1214 lines
29 KiB
C
1214 lines
29 KiB
C
/* $NetBSD: kern_resource.c,v 1.181 2018/05/13 14:45:23 christos Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 1982, 1986, 1991, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
* (c) UNIX System Laboratories, Inc.
|
|
* All or some portions of this file are derived from material licensed
|
|
* to the University of California by American Telephone and Telegraph
|
|
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
|
|
* the permission of UNIX System Laboratories, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)kern_resource.c 8.8 (Berkeley) 2/14/95
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.181 2018/05/13 14:45:23 christos Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/file.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/kmem.h>
|
|
#include <sys/namei.h>
|
|
#include <sys/pool.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/timevar.h>
|
|
#include <sys/kauth.h>
|
|
#include <sys/atomic.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/syscallargs.h>
|
|
#include <sys/atomic.h>
|
|
|
|
#include <uvm/uvm_extern.h>
|
|
|
|
/*
|
|
* Maximum process data and stack limits.
|
|
* They are variables so they are patchable.
|
|
*/
|
|
rlim_t maxdmap = MAXDSIZ;
|
|
rlim_t maxsmap = MAXSSIZ;
|
|
|
|
static pool_cache_t plimit_cache __read_mostly;
|
|
static pool_cache_t pstats_cache __read_mostly;
|
|
|
|
static kauth_listener_t resource_listener;
|
|
static struct sysctllog *proc_sysctllog;
|
|
|
|
static int donice(struct lwp *, struct proc *, int);
|
|
static void sysctl_proc_setup(void);
|
|
|
|
static int
|
|
resource_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
|
|
void *arg0, void *arg1, void *arg2, void *arg3)
|
|
{
|
|
struct proc *p;
|
|
int result;
|
|
|
|
result = KAUTH_RESULT_DEFER;
|
|
p = arg0;
|
|
|
|
switch (action) {
|
|
case KAUTH_PROCESS_NICE:
|
|
if (kauth_cred_geteuid(cred) != kauth_cred_geteuid(p->p_cred) &&
|
|
kauth_cred_getuid(cred) != kauth_cred_geteuid(p->p_cred)) {
|
|
break;
|
|
}
|
|
|
|
if ((u_long)arg1 >= p->p_nice)
|
|
result = KAUTH_RESULT_ALLOW;
|
|
|
|
break;
|
|
|
|
case KAUTH_PROCESS_RLIMIT: {
|
|
enum kauth_process_req req;
|
|
|
|
req = (enum kauth_process_req)(unsigned long)arg1;
|
|
|
|
switch (req) {
|
|
case KAUTH_REQ_PROCESS_RLIMIT_GET:
|
|
result = KAUTH_RESULT_ALLOW;
|
|
break;
|
|
|
|
case KAUTH_REQ_PROCESS_RLIMIT_SET: {
|
|
struct rlimit *new_rlimit;
|
|
u_long which;
|
|
|
|
if ((p != curlwp->l_proc) &&
|
|
(proc_uidmatch(cred, p->p_cred) != 0))
|
|
break;
|
|
|
|
new_rlimit = arg2;
|
|
which = (u_long)arg3;
|
|
|
|
if (new_rlimit->rlim_max <= p->p_rlimit[which].rlim_max)
|
|
result = KAUTH_RESULT_ALLOW;
|
|
|
|
break;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void
|
|
resource_init(void)
|
|
{
|
|
|
|
plimit_cache = pool_cache_init(sizeof(struct plimit), 0, 0, 0,
|
|
"plimitpl", NULL, IPL_NONE, NULL, NULL, NULL);
|
|
pstats_cache = pool_cache_init(sizeof(struct pstats), 0, 0, 0,
|
|
"pstatspl", NULL, IPL_NONE, NULL, NULL, NULL);
|
|
|
|
resource_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
|
|
resource_listener_cb, NULL);
|
|
|
|
sysctl_proc_setup();
|
|
}
|
|
|
|
/*
|
|
* Resource controls and accounting.
