NULL) {
|
|
AR_WRITE(sc, AR_QTXDP(qid), txq->wait->bf_daddr);
|
|
AR_WRITE_BARRIER(sc);
|
|
txq->wait = SIMPLEQ_NEXT(txq->wait, bf_list);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
Static void
|
|
ar9003_tx_intr(struct athn_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_if;
|
|
|
|
while (ar9003_tx_process(sc) == 0);
|
|
|
|
if (!SIMPLEQ_EMPTY(&sc->sc_txbufs)) {
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
ifp->if_start(ifp);
|
|
}
|
|
}
|
|
|
|
#ifndef IEEE80211_STA_ONLY
|
|
/*
|
|
* Process Software Beacon Alert interrupts.
|
|
*/
|
|
Static int
|
|
ar9003_swba_intr(struct athn_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = &sc->sc_if;
|
|
struct ieee80211_node *ni = ic->ic_bss;
|
|
struct athn_tx_buf *bf = sc->sc_bcnbuf;
|
|
struct ieee80211_frame *wh;
|
|
struct ieee80211_beacon_offsets bo;
|
|
struct ar_tx_desc *ds;
|
|
struct mbuf *m;
|
|
uint32_t sum;
|
|
uint8_t ridx, hwrate;
|
|
int error, totlen;
|
|
|
|
#if notyet
|
|
if (ic->ic_tim_mcast_pending &&
|
|
IF_IS_EMPTY(&ni->ni_savedq) &&
|
|
SIMPLEQ_EMPTY(&sc->sc_txq[ATHN_QID_CAB].head))
|
|
ic->ic_tim_mcast_pending = 0;
|
|
#endif
|
|
if (ic->ic_dtim_count == 0)
|
|
ic->ic_dtim_count = ic->ic_dtim_period - 1;
|
|
else
|
|
ic->ic_dtim_count--;
|
|
|
|
/* Make sure previous beacon has been sent. */
|
|
if (athn_tx_pending(sc, ATHN_QID_BEACON)) {
|
|
DPRINTFN(DBG_INTR, sc, "beacon stuck\n");
|
|
return EBUSY;
|
|
}
|
|
/* Get new beacon. */
|
|
m = ieee80211_beacon_alloc(ic, ic->ic_bss, &bo);
|
|
if (__predict_false(m == NULL))
|
|
return ENOBUFS;
|
|
/* Assign sequence number. */
|
|
/* XXX: use non-QoS tid? */
|
|
wh = mtod(m, struct ieee80211_frame *);
|
|
*(uint16_t *)&wh->i_seq[0] =
|
|
htole16(ic->ic_bss->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT);
|
|
ic->ic_bss->ni_txseqs[0]++;
|
|
|
|
/* Unmap and free old beacon if any. */
|
|
if (__predict_true(bf->bf_m != NULL)) {
|
|
bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0,
|
|
bf->bf_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
|
|
m_freem(bf->bf_m);
|
|
bf->bf_m = NULL;
|
|
}
|
|
/* DMA map new beacon. */
|
|
error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m,
|
|
BUS_DMA_NOWAIT | BUS_DMA_WRITE);
|
|
if (__predict_false(error != 0)) {
|
|
m_freem(m);
|
|
return error;
|
|
}
|
|
bf->bf_m = m;
|
|
|
|
/* Setup Tx descriptor (simplified ar9003_tx()). */
|
|
ds = bf->bf_descs;
|
|
memset(ds, 0, sizeof(*ds));
|
|
|
|
ds->ds_info =
|
|
SM(AR_TXI_DESC_ID, AR_VENDOR_ATHEROS) |
|
|
SM(AR_TXI_DESC_NDWORDS, 23) |
|
|
SM(AR_TXI_QCU_NUM, ATHN_QID_BEACON) |
|
|
AR_TXI_DESC_TX | AR_TXI_CTRL_STAT;
|
|
|
|
totlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
|
|
ds->ds_ctl11 = SM(AR_TXC11_FRAME_LEN, totlen);
|
|
ds->ds_ctl11 |= SM(AR_TXC11_XMIT_POWER, AR_MAX_RATE_POWER);
|
|
ds->ds_ctl12 = SM(AR_TXC12_FRAME_TYPE, AR_FRAME_TYPE_BEACON);
|
|
ds->ds_ctl12 |= AR_TXC12_NO_ACK;
|
|
ds->ds_ctl17 = SM(AR_TXC17_ENCR_TYPE, AR_ENCR_TYPE_CLEAR);
|
|
|
|
/* Write number of tries. */
|
|
ds->ds_ctl13 = SM(AR_TXC13_XMIT_DATA_TRIES0, 1);
|
|
|
|
/* Write Tx rate. */
|
|
ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
|
|
ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK1;
|
|
hwrate = athn_rates[ridx].hwrate;
|
|
ds->ds_ctl14 = SM(AR_TXC14_XMIT_RATE0, hwrate);
|
|
|
|
/* Write Tx chains. */
|
|
ds->ds_ctl18 = SM(AR_TXC18_CHAIN_SEL0, sc->sc_txchainmask);
|
|
|
|
ds->ds_segs[0].ds_data = bf->bf_map->dm_segs[0].ds_addr;
|
|
/* Segment length must be a multiple of 4. */
|
|
ds->ds_segs[0].ds_ctl |= SM(AR_TXC_BUF_LEN,
|
|
(bf->bf_map->dm_segs[0].ds_len + 3) & ~3);
|
|
/* Compute Tx descriptor checksum. */
|
|
sum = ds->ds_info;
|
|
sum += ds->ds_segs[0].ds_data;
|
|
sum += ds->ds_segs[0].ds_ctl;
|
|
sum = (sum >> 16) + (sum & 0xffff);
|
|
ds->ds_ctl10 = SM(AR_TXC10_PTR_CHK_SUM, sum);
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Stop Tx DMA before putting the new beacon on the queue. */
|
|
athn_stop_tx_dma(sc, ATHN_QID_BEACON);
|
|
|
|
AR_WRITE(sc, AR_QTXDP(ATHN_QID_BEACON), bf->bf_daddr);
|
|
|
|
for(;;) {
|
|
if (SIMPLEQ_EMPTY(&sc->sc_txbufs))
|
|
break;
|
|
|
|
IF_DEQUEUE(&ni->ni_savedq, m);
|
|
if (m == NULL)
|
|
break;
|
|
if (!IF_IS_EMPTY(&ni->ni_savedq)) {
|
|
/* more queued frames, set the more data bit */
|
|
wh = mtod(m, struct ieee80211_frame *);
|
|
wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
|
|
}
|
|
|
|
if (sc->sc_ops.tx(sc, m, ni, ATHN_TXFLAG_CAB) != 0) {
|
|
ieee80211_free_node(ni);
|
|
ifp->if_oerrors++;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Kick Tx. */
|
|
AR_WRITE(sc, AR_Q_TXE, 1 << ATHN_QID_BEACON);
|
|
AR_WRITE_BARRIER(sc);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
Static int
|
|
ar9003_intr(struct athn_softc *sc)
|
|
{
|
|
uint32_t intr, intr2, intr5, sync;
|
|
|
|
/* Get pending interrupts. */
|
|
intr = AR_READ(sc, AR_INTR_ASYNC_CAUSE);
|
|
if (!(intr & AR_INTR_MAC_IRQ) || intr == AR_INTR_SPURIOUS) {
|
|
intr = AR_READ(sc, AR_INTR_SYNC_CAUSE);
|
|
if (intr == AR_INTR_SPURIOUS || (intr & sc->sc_isync) == 0)
|
|
return 0; /* Not for us. */
|
|
}
|
|
|
|
if ((AR_READ(sc, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) &&
|
|
(AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) == AR_RTC_STATUS_ON)
|
|
intr = AR_READ(sc, AR_ISR);
|
|
else
|
|
intr = 0;
|
|
sync = AR_READ(sc, AR_INTR_SYNC_CAUSE) & sc->sc_isync;
|
|
if (intr == 0 && sync == 0)
|
|
return 0; /* Not for us. */
|
|
|
|
if (intr != 0) {
|
|
if (intr & AR_ISR_BCNMISC) {
|
|
intr2 = AR_READ(sc, AR_ISR_S2);
|
|
#ifdef notyet
|
|
if (intr2 & AR_ISR_S2_TIM)
|
|
/* TBD */;
|
|
if (intr2 & AR_ISR_S2_TSFOOR)
|
|
/* TBD */;
|
|
if (intr2 & AR_ISR_S2_BB_WATCHDOG)
|
|
/* TBD */;
|
|
#endif
|
|
}
|
|
intr = AR_READ(sc, AR_ISR_RAC);
|
|
if (intr == AR_INTR_SPURIOUS)
|
|
return 1;
|
|
|
|
#ifndef IEEE80211_STA_ONLY
|
|
if (intr & AR_ISR_SWBA)
|
|
ar9003_swba_intr(sc);
|
|
#endif
|
|
if (intr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
|
|
ar9003_rx_intr(sc, ATHN_QID_LP);
|
|
if (intr & (AR_ISR_LP_RXOK | AR_ISR_RXERR))
|
|
ar9003_rx_intr(sc, ATHN_QID_LP);
|
|
if (intr & AR_ISR_HP_RXOK)
|
|
ar9003_rx_intr(sc, ATHN_QID_HP);
|
|
|
|
if (intr & (AR_ISR_TXMINTR | AR_ISR_TXINTM))
|
|
ar9003_tx_intr(sc);
|
|
if (intr & (AR_ISR_TXOK | AR_ISR_TXERR | AR_ISR_TXEOL))
|
|
ar9003_tx_intr(sc);
|
|
|
|
if (intr & AR_ISR_GENTMR) {
|
|
intr5 = AR_READ(sc, AR_ISR_S5_S);
|
|
DPRINTFN(DBG_INTR, sc,
|
|
"GENTMR trigger=%d thresh=%d\n",
|
|
MS(intr5, AR_ISR_S5_GENTIMER_TRIG),
|
|
MS(intr5, AR_ISR_S5_GENTIMER_THRESH));
|
|
}
|
|
}
|
|
if (sync != 0) {
|
|
if (sync & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
|
|
AR_WRITE(sc, AR_RC, AR_RC_HOSTIF);
|
|
AR_WRITE(sc, AR_RC, 0);
|
|
}
|
|
|
|
if ((sc->sc_flags & ATHN_FLAG_RFSILENT) &&
|
|
(sync & AR_INTR_SYNC_GPIO_PIN(sc->sc_rfsilent_pin))) {
|
|
pmf_event_inject(sc->sc_dev, PMFE_RADIO_OFF);
|
|
return 1;
|
|
}
|
|
|
|
AR_WRITE(sc, AR_INTR_SYNC_CAUSE, sync);
|
|
(void)AR_READ(sc, AR_INTR_SYNC_CAUSE);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
Static int
|
|
ar9003_tx(struct athn_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
|
|
int txflags)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ieee80211_key *k = NULL;
|
|
struct ieee80211_frame *wh;
|
|
struct athn_series series[4];
|
|
struct ar_tx_desc *ds;
|
|
struct athn_txq *txq;
|
|
struct athn_tx_buf *bf;
|
|
struct athn_node *an = (void *)ni;
|
|
struct mbuf *m1;
|
|
uint32_t sum;
|
|
uint16_t qos;
|
|
uint8_t txpower, type, encrtype, ridx[4];
|
|
int i, error, totlen, hasqos, qid;
|
|
|
|
/* Grab a Tx buffer from our global free list. */
|
|
bf = SIMPLEQ_FIRST(&sc->sc_txbufs);
|
|
KASSERT(bf != NULL);
|
|
|
|
/* Map 802.11 frame type to hardware frame type. */
|
|
wh = mtod(m, struct ieee80211_frame *);
|
|
if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
|
|
IEEE80211_FC0_TYPE_MGT) {
|
|
/* NB: Beacons do not use ar9003_tx(). */
|
|
if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
|
|
IEEE80211_FC0_SUBTYPE_PROBE_RESP)
|
|
type = AR_FRAME_TYPE_PROBE_RESP;
|
|
else if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
|
|
IEEE80211_FC0_SUBTYPE_ATIM)
|
|
type = AR_FRAME_TYPE_ATIM;
|
|
else
|
|
type = AR_FRAME_TYPE_NORMAL;
|
|
}
|
|
else if ((wh->i_fc[0] &
|
|
(IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
|
|
(IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) {
|
|
type = AR_FRAME_TYPE_PSPOLL;
|
|
}
|
|
else
|
|
type = AR_FRAME_TYPE_NORMAL;
|
|
|
|
if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
|
|
k = ieee80211_crypto_encap(ic, ni, m);
|
|
if (k == NULL)
|
|
return ENOBUFS;
|
|
|
|
/* packet header may have moved, reset our local pointer */
|
|
wh = mtod(m, struct ieee80211_frame *);
|
|
}
|
|
|
|
/* XXX 2-byte padding for QoS and 4-addr headers. */
|
|
|
|
/* Select the HW Tx queue to use for this frame. */
|
|
if ((hasqos = ieee80211_has_qos(wh))) {
|
|
#ifdef notyet_edca
|
|
uint8_t tid;
|
|
|
|
qos = ieee80211_get_qos(wh);
|
|
tid = qos & IEEE80211_QOS_TID;
|
|
qid = athn_ac2qid[ieee80211_up_to_ac(ic, tid)];
|
|
#else
|
|
qos = ieee80211_get_qos(wh);
|
|
qid = ATHN_QID_AC_BE;
|
|
#endif /* notyet_edca */
|
|
}
|
|
else if (type == AR_FRAME_TYPE_PSPOLL) {
|
|
qos = 0;
|
|
qid = ATHN_QID_PSPOLL;
|
|
}
|
|
else if (txflags & ATHN_TXFLAG_CAB) {
|
|
qos = 0;
|
|
qid = ATHN_QID_CAB;
|
|
}
|
|
else {
|
|
qos = 0;
|
|
qid = ATHN_QID_AC_BE;
|
|
}
|
|
txq = &sc->sc_txq[qid];
|
|
|
|
/* Select the transmit rates to use for this frame. */
|
|
if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
|
|
(wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) !=
|
|
IEEE80211_FC0_TYPE_DATA) {
|
|
/* Use lowest rate for all tries. */
|
|
ridx[0] = ridx[1] = ridx[2] = ridx[3] =
|
|
(ic->ic_curmode == IEEE80211_MODE_11A) ?