|
|
*/
|
|
|
|
int
|
|
sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap,
|
|
register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(int) which;
|
|
syscallarg(id_t) who;
|
|
} */
|
|
struct proc *curp = l->l_proc, *p;
|
|
id_t who = SCARG(uap, who);
|
|
int low = NZERO + PRIO_MAX + 1;
|
|
|
|
mutex_enter(proc_lock);
|
|
switch (SCARG(uap, which)) {
|
|
case PRIO_PROCESS:
|
|
p = who ? proc_find(who) : curp;
|
|
if (p != NULL)
|
|
low = p->p_nice;
|
|
break;
|
|
|
|
case PRIO_PGRP: {
|
|
struct pgrp *pg;
|
|
|
|
if (who == 0)
|
|
pg = curp->p_pgrp;
|
|
else if ((pg = pgrp_find(who)) == NULL)
|
|
break;
|
|
LIST_FOREACH(p, &pg->pg_members, p_pglist) {
|
|
if (p->p_nice < low)
|
|
low = p->p_nice;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case PRIO_USER:
|
|
if (who == 0)
|
|
who = (int)kauth_cred_geteuid(l->l_cred);
|
|
PROCLIST_FOREACH(p, &allproc) {
|
|
mutex_enter(p->p_lock);
|
|
if (kauth_cred_geteuid(p->p_cred) ==
|
|
(uid_t)who && p->p_nice < low)
|
|
low = p->p_nice;
|
|
mutex_exit(p->p_lock);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
mutex_exit(proc_lock);
|
|
return EINVAL;
|
|
}
|
|
mutex_exit(proc_lock);
|
|
|
|
if (low == NZERO + PRIO_MAX + 1) {
|
|
return ESRCH;
|
|
}
|
|
*retval = low - NZERO;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap,
|
|
register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(int) which;
|
|
syscallarg(id_t) who;
|
|
syscallarg(int) prio;
|
|
} */
|
|
struct proc *curp = l->l_proc, *p;
|
|
id_t who = SCARG(uap, who);
|
|
int found = 0, error = 0;
|
|
|
|
mutex_enter(proc_lock);
|
|
switch (SCARG(uap, which)) {
|
|
case PRIO_PROCESS:
|
|
p = who ? proc_find(who) : curp;
|
|
if (p != NULL) {
|
|
mutex_enter(p->p_lock);
|
|
found++;
|
|
error = donice(l, p, SCARG(uap, prio));
|
|
mutex_exit(p->p_lock);
|
|
}
|
|
break;
|
|
|
|
case PRIO_PGRP: {
|
|
struct pgrp *pg;
|
|
|
|
if (who == 0)
|
|
pg = curp->p_pgrp;
|
|
else if ((pg = pgrp_find(who)) == NULL)
|
|
break;
|
|
LIST_FOREACH(p, &pg->pg_members, p_pglist) {
|
|
mutex_enter(p->p_lock);
|
|
found++;
|
|
error = donice(l, p, SCARG(uap, prio));
|
|
mutex_exit(p->p_lock);
|
|
if (error)
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case PRIO_USER:
|
|
if (who == 0)
|
|
who = (int)kauth_cred_geteuid(l->l_cred);
|
|
PROCLIST_FOREACH(p, &allproc) {
|
|
mutex_enter(p->p_lock);
|
|
if (kauth_cred_geteuid(p->p_cred) ==
|
|
(uid_t)SCARG(uap, who)) {
|
|
found++;
|
|
error = donice(l, p, SCARG(uap, prio));
|
|
}
|
|
mutex_exit(p->p_lock);
|
|
if (error)
|
|
break;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
mutex_exit(proc_lock);
|
|
return EINVAL;
|
|
}
|
|
mutex_exit(proc_lock);
|
|
|
|
return (found == 0) ? ESRCH : error;
|
|
}
|
|
|
|
/*
|
|
* Renice a process.
|
|
*
|
|
* Call with the target process' credentials locked.