|
|
ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK1;
|
|
}
|
|
else if (ic->ic_fixed_rate != -1) {
|
|
/* Use same fixed rate for all tries. */
|
|
ridx[0] = ridx[1] = ridx[2] = ridx[3] =
|
|
sc->sc_fixed_ridx;
|
|
}
|
|
else {
|
|
int txrate = ni->ni_txrate;
|
|
/* Use fallback table of the node. */
|
|
for (i = 0; i < 4; i++) {
|
|
ridx[i] = an->ridx[txrate];
|
|
txrate = an->fallback[txrate];
|
|
}
|
|
}
|
|
|
|
if (__predict_false(sc->sc_drvbpf != NULL)) {
|
|
struct athn_tx_radiotap_header *tap = &sc->sc_txtap;
|
|
|
|
tap->wt_flags = 0;
|
|
/* Use initial transmit rate. */
|
|
tap->wt_rate = athn_rates[ridx[0]].rate;
|
|
tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
|
|
tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
|
|
// XXX tap->wt_hwqueue = qid;
|
|
if (ridx[0] != ATHN_RIDX_CCK1 &&
|
|
(ic->ic_flags & IEEE80211_F_SHPREAMBLE))
|
|
tap->wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
|
|
|
|
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
|
|
}
|
|
|
|
/* DMA map mbuf. */
|
|
error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m,
|
|
BUS_DMA_NOWAIT | BUS_DMA_WRITE);
|
|
if (__predict_false(error != 0)) {
|
|
if (error != EFBIG) {
|
|
printf("%s: can't map mbuf (error %d)\n",
|
|
device_xname(sc->sc_dev), error);
|
|
m_freem(m);
|
|
return error;
|
|
}
|
|
/*
|
|
* DMA mapping requires too many DMA segments; linearize
|
|
* mbuf in kernel virtual address space and retry.
|
|
*/
|
|
MGETHDR(m1, M_DONTWAIT, MT_DATA);
|
|
if (m1 == NULL) {
|
|
m_freem(m);
|
|
return ENOBUFS;
|
|
}
|
|
if (m->m_pkthdr.len > (int)MHLEN) {
|
|
MCLGET(m1, M_DONTWAIT);
|
|
if (!(m1->m_flags & M_EXT)) {
|
|
m_freem(m);
|
|
m_freem(m1);
|
|
return ENOBUFS;
|
|
}
|
|
}
|
|
m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
|
|
m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
|
|
m_freem(m);
|
|
m = m1;
|
|
|
|
error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m,
|
|
BUS_DMA_NOWAIT | BUS_DMA_WRITE);
|
|
if (error != 0) {
|
|
printf("%s: can't map mbuf (error %d)\n",
|
|
device_xname(sc->sc_dev), error);
|
|
m_freem(m);
|
|
return error;
|
|
}
|
|
}
|
|
bf->bf_m = m;
|
|
bf->bf_ni = ni;
|
|
bf->bf_txflags = txflags;
|
|
|
|
wh = mtod(m, struct ieee80211_frame *);
|
|
|
|
totlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
|
|
|
|
/* Setup Tx descriptor. */
|
|
ds = bf->bf_descs;
|
|
memset(ds, 0, sizeof(*ds));
|
|
|
|
ds->ds_info =
|
|
SM(AR_TXI_DESC_ID, AR_VENDOR_ATHEROS) |
|
|
SM(AR_TXI_DESC_NDWORDS, 23) |
|
|
SM(AR_TXI_QCU_NUM, qid) |
|
|
AR_TXI_DESC_TX | AR_TXI_CTRL_STAT;
|
|
|
|
ds->ds_ctl11 = AR_TXC11_CLR_DEST_MASK;
|
|
txpower = AR_MAX_RATE_POWER; /* Get from per-rate registers. */
|
|
ds->ds_ctl11 |= SM(AR_TXC11_XMIT_POWER, txpower);
|
|
|
|
ds->ds_ctl12 = SM(AR_TXC12_FRAME_TYPE, type);
|
|
|
|
if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
|
|
(hasqos && (qos & IEEE80211_QOS_ACKPOLICY_MASK) ==
|
|
IEEE80211_QOS_ACKPOLICY_NOACK))
|
|
ds->ds_ctl12 |= AR_TXC12_NO_ACK;
|
|
|
|
#if notyet
|
|
if (0 && k != NULL) {
|
|
uintptr_t entry;
|
|
|
|
/*
|
|
* Map 802.11 cipher to hardware encryption type and
|
|
* compute MIC+ICV overhead.
|
|
*/
|
|
switch (k->k_cipher) {
|
|
case IEEE80211_CIPHER_WEP40:
|
|
case IEEE80211_CIPHER_WEP104:
|
|
encrtype = AR_ENCR_TYPE_WEP;
|
|
totlen += 4;
|
|
break;
|
|
case IEEE80211_CIPHER_TKIP:
|
|
encrtype = AR_ENCR_TYPE_TKIP;
|
|
totlen += 12;
|
|
break;
|
|
case IEEE80211_CIPHER_CCMP:
|
|
encrtype = AR_ENCR_TYPE_AES;
|
|
totlen += 8;
|
|
break;
|
|
default:
|
|
panic("unsupported cipher");
|
|
}
|
|
/*
|
|
* NB: The key cache entry index is stored in the key
|
|
* private field when the key is installed.
|
|
*/
|
|
entry = (uintptr_t)k->k_priv;
|
|
ds->ds_ctl12 |= SM(AR_TXC12_DEST_IDX, entry);
|
|
ds->ds_ctl11 |= AR_TXC11_DEST_IDX_VALID;
|
|
}
|
|
else
|
|
#endif
|
|
encrtype = AR_ENCR_TYPE_CLEAR;
|
|
ds->ds_ctl17 = SM(AR_TXC17_ENCR_TYPE, encrtype);
|
|
|
|
/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
|
|
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
|
|
/* NB: Group frames are sent using CCK in 802.11b/g. */
|
|
if (totlen > ic->ic_rtsthreshold) {
|
|
ds->ds_ctl11 |= AR_TXC11_RTS_ENABLE;
|
|
}
|
|
else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
|
|
athn_rates[ridx[0]].phy == IEEE80211_T_OFDM) {
|
|
if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
|
|
ds->ds_ctl11 |= AR_TXC11_RTS_ENABLE;
|
|
else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
|
|
ds->ds_ctl11 |= AR_TXC11_CTS_ENABLE;
|
|
}
|
|
}
|
|
if (ds->ds_ctl11 & (AR_TXC11_RTS_ENABLE | AR_TXC11_CTS_ENABLE)) {
|
|
/* Disable multi-rate retries when protection is used. */
|
|
ridx[1] = ridx[2] = ridx[3] = ridx[0];
|
|
}
|
|
/* Setup multi-rate retries. */
|
|
for (i = 0; i < 4; i++) {
|
|
series[i].hwrate = athn_rates[ridx[i]].hwrate;
|
|
if (athn_rates[ridx[i]].phy == IEEE80211_T_DS &&
|
|
ridx[i] != ATHN_RIDX_CCK1 &&
|
|
(ic->ic_flags & IEEE80211_F_SHPREAMBLE))
|
|
series[i].hwrate |= 0x04;
|
|
series[i].dur = 0;
|
|
}
|
|
if (!(ds->ds_ctl12 & AR_TXC12_NO_ACK)) {
|
|
/* Compute duration for each series. */
|
|
for (i = 0; i < 4; i++) {
|
|
series[i].dur = athn_txtime(sc, IEEE80211_ACK_LEN,
|
|
athn_rates[ridx[i]].rspridx, ic->ic_flags);
|
|
}
|
|
}
|
|
/* If this is a PA training frame, select the Tx chain to use. */
|
|
if (__predict_false(txflags & ATHN_TXFLAG_PAPRD)) {
|
|
ds->ds_ctl12 |= SM(AR_TXC12_PAPRD_CHAIN_MASK,
|
|
1 << sc->sc_paprd_curchain);
|
|
}
|
|
|
|
/* Write number of tries for each series. */
|
|
ds->ds_ctl13 =
|
|
SM(AR_TXC13_XMIT_DATA_TRIES0, 2) |
|
|
SM(AR_TXC13_XMIT_DATA_TRIES1, 2) |
|
|
SM(AR_TXC13_XMIT_DATA_TRIES2, 2) |
|
|
SM(AR_TXC13_XMIT_DATA_TRIES3, 4);
|
|
|
|
/* Tell HW to update duration field in 802.11 header. */
|
|
if (type != AR_FRAME_TYPE_PSPOLL)
|
|
ds->ds_ctl13 |= AR_TXC13_DUR_UPDATE_ENA;
|
|
|
|
/* Write Tx rate for each series. */
|
|
ds->ds_ctl14 =
|
|
SM(AR_TXC14_XMIT_RATE0, series[0].hwrate) |
|
|
SM(AR_TXC14_XMIT_RATE1, series[1].hwrate) |
|
|
SM(AR_TXC14_XMIT_RATE2, series[2].hwrate) |
|
|
SM(AR_TXC14_XMIT_RATE3, series[3].hwrate);
|
|
|
|
/* Write duration for each series. */
|
|
ds->ds_ctl15 =
|
|
SM(AR_TXC15_PACKET_DUR0, series[0].dur) |
|
|
SM(AR_TXC15_PACKET_DUR1, series[1].dur);
|
|
ds->ds_ctl16 =
|
|
SM(AR_TXC16_PACKET_DUR2, series[2].dur) |
|
|
SM(AR_TXC16_PACKET_DUR3, series[3].dur);
|
|
|
|
if ((sc->sc_flags & ATHN_FLAG_3TREDUCE_CHAIN) &&
|
|
ic->ic_curmode == IEEE80211_MODE_11A) {
|
|
/*
|
|
* In order to not exceed PCIe power requirements, we only
|
|
* use two Tx chains for MCS0~15 on 5GHz band on these chips.
|
|
*/
|
|
ds->ds_ctl18 =
|
|
SM(AR_TXC18_CHAIN_SEL0,
|
|
(ridx[0] <= ATHN_RIDX_MCS15) ? 0x3 : sc->sc_txchainmask) |
|
|
SM(AR_TXC18_CHAIN_SEL1,
|
|
(ridx[1] <= ATHN_RIDX_MCS15) ? 0x3 : sc->sc_txchainmask) |
|
|
SM(AR_TXC18_CHAIN_SEL2,
|
|
(ridx[2] <= ATHN_RIDX_MCS15) ? 0x3 : sc->sc_txchainmask) |
|
|
SM(AR_TXC18_CHAIN_SEL3,
|
|
(ridx[3] <= ATHN_RIDX_MCS15) ? 0x3 : sc->sc_txchainmask);
|
|
}
|
|
else {
|
|
/* Use the same Tx chains for all tries. */
|
|
ds->ds_ctl18 =
|
|
SM(AR_TXC18_CHAIN_SEL0, sc->sc_txchainmask) |
|
|
SM(AR_TXC18_CHAIN_SEL1, sc->sc_txchainmask) |
|
|
SM(AR_TXC18_CHAIN_SEL2, sc->sc_txchainmask) |
|
|
SM(AR_TXC18_CHAIN_SEL3, sc->sc_txchainmask);
|
|
}
|
|
#ifdef notyet
|
|
#ifndef IEEE80211_NO_HT
|
|
/* Use the same short GI setting for all tries. */
|
|
if (ic->ic_flags & IEEE80211_F_SHGI)
|
|
ds->ds_ctl18 |= AR_TXC18_GI0123;
|
|
/* Use the same channel width for all tries. */
|
|
if (ic->ic_flags & IEEE80211_F_CBW40)
|
|
ds->ds_ctl18 |= AR_TXC18_2040_0123;
|
|
#endif
|
|
#endif
|
|
|
|
if (ds->ds_ctl11 & (AR_TXC11_RTS_ENABLE | AR_TXC11_CTS_ENABLE)) {
|
|
uint8_t protridx, hwrate;
|
|
uint16_t dur = 0;
|
|
|
|
/* Use the same protection mode for all tries. */
|
|
if (ds->ds_ctl11 & AR_TXC11_RTS_ENABLE) {
|
|
ds->ds_ctl15 |= AR_TXC15_RTSCTS_QUAL01;
|
|
ds->ds_ctl16 |= AR_TXC16_RTSCTS_QUAL23;
|
|
}
|
|
/* Select protection rate (suboptimal but ok). */
|
|
protridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
|
|
ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK2;
|
|
if (ds->ds_ctl11 & AR_TXC11_RTS_ENABLE) {
|
|
/* Account for CTS duration. */
|
|
dur += athn_txtime(sc, IEEE80211_ACK_LEN,
|
|
athn_rates[protridx].rspridx, ic->ic_flags);
|
|
}
|
|
dur += athn_txtime(sc, totlen, ridx[0], ic->ic_flags);
|
|
if (!(ds->ds_ctl12 & AR_TXC12_NO_ACK)) {
|
|
/* Account for ACK duration. */
|
|
dur += athn_txtime(sc, IEEE80211_ACK_LEN,
|
|
athn_rates[ridx[0]].rspridx, ic->ic_flags);
|
|
}
|
|
/* Write protection frame duration and rate. */
|
|
ds->ds_ctl13 |= SM(AR_TXC13_BURST_DUR, dur);
|
|
hwrate = athn_rates[protridx].hwrate;
|
|
if (protridx == ATHN_RIDX_CCK2 &&
|
|
(ic->ic_flags & IEEE80211_F_SHPREAMBLE))
|
|
hwrate |= 0x04;
|
|
ds->ds_ctl18 |= SM(AR_TXC18_RTSCTS_RATE, hwrate);
|
|
}
|
|
|
|
ds->ds_ctl11 |= SM(AR_TXC11_FRAME_LEN, totlen);
|
|
ds->ds_ctl19 = AR_TXC19_NOT_SOUNDING;
|
|
|
|
for (i = 0; i < bf->bf_map->dm_nsegs; i++) {
|
|
ds->ds_segs[i].ds_data = bf->bf_map->dm_segs[i].ds_addr;
|
|
ds->ds_segs[i].ds_ctl = SM(AR_TXC_BUF_LEN,
|
|
bf->bf_map->dm_segs[i].ds_len);
|
|
}
|
|
/* Compute Tx descriptor checksum. */
|
|
sum = ds->ds_info + ds->ds_link;
|
|
for (i = 0; i < 4; i++) {
|
|
sum += ds->ds_segs[i].ds_data;
|
|
sum += ds->ds_segs[i].ds_ctl;
|
|
}
|
|
sum = (sum >> 16) + (sum & 0xffff);
|
|
ds->ds_ctl10 = SM(AR_TXC10_PTR_CHK_SUM, sum);
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
DPRINTFN(DBG_TX, sc,
|
|
"Tx qid=%d nsegs=%d ctl11=0x%x ctl12=0x%x ctl14=0x%x\n",
|
|
qid, bf->bf_map->dm_nsegs, ds->ds_ctl11, ds->ds_ctl12,
|
|
ds->ds_ctl14);
|
|
|
|
SIMPLEQ_REMOVE_HEAD(&sc->sc_txbufs, bf_list);
|
|
SIMPLEQ_INSERT_TAIL(&txq->head, bf, bf_list);
|
|
|
|
/* Queue buffer unless hardware FIFO is already full. */
|
|
if (++txq->queued <= AR9003_TX_QDEPTH) {
|
|
AR_WRITE(sc, AR_QTXDP(qid), bf->bf_daddr);
|
|
AR_WRITE_BARRIER(sc);
|
|
}
|
|
else if (txq->wait == NULL)
|
|
txq->wait = bf;
|
|
return 0;
|
|
}
|
|
|
|
Static void
|
|
ar9003_set_rf_mode(struct athn_softc *sc, struct ieee80211_channel *c)
|
|
{
|
|
uint32_t reg;
|
|
|
|
reg = IEEE80211_IS_CHAN_2GHZ(c) ?