|
|
*/
|
|
static int
|
|
donice(struct lwp *l, struct proc *chgp, int n)
|
|
{
|
|
kauth_cred_t cred = l->l_cred;
|
|
|
|
KASSERT(mutex_owned(chgp->p_lock));
|
|
|
|
if (kauth_cred_geteuid(cred) && kauth_cred_getuid(cred) &&
|
|
kauth_cred_geteuid(cred) != kauth_cred_geteuid(chgp->p_cred) &&
|
|
kauth_cred_getuid(cred) != kauth_cred_geteuid(chgp->p_cred))
|
|
return EPERM;
|
|
|
|
if (n > PRIO_MAX) {
|
|
n = PRIO_MAX;
|
|
}
|
|
if (n < PRIO_MIN) {
|
|
n = PRIO_MIN;
|
|
}
|
|
n += NZERO;
|
|
|
|
if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
|
|
KAUTH_ARG(n), NULL, NULL)) {
|
|
return EACCES;
|
|
}
|
|
|
|
sched_nice(chgp, n);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap,
|
|
register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(int) which;
|
|
syscallarg(const struct rlimit *) rlp;
|
|
} */
|
|
int error, which = SCARG(uap, which);
|
|
struct rlimit alim;
|
|
|
|
error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
|
|
if (error) {
|
|
return error;
|
|
}
|
|
return dosetrlimit(l, l->l_proc, which, &alim);
|
|
}
|
|
|
|
int
|
|
dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
|
|
{
|
|
struct rlimit *alimp;
|
|
int error;
|
|
|
|
if ((u_int)which >= RLIM_NLIMITS)
|
|
return EINVAL;
|
|
|
|
if (limp->rlim_cur > limp->rlim_max) {
|
|
/*
|
|
* This is programming error. According to SUSv2, we should
|
|
* return error in this case.
|
|
*/
|
|
return EINVAL;
|
|
}
|
|
|
|
alimp = &p->p_rlimit[which];
|
|
/* if we don't change the value, no need to limcopy() */
|
|
if (limp->rlim_cur == alimp->rlim_cur &&
|
|
limp->rlim_max == alimp->rlim_max)
|
|
return 0;
|
|
|
|
error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
|
|
p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which));
|
|
if (error)
|
|
return error;
|
|
|
|
lim_privatise(p);
|
|
/* p->p_limit is now unchangeable */
|
|
alimp = &p->p_rlimit[which];
|
|
|
|
switch (which) {
|
|
|
|
case RLIMIT_DATA:
|
|
if (limp->rlim_cur > maxdmap)
|
|
limp->rlim_cur = maxdmap;
|
|
if (limp->rlim_max > maxdmap)
|
|
limp->rlim_max = maxdmap;
|
|
break;
|
|
|
|
case RLIMIT_STACK:
|
|
if (limp->rlim_cur > maxsmap)
|
|
limp->rlim_cur = maxsmap;
|
|
if (limp->rlim_max > maxsmap)
|
|
limp->rlim_max = maxsmap;
|
|
|
|
/*
|
|
* Return EINVAL if the new stack size limit is lower than
|
|
* current usage. Otherwise, the process would get SIGSEGV the
|
|
* moment it would try to access anything on its current stack.
|
|
* This conforms to SUSv2.
|
|
*/
|
|
if (btoc(limp->rlim_cur) < p->p_vmspace->vm_ssize ||
|
|
btoc(limp->rlim_max) < p->p_vmspace->vm_ssize) {
|
|
return EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Stack is allocated to the max at exec time with
|
|
* only "rlim_cur" bytes accessible (In other words,
|
|
* allocates stack dividing two contiguous regions at
|
|
* "rlim_cur" bytes boundary).
|
|
*
|
|
* Since allocation is done in terms of page, roundup
|
|
* "rlim_cur" (otherwise, contiguous regions
|
|
* overlap). If stack limit is going up make more
|
|
* accessible, if going down make inaccessible.