|
|
AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
|
|
if (IEEE80211_IS_CHAN_5GHZ(c) &&
|
|
(sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)) {
|
|
reg |= AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE;
|
|
}
|
|
AR_WRITE(sc, AR_PHY_MODE, reg);
|
|
AR_WRITE_BARRIER(sc);
|
|
}
|
|
|
|
static __inline uint32_t
|
|
ar9003_synth_delay(struct athn_softc *sc)
|
|
{
|
|
uint32_t delay;
|
|
|
|
delay = MS(AR_READ(sc, AR_PHY_RX_DELAY), AR_PHY_RX_DELAY_DELAY);
|
|
if (sc->sc_ic.ic_curmode == IEEE80211_MODE_11B)
|
|
delay = (delay * 4) / 22;
|
|
else
|
|
delay = delay / 10; /* in 100ns steps */
|
|
return delay;
|
|
}
|
|
|
|
Static int
|
|
ar9003_rf_bus_request(struct athn_softc *sc)
|
|
{
|
|
int ntries;
|
|
|
|
/* Request RF Bus grant. */
|
|
AR_WRITE(sc, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
|
|
for (ntries = 0; ntries < 10000; ntries++) {
|
|
if (AR_READ(sc, AR_PHY_RFBUS_GRANT) & AR_PHY_RFBUS_GRANT_EN)
|
|
return 0;
|
|
DELAY(10);
|
|
}
|
|
DPRINTFN(DBG_RF, sc, "could not kill baseband Rx");
|
|
return ETIMEDOUT;
|
|
}
|
|
|
|
Static void
|
|
ar9003_rf_bus_release(struct athn_softc *sc)
|
|
{
|
|
/* Wait for the synthesizer to settle. */
|
|
DELAY(AR_BASE_PHY_ACTIVE_DELAY + ar9003_synth_delay(sc));
|
|
|
|
/* Release the RF Bus grant. */
|
|
AR_WRITE(sc, AR_PHY_RFBUS_REQ, 0);
|
|
AR_WRITE_BARRIER(sc);
|
|
}
|
|
|
|
Static void
|
|
ar9003_set_phy(struct athn_softc *sc, struct ieee80211_channel *c,
|
|
struct ieee80211_channel *extc)
|
|
{
|
|
uint32_t phy;
|
|
|
|
phy = AR_READ(sc, AR_PHY_GEN_CTRL);
|
|
phy |= AR_PHY_GC_HT_EN | AR_PHY_GC_SHORT_GI_40 |
|
|
AR_PHY_GC_SINGLE_HT_LTF1 | AR_PHY_GC_WALSH;
|
|
#ifndef IEEE80211_NO_HT
|
|
if (extc != NULL) {
|
|
phy |= AR_PHY_GC_DYN2040_EN;
|
|
if (extc > c) /* XXX */
|
|
phy |= AR_PHY_GC_DYN2040_PRI_CH;
|
|
}
|
|
#endif
|
|
/* Turn off Green Field detection for now. */
|
|
phy &= ~AR_PHY_GC_GF_DETECT_EN;
|
|
AR_WRITE(sc, AR_PHY_GEN_CTRL, phy);
|
|
|
|
AR_WRITE(sc, AR_2040_MODE,
|
|
(extc != NULL) ? AR_2040_JOINED_RX_CLEAR : 0);
|
|
|
|
/* Set global transmit timeout. */
|
|
AR_WRITE(sc, AR_GTXTO, SM(AR_GTXTO_TIMEOUT_LIMIT, 25));
|
|
/* Set carrier sense timeout. */
|
|
AR_WRITE(sc, AR_CST, SM(AR_CST_TIMEOUT_LIMIT, 15));
|
|
AR_WRITE_BARRIER(sc);
|
|
}
|
|
|
|
Static void
|
|
ar9003_set_delta_slope(struct athn_softc *sc, struct ieee80211_channel *c,
|
|
struct ieee80211_channel *extc)
|
|
{
|
|
uint32_t coeff, exp, man, reg;
|
|
|
|
/* Set Delta Slope (exponent and mantissa). */
|
|
coeff = (100 << 24) / c->ic_freq;
|
|
athn_get_delta_slope(coeff, &exp, &man);
|
|
DPRINTFN(DBG_RF, sc, "delta slope coeff exp=%u man=%u\n", exp, man);
|
|
|
|
reg = AR_READ(sc, AR_PHY_TIMING3);
|
|
reg = RW(reg, AR_PHY_TIMING3_DSC_EXP, exp);
|
|
reg = RW(reg, AR_PHY_TIMING3_DSC_MAN, man);
|
|
AR_WRITE(sc, AR_PHY_TIMING3, reg);
|
|
|
|
/* For Short GI, coeff is 9/10 that of normal coeff. */
|
|
coeff = (9 * coeff) / 10;
|
|
athn_get_delta_slope(coeff, &exp, &man);
|
|
DPRINTFN(DBG_RF, sc, "delta slope coeff exp=%u man=%u\n", exp, man);
|
|
|
|
reg = AR_READ(sc, AR_PHY_SGI_DELTA);
|
|
reg = RW(reg, AR_PHY_SGI_DSC_EXP, exp);
|
|
reg = RW(reg, AR_PHY_SGI_DSC_MAN, man);
|
|
AR_WRITE(sc, AR_PHY_SGI_DELTA, reg);
|
|
AR_WRITE_BARRIER(sc);
|
|
}
|
|
|
|
Static void
|
|
ar9003_enable_antenna_diversity(struct athn_softc *sc)
|
|
{
|
|
AR_SETBITS(sc, AR_PHY_CCK_DETECT,
|
|
AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
|
|
AR_WRITE_BARRIER(sc);
|
|
}
|
|
|
|
Static void
|
|
ar9003_init_baseband(struct athn_softc *sc)
|
|
{
|
|
uint32_t synth_delay;
|
|
|
|
synth_delay = ar9003_synth_delay(sc);
|
|
/* Activate the PHY (includes baseband activate and synthesizer on). */
|
|
AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
|
|
AR_WRITE_BARRIER(sc);
|
|
DELAY(AR_BASE_PHY_ACTIVE_DELAY + synth_delay);
|
|
}
|
|
|
|
Static void
|
|
ar9003_disable_phy(struct athn_softc *sc)
|
|
{
|
|
AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
|
|
AR_WRITE_BARRIER(sc);
|
|
}
|
|
|
|
Static void
|
|
ar9003_init_chains(struct athn_softc *sc)
|
|
{
|
|
if (sc->sc_rxchainmask == 0x5 || sc->sc_txchainmask == 0x5)
|
|
AR_SETBITS(sc, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
|
|
|
|
/* Setup chain masks. */
|
|
AR_WRITE(sc, AR_PHY_RX_CHAINMASK, sc->sc_rxchainmask);
|
|
AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, sc->sc_rxchainmask);
|
|
|
|
if (sc->sc_flags & ATHN_FLAG_3TREDUCE_CHAIN) {
|
|
/*
|
|
* All self-generated frames are sent using two Tx chains
|
|
* on these chips to not exceed PCIe power requirements.
|
|
*/
|
|
AR_WRITE(sc, AR_SELFGEN_MASK, 0x3);
|
|
}
|
|
else
|
|
AR_WRITE(sc, AR_SELFGEN_MASK, sc->sc_txchainmask);
|
|
AR_WRITE_BARRIER(sc);
|
|
}
|
|
|
|
Static void
|
|
ar9003_set_rxchains(struct athn_softc *sc)
|
|
{
|
|
if (sc->sc_rxchainmask == 0x3 || sc->sc_rxchainmask == 0x5) {
|
|
AR_WRITE(sc, AR_PHY_RX_CHAINMASK, sc->sc_rxchainmask);
|
|
AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, sc->sc_rxchainmask);
|
|
AR_WRITE_BARRIER(sc);
|
|
}
|
|
}
|
|
|
|
#ifdef notused
|
|
Static void
|
|
ar9003_read_noisefloor(struct athn_softc *sc, int16_t *nf, int16_t *nf_ext)
|
|
{
|
|
/* Sign-extends 9-bit value (assumes upper bits are zeroes). */
|
|
#define SIGN_EXT(v) (((v) ^ 0x100) - 0x100)
|
|
uint32_t reg;
|
|
int i;
|
|
|
|
for (i = 0; i < sc->sc_nrxchains; i++) {
|
|
reg = AR_READ(sc, AR_PHY_CCA(i));
|
|
nf[i] = MS(reg, AR_PHY_MINCCA_PWR);
|
|
nf[i] = SIGN_EXT(nf[i]);
|
|
|
|
reg = AR_READ(sc, AR_PHY_EXT_CCA(i));
|
|
nf_ext[i] = MS(reg, AR_PHY_EXT_MINCCA_PWR);
|
|
nf_ext[i] = SIGN_EXT(nf_ext[i]);
|
|
}
|
|
#undef SIGN_EXT
|
|
}
|
|
#endif /* notused */
|
|
|
|
#ifdef notused
|
|
Static void
|
|
ar9003_write_noisefloor(struct athn_softc *sc, int16_t *nf, int16_t *nf_ext)
|
|
{
|
|
uint32_t reg;
|
|
int i;
|
|
|
|
for (i = 0; i < sc->sc_nrxchains; i++) {
|
|
reg = AR_READ(sc, AR_PHY_CCA(i));
|
|
reg = RW(reg, AR_PHY_MAXCCA_PWR, nf[i]);
|
|
AR_WRITE(sc, AR_PHY_CCA(i), reg);
|
|
|
|
reg = AR_READ(sc, AR_PHY_EXT_CCA(i));
|
|
reg = RW(reg, AR_PHY_EXT_MAXCCA_PWR, nf_ext[i]);
|
|
AR_WRITE(sc, AR_PHY_EXT_CCA(i), reg);
|
|
}
|
|
AR_WRITE_BARRIER(sc);
|
|
}
|
|
#endif /* notused */
|
|
|
|
#ifdef notused
|
|
Static void
|
|
ar9003_get_noisefloor(struct athn_softc *sc, struct ieee80211_channel *c)
|
|
{
|
|
int16_t nf[AR_MAX_CHAINS], nf_ext[AR_MAX_CHAINS];
|
|
int16_t cca_min, cca_max;
|
|
int i;
|
|
|
|
if (AR_READ(sc, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) {
|
|
/* Noisefloor calibration not finished. */
|
|
return;
|
|
}
|
|
/* Noisefloor calibration is finished. */
|
|
ar9003_read_noisefloor(sc, nf, nf_ext);
|
|
|
|
if (IEEE80211_IS_CHAN_2GHZ(c)) {
|
|
cca_min = sc->sc_cca_min_2g;
|
|
cca_max = sc->sc_cca_max_2g;
|
|
}
|
|
else {
|
|
cca_min = sc->sc_cca_min_5g;
|
|
cca_max = sc->sc_cca_max_5g;
|
|
}
|
|
/* Update noisefloor history. */
|
|
for (i = 0; i < sc->sc_nrxchains; i++) {
|
|
if (nf[i] < cca_min)
|
|
nf[i] = cca_min;
|
|
else if (nf[i] > cca_max)
|
|
nf[i] = cca_max;
|
|
if (nf_ext[i] < cca_min)
|
|
nf_ext[i] = cca_min;
|
|
else if (nf_ext[i] > cca_max)
|
|
nf_ext[i] = cca_max;
|
|
|
|
sc->sc_nf_hist[sc->sc_nf_hist_cur].nf[i] = nf[i];
|
|
sc->sc_nf_hist[sc->sc_nf_hist_cur].nf_ext[i] = nf_ext[i];
|
|
}
|
|
if (++sc->sc_nf_hist_cur >= ATHN_NF_CAL_HIST_MAX)
|
|
sc->sc_nf_hist_cur = 0;
|
|
}
|
|
#endif /* notused */
|
|
|
|
#ifdef notused
|
|
Static void
|
|
ar9003_bb_load_noisefloor(struct athn_softc *sc)
|
|
{
|
|
int16_t nf[AR_MAX_CHAINS], nf_ext[AR_MAX_CHAINS];
|
|
int i, ntries;
|
|
|
|
/* Write filtered noisefloor values. */
|
|
for (i = 0; i < sc->sc_nrxchains; i++) {
|
|
nf[i] = sc->sc_nf_priv[i] * 2;
|
|
nf_ext[i] = sc->sc_nf_ext_priv[i] * 2;
|
|
}
|
|
ar9003_write_noisefloor(sc, nf, nf_ext);
|
|
|
|
/* Load filtered noisefloor values into baseband. */
|
|
AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
|
|
AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
|
|
AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
|
|
/* Wait for load to complete. */
|
|
for (ntries = 0; ntries < 1000; ntries++) {
|
|
if (!(AR_READ(sc, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF))
|
|
break;
|
|
DELAY(10);
|
|
}
|
|
if (ntries == 1000) {
|
|
DPRINTFN(DBG_RF, sc, "failed to load noisefloor values\n");
|
|
return;
|
|
}
|
|
|
|
/* Restore noisefloor values to initial (max) values. */
|
|
for (i = 0; i < AR_MAX_CHAINS; i++)
|
|
nf[i] = nf_ext[i] = -50 * 2;
|
|
ar9003_write_noisefloor(sc, nf, nf_ext);
|
|
}
|
|
#endif /* notused */
|
|
|
|
#ifdef notused
|
|
Static void
|
|
ar9300_noisefloor_calib(struct athn_softc *sc)
|
|
{
|
|
|
|
AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
|
|
AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
|
|
AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
|
|
}
|
|
#endif /* notused */
|
|
|
|
Static void
|
|
ar9003_do_noisefloor_calib(struct athn_softc *sc)
|
|
{
|
|
|
|
AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
|
|
}
|
|
|
|
PUBLIC int
|
|
ar9003_init_calib(struct athn_softc *sc)
|
|
{
|
|
uint8_t txchainmask, rxchainmask;
|
|
uint32_t reg;
|
|
int ntries;
|
|
|
|
/* Save chains masks. */
|
|
txchainmask = sc->sc_txchainmask;
|
|
rxchainmask = sc->sc_rxchainmask;
|
|
/* Configure hardware before calibration. */
|
|
if (AR_READ(sc, AR_ENT_OTP) & AR_ENT_OTP_CHAIN2_DISABLE)
|
|
txchainmask = rxchainmask = 0x3;
|
|
else
|
|
txchainmask = rxchainmask = 0x7;
|
|
ar9003_init_chains(sc);
|
|
|
|
/* Perform Tx IQ calibration. */
|
|
ar9003_calib_tx_iq(sc);
|
|
/* Disable and re-enable the PHY chips. */
|
|
AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
|
|
AR_WRITE_BARRIER(sc);
|
|
DELAY(5);
|
|
AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
|
|
|
|
/* Calibrate the AGC. */
|
|
AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL);
|
|
/* Poll for offset calibration completion. */
|
|
for (ntries = 0; ntries < 10000; ntries++) {
|
|
reg = AR_READ(sc, AR_PHY_AGC_CONTROL);
|
|
if (!(reg & AR_PHY_AGC_CONTROL_CAL))
|
|
break;
|
|
DELAY(10);
|
|
}
|
|
if (ntries == 10000)
|
|
return ETIMEDOUT;
|
|
|
|
/* Restore chains masks. */
|
|
sc->sc_txchainmask = txchainmask;
|
|
sc->sc_rxchainmask = rxchainmask;
|
|
ar9003_init_chains(sc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
Static void
|
|
ar9003_do_calib(struct athn_softc *sc)
|
|
{
|
|
uint32_t reg;
|
|
|
|
if (sc->sc_cur_calib_mask & ATHN_CAL_IQ) {
|
|
reg = AR_READ(sc, AR_PHY_TIMING4);
|
|
reg = RW(reg, AR_PHY_TIMING4_IQCAL_LOG_COUNT_MAX, 10);
|
|
AR_WRITE(sc, AR_PHY_TIMING4, reg);
|
|
AR_WRITE(sc, AR_PHY_CALMODE, AR_PHY_CALMODE_IQ);
|
|
AR_SETBITS(sc, AR_PHY_TIMING4, AR_PHY_TIMING4_DO_CAL);
|
|
AR_WRITE_BARRIER(sc);
|
|
}
|
|
else if (sc->sc_cur_calib_mask & ATHN_CAL_TEMP) {
|
|
AR_SETBITS(sc, AR_PHY_65NM_CH0_THERM,
|
|
AR_PHY_65NM_CH0_THERM_LOCAL);
|
|
AR_SETBITS(sc, AR_PHY_65NM_CH0_THERM,
|
|
AR_PHY_65NM_CH0_THERM_START);
|
|
AR_WRITE_BARRIER(sc);
|
|
}
|
|
}
|
|
|
|
Static void
|
|
ar9003_next_calib(struct athn_softc *sc)
|
|
{
|
|
/* Check if we have any calibration in progress. */
|
|
if (sc->sc_cur_calib_mask != 0) {
|
|
if (!(AR_READ(sc, AR_PHY_TIMING4) & AR_PHY_TIMING4_DO_CAL)) {
|
|
/* Calibration completed for current sample. */
|
|
ar9003_calib_iq(sc);
|
|
}
|
|
}
|
|
}
|
|
|
|
Static void
|
|
ar9003_calib_iq(struct athn_softc *sc)
|
|
{
|
|
struct athn_iq_cal *cal;
|
|
uint32_t reg, i_coff_denom, q_coff_denom;
|
|
int32_t i_coff, q_coff;
|
|
int i, iq_corr_neg;
|
|
|
|
for (i = 0; i < AR_MAX_CHAINS; i++) {
|
|
cal = &sc->sc_calib.iq[i];
|
|
|
|
/* Read IQ calibration measures (clear on read). */
|
|
cal->pwr_meas_i = AR_READ(sc, AR_PHY_IQ_ADC_MEAS_0_B(i));
|
|
cal->pwr_meas_q = AR_READ(sc, AR_PHY_IQ_ADC_MEAS_1_B(i));
|
|
cal->iq_corr_meas =
|
|
(int32_t)AR_READ(sc, AR_PHY_IQ_ADC_MEAS_2_B(i));
|
|
}
|
|
|
|
for (i = 0; i < sc->sc_nrxchains; i++) {
|
|
cal = &sc->sc_calib.iq[i];
|
|
|
|
if (cal->pwr_meas_q == 0)
|
|
continue;
|
|
|
|
if ((iq_corr_neg = cal->iq_corr_meas < 0))
|
|
cal->iq_corr_meas = -cal->iq_corr_meas;
|
|
|
|
i_coff_denom =
|
|
(cal->pwr_meas_i / 2 + cal->pwr_meas_q / 2) / 256;
|
|
q_coff_denom = cal->pwr_meas_q / 64;
|
|
|
|
if (i_coff_denom == 0 || q_coff_denom == 0)
|
|
continue; /* Prevents division by zero. */
|
|
|
|
i_coff = cal->iq_corr_meas / i_coff_denom;
|
|
q_coff = (cal->pwr_meas_i / q_coff_denom) - 64;
|
|
|
|
if (i_coff > 63)
|
|
i_coff = 63;
|
|
else if (i_coff < -63)
|
|
i_coff = -63;
|
|
/* Negate i_coff if iq_corr_meas is positive. */
|
|
if (!iq_corr_neg)
|
|
i_coff = -i_coff;
|
|
if (q_coff > 63)
|
|
q_coff = 63;
|
|
else if (q_coff < -63)
|
|
q_coff = -63;
|
|
|
|
DPRINTFN(DBG_RF, sc, "IQ calibration for chain %d\n", i);
|
|
reg = AR_READ(sc, AR_PHY_RX_IQCAL_CORR_B(i));
|
|
reg = RW(reg, AR_PHY_RX_IQCAL_CORR_IQCORR_Q_I_COFF, i_coff);
|
|
reg = RW(reg, AR_PHY_RX_IQCAL_CORR_IQCORR_Q_Q_COFF, q_coff);
|
|
AR_WRITE(sc, AR_PHY_RX_IQCAL_CORR_B(i), reg);
|
|
}
|
|
|
|
/* Apply new settings. */
|
|
AR_SETBITS(sc, AR_PHY_RX_IQCAL_CORR_B(0),
|
|
AR_PHY_RX_IQCAL_CORR_IQCORR_ENABLE);
|
|
AR_WRITE_BARRIER(sc);
|
|
|
|
/* IQ calibration done. */
|
|
sc->sc_cur_calib_mask &= ~ATHN_CAL_IQ;
|
|
memset(&sc->sc_calib, 0, sizeof(sc->sc_calib));
|
|
}
|
|
|
|
#define DELPT 32
|
|
Static int
|
|
ar9003_get_iq_corr(struct athn_softc *sc, int32_t res[6], int32_t coeff[2])
|
|
{
|
|
/* Sign-extends 12-bit value (assumes upper bits are zeroes). */
|
|
#define SIGN_EXT(v) (((v) ^ 0x800) - 0x800)
|
|
#define SCALE (1 << 15)
|
|
#define SHIFT (1 << 8)
|
|
struct {
|
|
int32_t m, p, c;
|
|
} val[2][2];
|
|
int32_t mag[2][2], phs[2][2], cos[2], sin[2];
|
|
int32_t div, f1, f2, f3, m, p, c;
|
|
int32_t txmag, txphs, rxmag, rxphs;
|
|
int32_t q_coff, i_coff;
|
|
int i, j;
|
|
|
|
/* Extract our twelve signed 12-bit values from res[] array. */
|
|
val[0][0].m = res[0] & 0xfff;
|
|
val[0][0].p = (res[0] >> 12) & 0xfff;
|
|
val[0][0].c = ((res[0] >> 24) & 0xff) | (res[1] & 0xf) << 8;
|
|
|
|
val[0][1].m = (res[1] >> 4) & 0xfff;
|
|
val[0][1].p = res[2] & 0xfff;
|
|
val[0][1].c = (res[2] >> 12) & 0xfff;
|
|
|
|
val[1][0].m = ((res[2] >> 24) & 0xff) | (res[3] & 0xf) << 8;
|
|
val[1][0].p = (res[3] >> 4) & 0xfff;
|
|
val[1][0].c = res[4] & 0xfff;
|
|
|
|
val[1][1].m = (res[4] >> 12) & 0xfff;
|
|
val[1][1].p = ((res[4] >> 24) & 0xff) | (res[5] & 0xf) << 8;
|
|
val[1][1].c = (res[5] >> 4) & 0xfff;
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
int32_t ymin, ymax;
|
|
for (j = 0; j < 2; j++) {
|
|
m = SIGN_EXT(val[i][j].m);
|
|
p = SIGN_EXT(val[i][j].p);
|
|
c = SIGN_EXT(val[i][j].c);
|
|
|
|
if (p == 0)
|
|
return 1; /* Prevent division by 0. */
|
|
|
|
mag[i][j] = (m * SCALE) / p;
|
|
phs[i][j] = (c * SCALE) / p;
|
|
}
|
|
sin[i] = ((mag[i][0] - mag[i][1]) * SHIFT) / DELPT;
|
|
cos[i] = ((phs[i][0] - phs[i][1]) * SHIFT) / DELPT;
|
|
/* Find magnitude by approximation. */
|
|
ymin = MIN(abs(sin[i]), abs(cos[i]));
|
|
ymax = MAX(abs(sin[i]), abs(cos[i]));
|
|
div = ymax - (ymax / 32) + (ymin / 8) + (ymin / 4);
|
|
if (div == 0)
|
|
return 1; /* Prevent division by 0. */
|
|
/* Normalize sin and cos by magnitude. */
|
|
sin[i] = (sin[i] * SCALE) / div;
|
|
cos[i] = (cos[i] * SCALE) / div;
|
|
}
|
|
|
|
/* Compute IQ mismatch (solve 4x4 linear equation). */
|
|
f1 = cos[0] - cos[1];
|
|
f3 = sin[0] - sin[1];
|
|
f2 = (f1 * f1 + f3 * f3) / SCALE;
|
|
if (f2 == 0)
|
|
return 1; /* Prevent division by 0. */
|
|
|
|
/* Compute Tx magnitude mismatch. */
|
|
txmag = (f1 * ( mag[0][0] - mag[1][0]) +
|
|
f3 * ( phs[0][0] - phs[1][0])) / f2;
|
|
/* Compute Tx phase mismatch. */
|
|
txphs = (f3 * (-mag[0][0] + mag[1][0]) +
|
|
f1 * ( phs[0][0] - phs[1][0])) / f2;
|
|
|
|
if (txmag == SCALE)
|
|
return 1; /* Prevent division by 0. */
|
|
|
|
/* Compute Rx magnitude mismatch. */
|
|
rxmag = mag[0][0] - (cos[0] * txmag + sin[0] * txphs) / SCALE;
|
|
/* Compute Rx phase mismatch. */
|
|
rxphs = phs[0][0] + (sin[0] * txmag - cos[0] * txphs) / SCALE;
|
|
|
|
if (-rxmag == SCALE)
|
|
return 1; /* Prevent division by 0. */
|
|
|
|
txmag = (txmag * SCALE) / (SCALE - txmag);
|
|
txphs = -txphs;
|
|
|
|
q_coff = (txmag * 128) / SCALE;
|
|
if (q_coff < -63)
|
|
q_coff = -63;
|
|
else if (q_coff > 63)
|
|
q_coff = 63;
|
|
i_coff = (txphs * 256) / SCALE;
|
|
if (i_coff < -63)
|
|
i_coff = -63;
|
|
else if (i_coff > 63)
|
|
i_coff = 63;
|
|
coeff[0] = q_coff * 128 + i_coff;
|
|
|
|
rxmag = (-rxmag * SCALE) / (SCALE + rxmag);
|
|
rxphs = -rxphs;
|
|
|
|
q_coff = (rxmag * 128) / SCALE;
|
|
if (q_coff < -63)
|
|
q_coff = -63;
|
|
else if (q_coff > 63)
|
|
q_coff = 63;
|
|
i_coff = (rxphs * 256) / SCALE;
|
|
if (i_coff < -63)
|
|
i_coff = -63;
|
|
else if (i_coff > 63)
|
|
i_coff = 63;
|
|
coeff[1] = q_coff * 128 + i_coff;
|
|
|
|
return 0;
|
|
#undef SHIFT
|
|
#undef SCALE
|
|
#undef SIGN_EXT
|
|
}
|
|
|
|
Static int
|
|
ar9003_calib_tx_iq(struct athn_softc *sc)
|
|
{
|
|
uint32_t reg;
|
|
int32_t res[6], coeff[2];
|
|
int i, j, ntries;
|
|
|
|
reg = AR_READ(sc, AR_PHY_TX_IQCAL_CONTROL_1);
|
|
reg = RW(reg, AR_PHY_TX_IQCAQL_CONTROL_1_IQCORR_I_Q_COFF_DELPT, DELPT);
|
|
AR_WRITE(sc, AR_PHY_TX_IQCAL_CONTROL_1, reg);
|
|
|
|
/* Start Tx IQ calibration. */
|
|
AR_SETBITS(sc, AR_PHY_TX_IQCAL_START, AR_PHY_TX_IQCAL_START_DO_CAL);
|
|
/* Wait for completion. */
|
|
for (ntries = 0; ntries < 10000; ntries++) {
|
|
reg = AR_READ(sc, AR_PHY_TX_IQCAL_START);
|
|
if (!(reg & AR_PHY_TX_IQCAL_START_DO_CAL))
|
|
break;
|
|
DELAY(10);
|
|
}
|
|
if (ntries == 10000)
|
|
return ETIMEDOUT;
|
|
|
|
for (i = 0; i < sc->sc_ntxchains; i++) {
|
|
/* Read Tx IQ calibration status for this chain. */
|
|
reg = AR_READ(sc, AR_PHY_TX_IQCAL_STATUS_B(i));
|
|
if (reg & AR_PHY_TX_IQCAL_STATUS_FAILED)
|
|
return EIO;
|
|
/*
|
|
* Read Tx IQ calibration results for this chain.