|
|
*/
|
|
limp->rlim_max = round_page(limp->rlim_max);
|
|
limp->rlim_cur = round_page(limp->rlim_cur);
|
|
if (limp->rlim_cur != alimp->rlim_cur) {
|
|
vaddr_t addr;
|
|
vsize_t size;
|
|
vm_prot_t prot;
|
|
char *base, *tmp;
|
|
|
|
base = p->p_vmspace->vm_minsaddr;
|
|
if (limp->rlim_cur > alimp->rlim_cur) {
|
|
prot = VM_PROT_READ | VM_PROT_WRITE;
|
|
size = limp->rlim_cur - alimp->rlim_cur;
|
|
tmp = STACK_GROW(base, alimp->rlim_cur);
|
|
} else {
|
|
prot = VM_PROT_NONE;
|
|
size = alimp->rlim_cur - limp->rlim_cur;
|
|
tmp = STACK_GROW(base, limp->rlim_cur);
|
|
}
|
|
addr = (vaddr_t)STACK_ALLOC(tmp, size);
|
|
(void) uvm_map_protect(&p->p_vmspace->vm_map,
|
|
addr, addr + size, prot, false);
|
|
}
|
|
break;
|
|
|
|
case RLIMIT_NOFILE:
|
|
if (limp->rlim_cur > maxfiles)
|
|
limp->rlim_cur = maxfiles;
|
|
if (limp->rlim_max > maxfiles)
|
|
limp->rlim_max = maxfiles;
|
|
break;
|
|
|
|
case RLIMIT_NPROC:
|
|
if (limp->rlim_cur > maxproc)
|
|
limp->rlim_cur = maxproc;
|
|
if (limp->rlim_max > maxproc)
|
|
limp->rlim_max = maxproc;
|
|
break;
|
|
|
|
case RLIMIT_NTHR:
|
|
if (limp->rlim_cur > maxlwp)
|
|
limp->rlim_cur = maxlwp;
|
|
if (limp->rlim_max > maxlwp)
|
|
limp->rlim_max = maxlwp;
|
|
break;
|
|
}
|
|
|
|
mutex_enter(&p->p_limit->pl_lock);
|
|
*alimp = *limp;
|
|
mutex_exit(&p->p_limit->pl_lock);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap,
|
|
register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(int) which;
|
|
syscallarg(struct rlimit *) rlp;
|
|
} */
|
|
struct proc *p = l->l_proc;
|
|
int which = SCARG(uap, which);
|
|
struct rlimit rl;
|
|
|
|
if ((u_int)which >= RLIM_NLIMITS)
|
|
return EINVAL;
|
|
|
|
mutex_enter(p->p_lock);
|
|
memcpy(&rl, &p->p_rlimit[which], sizeof(rl));
|
|
mutex_exit(p->p_lock);
|
|
|
|
return copyout(&rl, SCARG(uap, rlp), sizeof(rl));
|
|
}
|
|
|
|
/*
|
|
* Transform the running time and tick information in proc p into user,
|
|
* system, and interrupt time usage.
|
|
*
|
|
* Should be called with p->p_lock held unless called from exit1().
|
|
*/
|
|
void
|
|
calcru(struct proc *p, struct timeval *up, struct timeval *sp,
|
|
struct timeval *ip, struct timeval *rp)
|
|
{
|
|
uint64_t u, st, ut, it, tot;
|
|
struct lwp *l;
|
|
struct bintime tm;
|
|
struct timeval tv;
|
|
|
|
KASSERT(p->p_stat == SDEAD || mutex_owned(p->p_lock));
|
|
|
|
mutex_spin_enter(&p->p_stmutex);
|
|
st = p->p_sticks;
|
|
ut = p->p_uticks;
|
|
it = p->p_iticks;
|
|
mutex_spin_exit(&p->p_stmutex);
|
|
|
|
tm = p->p_rtime;
|
|
|
|
LIST_FOREACH(l, &p->p_lwps, l_sibling) {
|
|
lwp_lock(l);
|
|
bintime_add(&tm, &l->l_rtime);
|
|
if ((l->l_pflag & LP_RUNNING) != 0) {
|
|
struct bintime diff;
|
|
/*
|
|
* Adjust for the current time slice. This is
|
|
* actually fairly important since the error
|
|
* here is on the order of a time quantum,
|
|
* which is much greater than the sampling
|
|
* error.