|
|
* This consists in twelve signed 12-bit values.
|
|
*/
|
|
for (j = 0; j < 3; j++) {
|
|
AR_CLRBITS(sc, AR_PHY_CHAN_INFO_MEMORY,
|
|
AR_PHY_CHAN_INFO_TAB_S2_READ);
|
|
reg = AR_READ(sc, AR_PHY_CHAN_INFO_TAB(i, j));
|
|
res[j * 2 + 0] = reg;
|
|
|
|
AR_SETBITS(sc, AR_PHY_CHAN_INFO_MEMORY,
|
|
AR_PHY_CHAN_INFO_TAB_S2_READ);
|
|
reg = AR_READ(sc, AR_PHY_CHAN_INFO_TAB(i, j));
|
|
res[j * 2 + 1] = reg & 0xffff;
|
|
}
|
|
|
|
/* Compute Tx IQ correction. */
|
|
if (ar9003_get_iq_corr(sc, res, coeff) != 0)
|
|
return EIO;
|
|
|
|
/* Write Tx IQ correction coefficients. */
|
|
reg = AR_READ(sc, AR_PHY_TX_IQCAL_CORR_COEFF_01_B(i));
|
|
reg = RW(reg, AR_PHY_TX_IQCAL_CORR_COEFF_01_COEFF_TABLE,
|
|
coeff[0]);
|
|
AR_WRITE(sc, AR_PHY_TX_IQCAL_CORR_COEFF_01_B(i), reg);
|
|
|
|
reg = AR_READ(sc, AR_PHY_RX_IQCAL_CORR_B(i));
|
|
reg = RW(reg, AR_PHY_RX_IQCAL_CORR_LOOPBACK_IQCORR_Q_Q_COFF,
|
|
coeff[1] >> 7);
|
|
reg = RW(reg, AR_PHY_RX_IQCAL_CORR_LOOPBACK_IQCORR_Q_I_COFF,
|
|
coeff[1]);
|
|
AR_WRITE(sc, AR_PHY_RX_IQCAL_CORR_B(i), reg);
|
|
AR_WRITE_BARRIER(sc);
|
|
}
|
|
|
|
/* Enable Tx IQ correction. */
|
|
AR_SETBITS(sc, AR_PHY_TX_IQCAL_CONTROL_3,
|
|
AR_PHY_TX_IQCAL_CONTROL_3_IQCORR_EN);
|
|
AR_SETBITS(sc, AR_PHY_RX_IQCAL_CORR_B(0),
|
|
AR_PHY_RX_IQCAL_CORR_B0_LOOPBACK_IQCORR_EN);
|
|
AR_WRITE_BARRIER(sc);
|
|
return 0;
|
|
}
|
|
#undef DELPT
|
|
|
|
/*-
|
|
* The power amplifier predistortion state machine works as follows:
|
|
* 1) Disable digital predistorters for all Tx chains
|
|
* 2) Repeat steps 3~7 for all Tx chains
|
|
* 3) Force Tx gain to that of training signal
|
|
* 4) Send training signal (asynchronous)
|
|
* 5) Wait for training signal to complete (asynchronous)
|
|
* 6) Read PA measurements (input power, output power, output phase)
|
|
* 7) Compute the predistortion function that linearizes PA output
|
|
* 8) Write predistortion functions to hardware tables for all Tx chains
|
|
* 9) Enable digital predistorters for all Tx chains
|
|
*/
|
|
#ifdef notused
|
|
Static void
|
|
ar9003_paprd_calib(struct athn_softc *sc, struct ieee80211_channel *c)
|
|
{
|
|
static const int scaling[] = {
|
|
261376, 248079, 233759, 220464,
|
|
208194, 196949, 185706, 175487
|
|
};
|
|
struct athn_ops *ops = &sc->sc_ops;
|
|
uint32_t reg, ht20mask, ht40mask;
|
|
int i;
|
|
|
|
/* Read PA predistortion masks from ROM. */
|
|
ops->get_paprd_masks(sc, c, &ht20mask, &ht40mask);
|
|
|
|
/* AM-to-AM: amplifier's amplitude characteristic. */
|
|
reg = AR_READ(sc, AR_PHY_PAPRD_AM2AM);
|
|
reg = RW(reg, AR_PHY_PAPRD_AM2AM_MASK, ht20mask);
|
|
AR_WRITE(sc, AR_PHY_PAPRD_AM2AM, reg);
|
|
|
|
/* AM-to-PM: amplifier's phase transfer characteristic. */
|
|
reg = AR_READ(sc, AR_PHY_PAPRD_AM2PM);
|
|
reg = RW(reg, AR_PHY_PAPRD_AM2PM_MASK, ht20mask);
|
|
AR_WRITE(sc, AR_PHY_PAPRD_AM2PM, reg);
|
|
|
|
reg = AR_READ(sc, AR_PHY_PAPRD_HT40);
|
|
reg = RW(reg, AR_PHY_PAPRD_HT40_MASK, ht40mask);
|
|
AR_WRITE(sc, AR_PHY_PAPRD_HT40, reg);
|
|
|
|
for (i = 0; i < AR9003_MAX_CHAINS; i++) {
|
|
AR_SETBITS(sc, AR_PHY_PAPRD_CTRL0_B(i),
|
|
AR_PHY_PAPRD_CTRL0_USE_SINGLE_TABLE);
|
|
|
|
reg = AR_READ(sc, AR_PHY_PAPRD_CTRL1_B(i));
|
|
reg = RW(reg, AR_PHY_PAPRD_CTRL1_PA_GAIN_SCALE_FACT, 181);
|
|
reg = RW(reg, AR_PHY_PAPRD_CTRL1_MAG_SCALE_FACT, 361);
|
|
reg &= ~AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA;
|
|
reg |= AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2AM_ENA;
|
|
reg |= AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2PM_ENA;
|
|
AR_WRITE(sc, AR_PHY_PAPRD_CTRL1_B(i), reg);
|
|
|
|
reg = AR_READ(sc, AR_PHY_PAPRD_CTRL0_B(i));
|
|
reg = RW(reg, AR_PHY_PAPRD_CTRL0_PAPRD_MAG_THRSH, 3);
|
|
AR_WRITE(sc, AR_PHY_PAPRD_CTRL0_B(i), reg);
|
|
}
|
|
|
|
/* Disable all digital predistorters during calibration. */
|
|
for (i = 0; i < AR9003_MAX_CHAINS; i++) {
|
|
AR_CLRBITS(sc, AR_PHY_PAPRD_CTRL0_B(i),
|
|
AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE);
|
|
}
|
|
AR_WRITE_BARRIER(sc);
|
|
|
|
/*
|
|
* Configure training signal.
|
|
*/
|
|
reg = AR_READ(sc, AR_PHY_PAPRD_TRAINER_CNTL1);
|
|
reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL1_AGC2_SETTLING, 28);
|
|
reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL1_LB_SKIP, 0x30);
|
|
reg &= ~AR_PHY_PAPRD_TRAINER_CNTL1_RX_BB_GAIN_FORCE;
|
|
reg &= ~AR_PHY_PAPRD_TRAINER_CNTL1_IQCORR_ENABLE;
|
|
reg |= AR_PHY_PAPRD_TRAINER_CNTL1_LB_ENABLE;
|
|
reg |= AR_PHY_PAPRD_TRAINER_CNTL1_TX_GAIN_FORCE;
|
|
reg |= AR_PHY_PAPRD_TRAINER_CNTL1_TRAIN_ENABLE;
|
|
AR_WRITE(sc, AR_PHY_PAPRD_TRAINER_CNTL1, reg);
|
|
|
|
AR_WRITE(sc, AR_PHY_PAPRD_TRAINER_CNTL2, 147);
|
|
|
|
reg = AR_READ(sc, AR_PHY_PAPRD_TRAINER_CNTL3);
|
|
reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_FINE_CORR_LEN, 4);
|
|
reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_COARSE_CORR_LEN, 4);
|
|
reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_NUM_CORR_STAGES, 7);
|
|
reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_MIN_LOOPBACK_DEL, 1);
|
|
if (AR_SREV_9485(sc))
|
|
reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_QUICK_DROP, -3);
|
|
else
|
|
reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_QUICK_DROP, -6);
|
|
reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_ADC_DESIRED_SIZE, -15);
|
|
reg |= AR_PHY_PAPRD_TRAINER_CNTL3_BBTXMIX_DISABLE;
|
|
AR_WRITE(sc, AR_PHY_PAPRD_TRAINER_CNTL3, reg);
|
|
|
|
reg = AR_READ(sc, AR_PHY_PAPRD_TRAINER_CNTL4);
|
|
reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL4_SAFETY_DELTA, 0);
|
|
reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL4_MIN_CORR, 400);
|
|
reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL4_NUM_TRAIN_SAMPLES, 100);
|
|
AR_WRITE(sc, AR_PHY_PAPRD_TRAINER_CNTL4, reg);
|
|
|
|
for (i = 0; i < __arraycount(scaling); i++) {
|
|
reg = AR_READ(sc, AR_PHY_PAPRD_PRE_POST_SCALE_B0(i));
|
|
reg = RW(reg, AR_PHY_PAPRD_PRE_POST_SCALING, scaling[i]);
|
|
AR_WRITE(sc, AR_PHY_PAPRD_PRE_POST_SCALE_B0(i), reg);
|
|
}
|
|
|
|
/* Save Tx gain table. */
|
|
for (i = 0; i < AR9003_TX_GAIN_TABLE_SIZE; i++)
|
|
sc->sc_txgain[i] = AR_READ(sc, AR_PHY_TXGAIN_TABLE(i));
|
|
|
|
/* Set Tx power of training signal (use setting for MCS0). */
|
|
sc->sc_trainpow = MS(AR_READ(sc, AR_PHY_PWRTX_RATE5),
|
|
AR_PHY_PWRTX_RATE5_POWERTXHT20_0) - 4;
|
|
|
|
/*
|
|
* Start PA predistortion calibration state machine.
|
|
*/
|
|
/* Find first available Tx chain. */
|
|
sc->sc_paprd_curchain = 0;
|
|
while (!(sc->sc_txchainmask & (1 << sc->sc_paprd_curchain)))
|
|
sc->sc_paprd_curchain++;
|
|
|
|
/* Make sure training done bit is clear. */
|
|
AR_CLRBITS(sc, AR_PHY_PAPRD_TRAINER_STAT1,
|
|
AR_PHY_PAPRD_TRAINER_STAT1_TRAIN_DONE);
|
|
AR_WRITE_BARRIER(sc);
|
|
|
|
/* Transmit training signal. */
|
|
ar9003_paprd_tx_tone(sc);
|
|
}
|
|
#endif /* notused */
|
|
|
|
Static int
|
|
ar9003_get_desired_txgain(struct athn_softc *sc, int chain, int pow)
|
|
{
|
|
int32_t scale, atemp, avolt, tempcal, voltcal, temp, volt;
|
|
int32_t tempcorr, voltcorr;
|
|
uint32_t reg;
|
|
int8_t delta;
|
|
|
|
scale = MS(AR_READ(sc, AR_PHY_TPC_12),
|
|
AR_PHY_TPC_12_DESIRED_SCALE_HT40_5);
|
|
|
|
reg = AR_READ(sc, AR_PHY_TPC_19);
|
|
atemp = MS(reg, AR_PHY_TPC_19_ALPHA_THERM);
|
|
avolt = MS(reg, AR_PHY_TPC_19_ALPHA_VOLT);
|
|
|
|
reg = AR_READ(sc, AR_PHY_TPC_18);
|
|
tempcal = MS(reg, AR_PHY_TPC_18_THERM_CAL);
|
|
voltcal = MS(reg, AR_PHY_TPC_18_VOLT_CAL);
|
|
|
|
reg = AR_READ(sc, AR_PHY_BB_THERM_ADC_4);
|
|
temp = MS(reg, AR_PHY_BB_THERM_ADC_4_LATEST_THERM);
|
|
volt = MS(reg, AR_PHY_BB_THERM_ADC_4_LATEST_VOLT);
|
|
|
|
delta = (int8_t)MS(AR_READ(sc, AR_PHY_TPC_11_B(chain)),
|
|
AR_PHY_TPC_11_OLPC_GAIN_DELTA);
|
|
|
|
/* Compute temperature and voltage correction. */
|
|
tempcorr = (atemp * (temp - tempcal) + 128) / 256;
|
|
voltcorr = (avolt * (volt - voltcal) + 64) / 128;
|
|
|
|
/* Compute desired Tx gain. */
|
|
return pow - delta - tempcorr - voltcorr + scale;
|
|
}
|
|
|
|
Static void
|
|
ar9003_force_txgain(struct athn_softc *sc, uint32_t txgain)
|
|
{
|
|
uint32_t reg;
|
|
|
|
reg = AR_READ(sc, AR_PHY_TX_FORCED_GAIN);
|
|
reg = RW(reg, AR_PHY_TX_FORCED_GAIN_TXBB1DBGAIN,
|
|
MS(txgain, AR_PHY_TXGAIN_TXBB1DBGAIN));
|
|
reg = RW(reg, AR_PHY_TX_FORCED_GAIN_TXBB6DBGAIN,
|
|
MS(txgain, AR_PHY_TXGAIN_TXBB6DBGAIN));
|
|
reg = RW(reg, AR_PHY_TX_FORCED_GAIN_TXMXRGAIN,
|
|
MS(txgain, AR_PHY_TXGAIN_TXMXRGAIN));
|
|
reg = RW(reg, AR_PHY_TX_FORCED_GAIN_PADRVGNA,
|
|
MS(txgain, AR_PHY_TXGAIN_PADRVGNA));
|
|
reg = RW(reg, AR_PHY_TX_FORCED_GAIN_PADRVGNB,
|
|
MS(txgain, AR_PHY_TXGAIN_PADRVGNB));
|
|
reg = RW(reg, AR_PHY_TX_FORCED_GAIN_PADRVGNC,
|
|
MS(txgain, AR_PHY_TXGAIN_PADRVGNC));
|
|
reg = RW(reg, AR_PHY_TX_FORCED_GAIN_PADRVGND,
|
|
MS(txgain, AR_PHY_TXGAIN_PADRVGND));
|
|
reg &= ~AR_PHY_TX_FORCED_GAIN_ENABLE_PAL;
|
|
reg &= ~AR_PHY_TX_FORCED_GAIN_FORCE_TX_GAIN;
|
|
AR_WRITE(sc, AR_PHY_TX_FORCED_GAIN, reg);
|
|
|
|
reg = AR_READ(sc, AR_PHY_TPC_1);
|
|
reg = RW(reg, AR_PHY_TPC_1_FORCED_DAC_GAIN, 0);
|
|
reg &= ~AR_PHY_TPC_1_FORCE_DAC_GAIN;
|
|
AR_WRITE(sc, AR_PHY_TPC_1, reg);
|
|
AR_WRITE_BARRIER(sc);
|
|
}
|
|
|
|
Static void
|
|
ar9003_set_training_gain(struct athn_softc *sc, int chain)
|
|
{
|
|
size_t i;
|
|
int gain;
|
|
|
|
/*
|
|
* Get desired gain for training signal power (take into account
|
|
* current temperature/voltage).
|
|
*/
|
|
gain = ar9003_get_desired_txgain(sc, chain, sc->sc_trainpow);
|
|
/* Find entry in table. */
|
|
for (i = 0; i < AR9003_TX_GAIN_TABLE_SIZE - 1; i++)
|
|
if ((int)MS(sc->sc_txgain[i], AR_PHY_TXGAIN_INDEX) >= gain)
|
|
break;
|
|
ar9003_force_txgain(sc, sc->sc_txgain[i]);
|
|
}
|
|
|
|
Static int
|
|
ar9003_paprd_tx_tone(struct athn_softc *sc)
|
|
{
|
|
#define TONE_LEN 1800
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ieee80211_frame *wh;
|
|
struct ieee80211_node *ni;
|
|
struct mbuf *m;
|
|
int error;
|
|
|
|
/* Build a Null (no data) frame of TONE_LEN bytes. */
|
|
m = MCLGETI(NULL, M_DONTWAIT, NULL, TONE_LEN);
|
|
if (m == NULL)
|
|
return ENOBUFS;
|
|
memset(mtod(m, void *), 0, TONE_LEN);
|
|
wh = mtod(m, struct ieee80211_frame *);
|
|
wh->i_fc[0] = IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA;
|
|
wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
|
|
*(uint16_t *)wh->i_dur = htole16(10); /* XXX */
|
|
IEEE80211_ADDR_COPY(wh->i_addr1, ic->ic_myaddr);
|
|
IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
|
|
IEEE80211_ADDR_COPY(wh->i_addr3, ic->ic_myaddr);
|
|
m->m_pkthdr.len = m->m_len = TONE_LEN;
|
|
|
|
/* Set gain of training signal. */
|
|
ar9003_set_training_gain(sc, sc->sc_paprd_curchain);
|
|
|
|
/* Transmit training signal. */
|
|
ni = ieee80211_ref_node(ic->ic_bss);
|
|
if ((error = ar9003_tx(sc, m, ni, ATHN_TXFLAG_PAPRD)) != 0)
|
|
ieee80211_free_node(ni);
|
|
return error;
|
|
#undef TONE_LEN
|
|
}
|
|
|
|
static __inline int
|
|
get_scale(int val)
|
|
{
|
|
int log = 0;
|
|
|
|
/* Find the log base 2 (position of highest bit set). */
|
|
while (val >>= 1)
|
|
log++;
|
|
|
|
return (log > 10) ? log - 10 : 0;
|
|
}
|
|
|
|
/*
|
|
* Compute predistortion function to linearize power amplifier output based
|
|
* on feedback from training signal.
|
|
*/
|
|
Static int
|
|
ar9003_compute_predistortion(struct athn_softc *sc, const uint32_t *lo,
|
|
const uint32_t *hi)
|
|
{
|
|
#define NBINS 23
|
|
int chain = sc->sc_paprd_curchain;
|
|
int x[NBINS + 1], y[NBINS + 1], t[NBINS + 1];
|
|
int b1[NBINS + 1], b2[NBINS + 1], xtilde[NBINS + 1];
|
|
int nsamples, txsum, rxsum, rosum, maxidx;
|
|
int order, order5x, order5xrem, order3x, order3xrem, y5, y3;
|
|
int icept, G, I, L, M, angle, xnonlin, y2, y4, sumy2, sumy4;
|
|
int alpha, beta, scale, Qalpha, Qbeta, Qscale, Qx, Qb1, Qb2;
|
|
int tavg, ttilde, maxb1abs, maxb2abs, maxxtildeabs, in;
|
|
int tmp, i;
|
|
|
|
/* Set values at origin. */
|
|
x[0] = y[0] = t[0] = 0;
|
|
|
|
#define SCALE 32
|
|
maxidx = 0;
|
|
for (i = 0; i < NBINS; i++) {
|
|
nsamples = lo[i] & 0xffff;
|
|
/* Skip bins that contain 16 or less samples. */
|
|
if (nsamples <= 16) {
|
|
x[i + 1] = y[i + 1] = t[i + 1] = 0;
|
|
continue;
|
|
}
|
|
txsum = (hi[i] & 0x7ff) << 16 | lo[i] >> 16;
|
|
rxsum = (lo[i + NBINS] & 0xffff) << 5 |
|
|
((hi[i] >> 11) & 0x1f);
|
|
rosum = (hi[i + NBINS] & 0x7ff) << 16 | hi[i + NBINS] >> 16;
|
|
/* Sign-extend 27-bit value. */
|
|
rosum = (rosum ^ 0x4000000) - 0x4000000;
|
|
|
|
txsum *= SCALE;
|
|
rxsum *= SCALE;
|
|
rosum *= SCALE;
|
|
|
|
x[i + 1] = ((txsum + nsamples) / nsamples + SCALE) / SCALE;
|
|
y[i + 1] = ((rxsum + nsamples) / nsamples + SCALE) / SCALE +
|
|
SCALE * maxidx + SCALE / 2;
|
|
t[i + 1] = (rosum + nsamples) / nsamples;
|
|
maxidx++;
|
|
}
|
|
#undef SCALE
|
|
|
|
#define SCALE_LOG 8
|
|
#define SCALE (1 << SCALE_LOG)
|
|
if (x[6] == x[3])
|
|
return 1; /* Prevent division by 0. */
|
|
G = ((y[6] - y[3]) * SCALE + (x[6] - x[3])) / (x[6] - x[3]);
|
|
if (G == 0)
|
|
return 1; /* Prevent division by 0. */
|
|
|
|
sc->sc_gain1[chain] = G; /* Save low signal gain. */
|
|
|
|
/* Find interception point. */
|
|
icept = (G * (x[0] - x[3]) + SCALE) / SCALE + y[3];
|
|
for (i = 0; i <= 3; i++) {
|
|
y[i] = i * 32;
|
|
x[i] = (y[i] * SCALE + G) / G;
|
|
}
|
|
for (i = 4; i <= maxidx; i++)
|
|
y[i] -= icept;
|
|
|
|
xnonlin = x[maxidx] - (y[maxidx] * SCALE + G) / G;
|
|
order = (xnonlin + y[maxidx]) / y[maxidx];
|
|
if (order == 0)
|
|
M = 10;
|
|
else if (order == 1)
|
|
M = 9;
|
|
else
|
|
M = 8;
|
|
|
|
I = (maxidx >= 16) ? 7 : maxidx / 2;
|
|
L = maxidx - I;
|
|
|
|
sumy2 = sumy4 = y2 = y4 = 0;
|
|
for (i = 0; i <= L; i++) {
|
|
if (y[i + I] == 0)
|
|
return 1; /* Prevent division by 0. */
|
|
|
|
xnonlin = x[i + I] - ((y[i + I] * SCALE) + G) / G;
|
|
xtilde[i] = ((xnonlin << M) + y[i + I]) / y[i + I];
|
|
xtilde[i] = ((xtilde[i] << M) + y[i + I]) / y[i + I];
|
|
xtilde[i] = ((xtilde[i] << M) + y[i + I]) / y[i + I];
|
|
|
|
y2 = (y[i + I] * y[i + I] + SCALE * SCALE) / (SCALE * SCALE);
|
|
|
|
sumy2 += y2;
|
|
sumy4 += y2 * y2;
|
|
|
|
b1[i] = y2 * (L + 1);
|
|
b2[i] = y2;
|
|
}
|
|
for (i = 0; i <= L; i++) {
|
|
b1[i] -= sumy2;
|
|
b2[i] = sumy4 - sumy2 * b2[i];
|
|
}
|
|
|
|
maxxtildeabs = maxb1abs = maxb2abs = 0;
|
|
for (i = 0; i <= L; i++) {
|
|
tmp = abs(xtilde[i]);
|
|
if (tmp > maxxtildeabs)
|
|
maxxtildeabs = tmp;
|
|
|
|
tmp = abs(b1[i]);
|
|
if (tmp > maxb1abs)
|
|
maxb1abs = tmp;
|
|
|
|
tmp = abs(b2[i]);
|
|
if (tmp > maxb2abs)
|
|
maxb2abs = tmp;
|
|
}
|
|
Qx = get_scale(maxxtildeabs);
|
|
Qb1 = get_scale(maxb1abs);
|
|
Qb2 = get_scale(maxb2abs);
|
|
for (i = 0; i <= L; i++) {
|
|
xtilde[i] /= 1 << Qx;
|
|
b1[i] /= 1 << Qb1;
|
|
b2[i] /= 1 << Qb2;
|
|
}
|
|
|
|
alpha = beta = 0;
|
|
for (i = 0; i <= L; i++) {
|
|
alpha += b1[i] * xtilde[i];
|
|
beta += b2[i] * xtilde[i];
|
|
}
|
|
|
|
scale = ((y4 / SCALE_LOG) * (L + 1) -
|
|
(y2 / SCALE_LOG) * sumy2) * SCALE_LOG;
|
|
|
|
Qscale = get_scale(abs(scale));
|
|
scale /= 1 << Qscale;
|
|
Qalpha = get_scale(abs(alpha));
|
|
alpha /= 1 << Qalpha;
|
|
Qbeta = get_scale(abs(beta));
|
|
beta /= 1 << Qbeta;
|
|
|
|
order = 3 * M - Qx - Qb1 - Qbeta + 10 + Qscale;
|
|
order5x = 1 << (order / 5);
|
|
order5xrem = 1 << (order % 5);
|
|
|
|
order = 3 * M - Qx - Qb2 - Qalpha + 10 + Qscale;
|
|
order3x = 1 << (order / 3);
|
|
order3xrem = 1 << (order % 3);
|
|
|
|
for (i = 0; i < AR9003_PAPRD_MEM_TAB_SIZE; i++) {
|
|
tmp = i * 32;
|
|
|
|
/* Fifth order. */
|
|
y5 = ((beta * tmp) / 64) / order5x;
|
|
y5 = (y5 * tmp) / order5x;
|
|
y5 = (y5 * tmp) / order5x;
|
|
y5 = (y5 * tmp) / order5x;
|
|
y5 = (y5 * tmp) / order5x;
|
|
y5 = y5 / order5xrem;
|
|
|
|
/* Third oder. */
|
|
y3 = (alpha * tmp) / order3x;
|
|
y3 = (y3 * tmp) / order3x;
|
|
y3 = (y3 * tmp) / order3x;
|
|
y3 = y3 / order3xrem;
|
|
|
|
in = y5 + y3 + (SCALE * tmp) / G;
|
|
if (i >= 2 && in < sc->sc_pa_in[chain][i - 1]) {
|
|
in = sc->sc_pa_in[chain][i - 1] +
|
|
(sc->sc_pa_in[chain][i - 1] -
|
|
sc->sc_pa_in[chain][i - 2]);
|
|
}
|
|
if (in > 1400)
|
|
in = 1400;
|
|
sc->sc_pa_in[chain][i] = in;
|
|
}
|
|
|
|
/* Compute average theta of first 5 bins (linear region). */
|
|
tavg = 0;
|
|
for (i = 1; i <= 5; i++)
|
|
tavg += t[i];
|
|
tavg /= 5;
|
|
for (i = 1; i <= 5; i++)
|
|
t[i] = 0;
|
|
for (i = 6; i <= maxidx; i++)
|
|
t[i] -= tavg;
|
|
|
|
alpha = beta = 0;
|
|
for (i = 0; i <= L; i++) {
|
|
ttilde = ((t[i + I] << M) + y[i + I]) / y[i + I];
|
|
ttilde = ((ttilde << M) + y[i + I]) / y[i + I];
|
|
ttilde = ((ttilde << M) + y[i + I]) / y[i + I];
|
|
|
|
alpha += b2[i] * ttilde;
|
|
beta += b1[i] * ttilde;
|
|
}
|
|
|
|
Qalpha = get_scale(abs(alpha));
|
|
alpha /= 1 << Qalpha;
|
|
Qbeta = get_scale(abs(beta));
|
|
beta /= 1 << Qbeta;
|
|
|
|
order = 3 * M - Qx - Qb1 - Qbeta + 10 + Qscale + 5;
|
|
order5x = 1 << (order / 5);
|
|
order5xrem = 1 << (order % 5);
|
|
|
|
order = 3 * M - Qx - Qb2 - Qalpha + 10 + Qscale + 5;
|
|
order3x = 1 << (order / 3);
|
|
order3xrem = 1 << (order % 3);
|
|
|
|
for (i = 0; i <= 4; i++)
|
|
sc->sc_angle[chain][i] = 0; /* Linear at that range. */
|
|
for (i = 5; i < AR9003_PAPRD_MEM_TAB_SIZE; i++) {
|
|
tmp = i * 32;
|
|
|
|
/* Fifth order. */
|
|
if (beta > 0)
|
|
y5 = (((beta * tmp - 64) / 64) - order5x) / order5x;
|
|
else
|
|
y5 = (((beta * tmp - 64) / 64) + order5x) / order5x;
|
|
y5 = (y5 * tmp) / order5x;
|
|
y5 = (y5 * tmp) / order5x;
|
|
y5 = (y5 * tmp) / order5x;
|
|
y5 = (y5 * tmp) / order5x;
|
|
y5 = y5 / order5xrem;
|
|
|
|
/* Third oder. */
|
|
if (beta > 0) /* XXX alpha? */
|
|
y3 = (alpha * tmp - order3x) / order3x;
|
|
else
|
|
y3 = (alpha * tmp + order3x) / order3x;
|
|
y3 = (y3 * tmp) / order3x;
|
|
y3 = (y3 * tmp) / order3x;
|
|
y3 = y3 / order3xrem;
|
|
|
|
angle = y5 + y3;
|
|
if (angle < -150)
|
|
angle = -150;
|
|
else if (angle > 150)
|
|
angle = 150;
|
|
sc->sc_angle[chain][i] = angle;
|
|
}
|
|
/* Angle for entry 4 is derived from angle for entry 5. */
|
|
sc->sc_angle[chain][4] = (sc->sc_angle[chain][5] + 2) / 2;
|
|
|
|
return 0;
|
|
#undef SCALE
|
|
#undef SCALE_LOG
|
|
#undef NBINS
|
|
}
|
|
|
|
Static void
|
|
ar9003_enable_predistorter(struct athn_softc *sc, int chain)
|
|
{
|
|
uint32_t reg;
|
|
int i;
|
|
|
|
/* Write digital predistorter lookup table. */
|
|
for (i = 0; i < AR9003_PAPRD_MEM_TAB_SIZE; i++) {
|
|
AR_WRITE(sc, AR_PHY_PAPRD_MEM_TAB_B(chain, i),
|
|
SM(AR_PHY_PAPRD_PA_IN, sc->sc_pa_in[chain][i]) |
|
|
SM(AR_PHY_PAPRD_ANGLE, sc->sc_angle[chain][i]));
|
|
}
|
|
|
|
reg = AR_READ(sc, AR_PHY_PA_GAIN123_B(chain));
|
|
reg = RW(reg, AR_PHY_PA_GAIN123_PA_GAIN1, sc->sc_gain1[chain]);
|
|
AR_WRITE(sc, AR_PHY_PA_GAIN123_B(chain), reg);
|
|
|
|
/* Indicate Tx power used for calibration (training signal). */
|
|
reg = AR_READ(sc, AR_PHY_PAPRD_CTRL1_B(chain));
|
|
reg = RW(reg, AR_PHY_PAPRD_CTRL1_POWER_AT_AM2AM_CAL, sc->sc_trainpow);
|
|
AR_WRITE(sc, AR_PHY_PAPRD_CTRL1_B(chain), reg);
|
|
|
|
/* Enable digital predistorter for this chain. */
|
|
AR_SETBITS(sc, AR_PHY_PAPRD_CTRL0_B(chain),
|
|
AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE);
|
|
AR_WRITE_BARRIER(sc);
|
|
}
|
|
|
|
Static void
|
|
ar9003_paprd_enable(struct athn_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
/* Enable digital predistorters for all Tx chains. */
|
|
for (i = 0; i < AR9003_MAX_CHAINS; i++)
|
|
if (sc->sc_txchainmask & (1 << i))
|
|
ar9003_enable_predistorter(sc, i);
|
|
}
|
|
|
|
/*
|
|
* This function is called when our training signal has been sent.
|
|
*/
|
|
Static void
|
|
ar9003_paprd_tx_tone_done(struct athn_softc *sc)
|
|
{
|
|
uint32_t lo[48], hi[48];
|
|
size_t i;
|
|
|
|
/* Make sure training is complete. */
|
|
if (!(AR_READ(sc, AR_PHY_PAPRD_TRAINER_STAT1) &
|
|
AR_PHY_PAPRD_TRAINER_STAT1_TRAIN_DONE))
|
|
return;
|
|
|
|
/* Read feedback from training signal. */
|
|
AR_CLRBITS(sc, AR_PHY_CHAN_INFO_MEMORY, AR_PHY_CHAN_INFO_TAB_S2_READ);
|
|
for (i = 0; i < __arraycount(lo); i++)
|
|
lo[i] = AR_READ(sc, AR_PHY_CHAN_INFO_TAB(0, i));
|
|
AR_SETBITS(sc, AR_PHY_CHAN_INFO_MEMORY, AR_PHY_CHAN_INFO_TAB_S2_READ);
|
|
for (i = 0; i < __arraycount(hi); i++)
|
|
hi[i] = AR_READ(sc, AR_PHY_CHAN_INFO_TAB(0, i));
|
|
|
|
AR_CLRBITS(sc, AR_PHY_PAPRD_TRAINER_STAT1,
|
|
AR_PHY_PAPRD_TRAINER_STAT1_TRAIN_DONE);
|
|
|
|
/* Compute predistortion function based on this feedback. */
|
|
if (ar9003_compute_predistortion(sc, lo, hi) != 0)
|
|
return;
|
|
|
|
/* Get next available Tx chain. */
|
|
while (++sc->sc_paprd_curchain < AR9003_MAX_CHAINS)
|
|
if (sc->sc_txchainmask & (1 << sc->sc_paprd_curchain))
|
|
break;
|
|
if (sc->sc_paprd_curchain == AR9003_MAX_CHAINS) {
|
|
/* All Tx chains measured; enable digital predistortion. */
|
|
ar9003_paprd_enable(sc);
|
|
}
|
|
else /* Measure next Tx chain. */
|
|
ar9003_paprd_tx_tone(sc);
|
|
}
|
|
|
|
PUBLIC void
|
|
ar9003_write_txpower(struct athn_softc *sc, int16_t power[ATHN_POWER_COUNT])
|
|
{
|
|
|
|
/* Make sure forced gain is disabled. */
|
|
AR_WRITE(sc, AR_PHY_TX_FORCED_GAIN, 0);
|
|
|
|
AR_WRITE(sc, AR_PHY_PWRTX_RATE1,
|
|
(power[ATHN_POWER_OFDM18 ] & 0x3f) << 24 |
|
|
(power[ATHN_POWER_OFDM12 ] & 0x3f) << 16 |
|
|
(power[ATHN_POWER_OFDM9 ] & 0x3f) << 8 |
|
|
(power[ATHN_POWER_OFDM6 ] & 0x3f));
|
|
AR_WRITE(sc, AR_PHY_PWRTX_RATE2,
|
|
(power[ATHN_POWER_OFDM54 ] & 0x3f) << 24 |
|
|
(power[ATHN_POWER_OFDM48 ] & 0x3f) << 16 |
|
|
(power[ATHN_POWER_OFDM36 ] & 0x3f) << 8 |
|
|
(power[ATHN_POWER_OFDM24 ] & 0x3f));
|
|
AR_WRITE(sc, AR_PHY_PWRTX_RATE3,
|
|
(power[ATHN_POWER_CCK2_SP ] & 0x3f) << 24 |
|
|
(power[ATHN_POWER_CCK2_LP ] & 0x3f) << 16 |
|
|
/* NB: No eXtended Range for AR9003. */
|
|
(power[ATHN_POWER_CCK1_LP ] & 0x3f));
|
|
AR_WRITE(sc, AR_PHY_PWRTX_RATE4,
|
|
(power[ATHN_POWER_CCK11_SP] & 0x3f) << 24 |
|
|
(power[ATHN_POWER_CCK11_LP] & 0x3f) << 16 |
|
|
(power[ATHN_POWER_CCK55_SP] & 0x3f) << 8 |
|
|
(power[ATHN_POWER_CCK55_LP] & 0x3f));
|
|
/*
|
|
* NB: AR_PHY_PWRTX_RATE5 needs to be written even if HT is disabled
|
|
* because it is read by PA predistortion functions.
|
|
*/
|
|
AR_WRITE(sc, AR_PHY_PWRTX_RATE5,
|
|
(power[ATHN_POWER_HT20( 5)] & 0x3f) << 24 |
|
|
(power[ATHN_POWER_HT20( 4)] & 0x3f) << 16 |
|
|
(power[ATHN_POWER_HT20( 1)] & 0x3f) << 8 |
|
|
(power[ATHN_POWER_HT20( 0)] & 0x3f));
|
|
#ifndef IEEE80211_NO_HT
|
|
AR_WRITE(sc, AR_PHY_PWRTX_RATE6,
|
|
(power[ATHN_POWER_HT20(13)] & 0x3f) << 24 |
|
|
(power[ATHN_POWER_HT20(12)] & 0x3f) << 16 |
|
|
(power[ATHN_POWER_HT20( 7)] & 0x3f) << 8 |
|
|
(power[ATHN_POWER_HT20( 6)] & 0x3f));
|
|
AR_WRITE(sc, AR_PHY_PWRTX_RATE7,
|
|
(power[ATHN_POWER_HT40( 5)] & 0x3f) << 24 |
|
|
(power[ATHN_POWER_HT40( 4)] & 0x3f) << 16 |
|
|
(power[ATHN_POWER_HT40( 1)] & 0x3f) << 8 |
|
|
(power[ATHN_POWER_HT40( 0)] & 0x3f));
|
|
AR_WRITE(sc, AR_PHY_PWRTX_RATE8,
|
|
(power[ATHN_POWER_HT40(13)] & 0x3f) << 24 |
|
|
(power[ATHN_POWER_HT40(12)] & 0x3f) << 16 |
|
|
(power[ATHN_POWER_HT40( 7)] & 0x3f) << 8 |
|
|
(power[ATHN_POWER_HT40( 6)] & 0x3f));
|
|
AR_WRITE(sc, AR_PHY_PWRTX_RATE10,
|
|
(power[ATHN_POWER_HT20(21)] & 0x3f) << 24 |
|
|
(power[ATHN_POWER_HT20(20)] & 0x3f) << 16 |
|
|
(power[ATHN_POWER_HT20(15)] & 0x3f) << 8 |
|
|
(power[ATHN_POWER_HT20(14)] & 0x3f));
|
|
AR_WRITE(sc, AR_PHY_PWRTX_RATE11,
|
|
(power[ATHN_POWER_HT40(23)] & 0x3f) << 24 |
|
|
(power[ATHN_POWER_HT40(22)] & 0x3f) << 16 |
|
|
(power[ATHN_POWER_HT20(23)] & 0x3f) << 8 |
|
|
(power[ATHN_POWER_HT20(22)] & 0x3f));
|
|
AR_WRITE(sc, AR_PHY_PWRTX_RATE12,
|
|
(power[ATHN_POWER_HT40(21)] & 0x3f) << 24 |
|
|
(power[ATHN_POWER_HT40(20)] & 0x3f) << 16 |
|
|
(power[ATHN_POWER_HT40(15)] & 0x3f) << 8 |
|
|
(power[ATHN_POWER_HT40(14)] & 0x3f));
|
|
#endif
|
|
AR_WRITE_BARRIER(sc);
|
|
}
|
|
|
|
Static void
|
|
ar9003_reset_rx_gain(struct athn_softc *sc, struct ieee80211_channel *c)
|
|
{
|
|
#define X(x) ((uint32_t)(x) << 2)
|
|
const struct athn_gain *prog = sc->sc_rx_gain;
|
|
const uint32_t *pvals;
|
|
int i;
|
|
|
|
if (IEEE80211_IS_CHAN_2GHZ(c))
|
|
pvals = prog->vals_2g;
|
|
else
|
|
pvals = prog->vals_5g;
|
|
for (i = 0; i < prog->nregs; i++)
|
|
AR_WRITE(sc, X(prog->regs[i]), pvals[i]);
|
|
AR_WRITE_BARRIER(sc);
|
|
#undef X
|
|
}
|
|
|
|
Static void
|
|
ar9003_reset_tx_gain(struct athn_softc *sc, struct ieee80211_channel *c)
|
|
{
|
|
#define X(x) ((uint32_t)(x) << 2)
|
|
const struct athn_gain *prog = sc->sc_tx_gain;
|
|
const uint32_t *pvals;
|
|
int i;
|
|
|
|
if (IEEE80211_IS_CHAN_2GHZ(c))
|
|
pvals = prog->vals_2g;
|
|
else
|
|
pvals = prog->vals_5g;
|
|
for (i = 0; i < prog->nregs; i++)
|
|
AR_WRITE(sc, X(prog->regs[i]), pvals[i]);
|
|
AR_WRITE_BARRIER(sc);
|
|
#undef X
|
|
}
|
|
|
|
Static void
|
|
ar9003_hw_init(struct athn_softc *sc, struct ieee80211_channel *c,
|
|
struct ieee80211_channel *extc)
|
|
{
|
|
#define X(x) ((uint32_t)(x) << 2)
|
|
struct athn_ops *ops = &sc->sc_ops;
|
|
const struct athn_ini *ini = sc->sc_ini;
|
|
const uint32_t *pvals;
|
|
uint32_t reg;
|
|
int i;
|
|
|
|
/*
|
|
* The common init values include the pre and core phases for the
|
|
* SoC, MAC, BB and Radio subsystems.
|
|
*/
|
|
DPRINTFN(DBG_INIT, sc, "writing pre and core init vals\n");
|
|
for (i = 0; i < ini->ncmregs; i++) {
|
|
AR_WRITE(sc, X(ini->cmregs[i]), ini->cmvals[i]);
|
|
if (AR_IS_ANALOG_REG(X(ini->cmregs[i])))
|
|
DELAY(100);
|
|
if ((i & 0x1f) == 0)
|
|
DELAY(1);
|
|
}
|
|
|
|
/*
|
|
* The modal init values include the post phase for the SoC, MAC,
|
|
* BB and Radio subsystems.
|
|
*/
|
|
#ifndef IEEE80211_NO_HT
|
|
if (extc != NULL) {
|
|
if (IEEE80211_IS_CHAN_2GHZ(c))
|
|
pvals = ini->vals_2g40;
|
|
else
|
|
pvals = ini->vals_5g40;
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
if (IEEE80211_IS_CHAN_2GHZ(c))
|
|
pvals = ini->vals_2g20;
|
|
else
|
|
pvals = ini->vals_5g20;
|
|
}
|
|
DPRINTFN(DBG_INIT, sc, "writing post init vals\n");
|
|
for (i = 0; i < ini->nregs; i++) {
|
|
AR_WRITE(sc, X(ini->regs[i]), pvals[i]);
|
|
if (AR_IS_ANALOG_REG(X(ini->regs[i])))
|
|
DELAY(100);
|
|
if ((i & 0x1f) == 0)
|
|
DELAY(1);
|
|
}
|
|
|
|
if (sc->sc_rx_gain != NULL)
|
|
ar9003_reset_rx_gain(sc, c);
|
|
if (sc->sc_tx_gain != NULL)
|
|
ar9003_reset_tx_gain(sc, c);
|
|
|
|
if (IEEE80211_IS_CHAN_5GHZ(c) &&
|
|
(sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)) {
|
|
/* Update modal values for fast PLL clock. */
|
|
#ifndef IEEE80211_NO_HT
|
|
if (extc != NULL)
|
|
pvals = ini->fastvals_5g40;
|
|
else
|
|
#endif
|
|
pvals = ini->fastvals_5g20;
|
|
DPRINTFN(DBG_INIT, sc, "writing fast pll clock init vals\n");
|
|
for (i = 0; i < ini->nfastregs; i++) {
|
|
AR_WRITE(sc, X(ini->fastregs[i]), pvals[i]);
|
|
if (AR_IS_ANALOG_REG(X(ini->fastregs[i])))
|
|
DELAY(100);
|
|
if ((i & 0x1f) == 0)
|
|
DELAY(1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set the RX_ABORT and RX_DIS bits to prevent frames with corrupted
|
|
* descriptor status.
|
|
*/
|
|
AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
|
|
|
|
reg = AR_READ(sc, AR_PCU_MISC_MODE2);
|
|
reg &= ~AR_PCU_MISC_MODE2_ADHOC_MCAST_KEYID_ENABLE;
|
|
reg |= AR_PCU_MISC_MODE2_AGG_WEP_ENABLE_FIX;
|
|
reg |= AR_PCU_MISC_MODE2_ENABLE_AGGWEP;
|
|
AR_WRITE(sc, AR_PCU_MISC_MODE2, reg);
|
|
AR_WRITE_BARRIER(sc);
|
|
|
|
ar9003_set_phy(sc, c, extc);
|
|
ar9003_init_chains(sc);
|
|
|
|
ops->set_txpower(sc, c, extc);
|
|
#undef X
|
|
}
|
|
|
|
PUBLIC void
|
|
ar9003_get_lg_tpow(struct athn_softc *sc, struct ieee80211_channel *c,
|
|
uint8_t ctl, const uint8_t *fbins,
|
|
const struct ar_cal_target_power_leg *tgt, int nchans, uint8_t tpow[4])
|
|
{
|
|
uint8_t fbin;
|
|
int i, delta, lo, hi;
|
|
|
|
lo = hi = -1;
|
|
fbin = athn_chan2fbin(c);
|
|
for (i = 0; i < nchans; i++) {
|
|
delta = fbin - fbins[i];
|
|
/* Find the largest sample that is <= our frequency. */
|
|
if (delta >= 0 && (lo == -1 || delta < fbin - fbins[lo]))
|
|
lo = i;
|
|
/* Find the smallest sample that is >= our frequency. */
|
|
if (delta <= 0 && (hi == -1 || delta > fbin - fbins[hi]))
|
|
hi = i;
|
|
}
|
|
if (lo == -1)
|
|
lo = hi;
|
|
else if (hi == -1)
|
|
hi = lo;
|
|
/* Interpolate values. */
|
|
for (i = 0; i < 4; i++) {
|
|
tpow[i] = athn_interpolate(fbin,
|
|
fbins[lo], tgt[lo].tPow2x[i],
|
|
fbins[hi], tgt[hi].tPow2x[i]);
|
|
}
|
|
/* XXX Apply conformance test limit. */
|
|
}
|
|
|
|
PUBLIC void
|
|
ar9003_get_ht_tpow(struct athn_softc *sc, struct ieee80211_channel *c,
|
|
uint8_t ctl, const uint8_t *fbins,
|
|
const struct ar_cal_target_power_ht *tgt, int nchans, uint8_t tpow[14])
|
|
{
|
|
uint8_t fbin;
|
|
int i, delta, lo, hi;
|
|
|
|
lo = hi = -1;
|
|
fbin = athn_chan2fbin(c);
|
|
for (i = 0; i < nchans; i++) {
|
|
delta = fbin - fbins[i];
|
|
/* Find the largest sample that is <= our frequency. */
|
|
if (delta >= 0 && (lo == -1 || delta < fbin - fbins[lo]))
|
|
lo = i;
|
|
/* Find the smallest sample that is >= our frequency. */
|
|
if (delta <= 0 && (hi == -1 || delta > fbin - fbins[hi]))
|
|
hi = i;
|
|
}
|
|
if (lo == -1)
|
|
lo = hi;
|
|
else if (hi == -1)
|
|
hi = lo;
|
|
/* Interpolate values. */
|
|
for (i = 0; i < 14; i++) {
|
|
tpow[i] = athn_interpolate(fbin,
|
|
fbins[lo], tgt[lo].tPow2x[i],
|
|
fbins[hi], tgt[hi].tPow2x[i]);
|
|
}
|
|
/* XXX Apply conformance test limit. */
|
|
}
|
|
|
|
/*
|
|
* Adaptive noise immunity.
|
|
*/
|
|
Static void
|
|
ar9003_set_noise_immunity_level(struct athn_softc *sc, int level)
|
|
{
|
|
int high = level == 4;
|
|
uint32_t reg;
|
|
|
|
reg = AR_READ(sc, AR_PHY_DESIRED_SZ);
|
|
reg = RW(reg, AR_PHY_DESIRED_SZ_TOT_DES, high ? -62 : -55);
|
|
AR_WRITE(sc, AR_PHY_DESIRED_SZ, reg);
|
|
|
|
reg = AR_READ(sc, AR_PHY_AGC);
|
|
reg = RW(reg, AR_PHY_AGC_COARSE_LOW, high ? -70 : -64);
|
|
reg = RW(reg, AR_PHY_AGC_COARSE_HIGH, high ? -12 : -14);
|
|
AR_WRITE(sc, AR_PHY_AGC, reg);
|
|
|
|
reg = AR_READ(sc, AR_PHY_FIND_SIG);
|
|
reg = RW(reg, AR_PHY_FIND_SIG_FIRPWR, high ? -80 : -78);
|
|
AR_WRITE(sc, AR_PHY_FIND_SIG, reg);
|
|
AR_WRITE_BARRIER(sc);
|
|
}
|
|
|
|
Static void
|
|
ar9003_enable_ofdm_weak_signal(struct athn_softc *sc)
|
|
{
|
|
uint32_t reg;
|
|
|
|
reg = AR_READ(sc, AR_PHY_SFCORR_LOW);
|
|
reg = RW(reg, AR_PHY_SFCORR_LOW_M1_THRESH_LOW, 50);
|
|
reg = RW(reg, AR_PHY_SFCORR_LOW_M2_THRESH_LOW, 40);
|
|
reg = RW(reg, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, 48);
|
|
AR_WRITE(sc, AR_PHY_SFCORR_LOW, reg);
|
|
|
|
reg = AR_READ(sc, AR_PHY_SFCORR);
|
|
reg = RW(reg, AR_PHY_SFCORR_M1_THRESH, 77);
|
|
reg = RW(reg, AR_PHY_SFCORR_M2_THRESH, 64);
|
|
reg = RW(reg, AR_PHY_SFCORR_M2COUNT_THR, 16);
|
|
AR_WRITE(sc, AR_PHY_SFCORR, reg);
|
|
|
|
reg = AR_READ(sc, AR_PHY_SFCORR_EXT);
|
|
reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH_LOW, 50);
|
|
reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH_LOW, 40);
|
|
reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH, 77);
|
|
reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH, 64);
|
|
AR_WRITE(sc, AR_PHY_SFCORR_EXT, reg);
|
|
|
|
AR_SETBITS(sc, AR_PHY_SFCORR_LOW,
|
|
AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
|
|
AR_WRITE_BARRIER(sc);
|
|
}
|
|
|
|
Static void
|
|
ar9003_disable_ofdm_weak_signal(struct athn_softc *sc)
|
|
{
|
|
uint32_t reg;
|
|
|
|
reg = AR_READ(sc, AR_PHY_SFCORR_LOW);
|
|
reg = RW(reg, AR_PHY_SFCORR_LOW_M1_THRESH_LOW, 127);
|
|
reg = RW(reg, AR_PHY_SFCORR_LOW_M2_THRESH_LOW, 127);
|
|
reg = RW(reg, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, 63);
|
|
AR_WRITE(sc, AR_PHY_SFCORR_LOW, reg);
|
|
|
|
reg = AR_READ(sc, AR_PHY_SFCORR);
|
|
reg = RW(reg, AR_PHY_SFCORR_M1_THRESH, 127);
|
|
reg = RW(reg, AR_PHY_SFCORR_M2_THRESH, 127);
|
|
reg = RW(reg, AR_PHY_SFCORR_M2COUNT_THR, 31);
|
|
AR_WRITE(sc, AR_PHY_SFCORR, reg);
|
|
|
|
reg = AR_READ(sc, AR_PHY_SFCORR_EXT);
|
|
reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH_LOW, 127);
|
|
reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH_LOW, 127);
|
|
reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH, 127);
|
|
reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH, 127);
|
|
AR_WRITE(sc, AR_PHY_SFCORR_EXT, reg);
|
|
|
|
AR_CLRBITS(sc, AR_PHY_SFCORR_LOW,
|
|
AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
|
|
AR_WRITE_BARRIER(sc);
|
|
}
|
|
|
|
Static void
|
|
ar9003_set_cck_weak_signal(struct athn_softc *sc, int high)
|
|
{
|
|
uint32_t reg;
|
|
|
|
reg = AR_READ(sc, AR_PHY_CCK_DETECT);
|
|
reg = RW(reg, AR_PHY_CCK_DETECT_WEAK_SIG_THR_CCK, high ? 6 : 8);
|
|
AR_WRITE(sc, AR_PHY_CCK_DETECT, reg);
|
|
AR_WRITE_BARRIER(sc);
|
|
}
|
|
|
|
Static void
|
|
ar9003_set_firstep_level(struct athn_softc *sc, int level)
|
|
{
|
|
uint32_t reg;
|
|
|
|
reg = AR_READ(sc, AR_PHY_FIND_SIG);
|
|
reg = RW(reg, AR_PHY_FIND_SIG_FIRSTEP, level * 4);
|
|
AR_WRITE(sc, AR_PHY_FIND_SIG, reg);
|
|
AR_WRITE_BARRIER(sc);
|
|
}
|
|
|
|
Static void
|
|
ar9003_set_spur_immunity_level(struct athn_softc *sc, int level)
|
|
{
|
|
uint32_t reg;
|
|
|
|
reg = AR_READ(sc, AR_PHY_TIMING5);
|
|
reg = RW(reg, AR_PHY_TIMING5_CYCPWR_THR1, (level + 1) * 2);
|
|
AR_WRITE(sc, AR_PHY_TIMING5, reg);
|
|
AR_WRITE_BARRIER(sc);
|
|
}
|