|
|
*/
|
|
binuptime(&diff);
|
|
bintime_sub(&diff, &l->l_stime);
|
|
bintime_add(&tm, &diff);
|
|
}
|
|
lwp_unlock(l);
|
|
}
|
|
|
|
tot = st + ut + it;
|
|
bintime2timeval(&tm, &tv);
|
|
u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec;
|
|
|
|
if (tot == 0) {
|
|
/* No ticks, so can't use to share time out, split 50-50 */
|
|
st = ut = u / 2;
|
|
} else {
|
|
st = (u * st) / tot;
|
|
ut = (u * ut) / tot;
|
|
}
|
|
|
|
/*
|
|
* Try to avoid lying to the users (too much)
|
|
*
|
|
* Of course, user/sys time are based on sampling (ie: statistics)
|
|
* so that would be impossible, but convincing the mark
|
|
* that we have used less ?time this call than we had
|
|
* last time, is beyond reasonable... (the con fails!)
|
|
*
|
|
* Note that since actual used time cannot decrease, either
|
|
* utime or stime (or both) must be greater now than last time
|
|
* (or both the same) - if one seems to have decreased, hold
|
|
* it constant and steal the necessary bump from the other
|
|
* which must have increased.
|
|
*/
|
|
if (p->p_xutime > ut) {
|
|
st -= p->p_xutime - ut;
|
|
ut = p->p_xutime;
|
|
} else if (p->p_xstime > st) {
|
|
ut -= p->p_xstime - st;
|
|
st = p->p_xstime;
|
|
}
|
|
|
|
if (sp != NULL) {
|
|
p->p_xstime = st;
|
|
sp->tv_sec = st / 1000000;
|
|
sp->tv_usec = st % 1000000;
|
|
}
|
|
if (up != NULL) {
|
|
p->p_xutime = ut;
|
|
up->tv_sec = ut / 1000000;
|
|
up->tv_usec = ut % 1000000;
|
|
}
|
|
if (ip != NULL) {
|
|
if (it != 0) /* it != 0 --> tot != 0 */
|
|
it = (u * it) / tot;
|
|
ip->tv_sec = it / 1000000;
|
|
ip->tv_usec = it % 1000000;
|
|
}
|
|
if (rp != NULL) {
|
|
*rp = tv;
|
|
}
|
|
}
|
|
|
|
int
|
|
sys___getrusage50(struct lwp *l, const struct sys___getrusage50_args *uap,
|
|
register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(int) who;
|
|
syscallarg(struct rusage *) rusage;
|
|
} */
|
|
int error;
|
|
struct rusage ru;
|
|
struct proc *p = l->l_proc;
|
|
|
|
error = getrusage1(p, SCARG(uap, who), &ru);
|
|
if (error != 0)
|
|
return error;
|
|
|
|
return copyout(&ru, SCARG(uap, rusage), sizeof(ru));
|
|
}
|
|
|
|
int
|
|
getrusage1(struct proc *p, int who, struct rusage *ru) {
|
|
|
|
switch (who) {
|
|
case RUSAGE_SELF:
|
|
mutex_enter(p->p_lock);
|
|
ruspace(p);
|
|
memcpy(ru, &p->p_stats->p_ru, sizeof(*ru));
|
|
calcru(p, &ru->ru_utime, &ru->ru_stime, NULL, NULL);
|
|
rulwps(p, ru);
|
|
mutex_exit(p->p_lock);
|
|
break;
|
|
case RUSAGE_CHILDREN:
|
|
mutex_enter(p->p_lock);
|
|
memcpy(ru, &p->p_stats->p_cru, sizeof(*ru));
|
|
mutex_exit(p->p_lock);
|
|
break;
|
|
default:
|
|
return EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
ruspace(struct proc *p)
|
|
{
|
|
struct vmspace *vm = p->p_vmspace;
|
|
struct rusage *ru = &p->p_stats->p_ru;
|
|
|
|
ru->ru_ixrss = vm->vm_tsize << (PAGE_SHIFT - 10);
|
|
ru->ru_idrss = vm->vm_dsize << (PAGE_SHIFT - 10);
|
|
ru->ru_isrss = vm->vm_ssize << (PAGE_SHIFT - 10);
|
|
#ifdef __HAVE_NO_PMAP_STATS
|
|
/* We don't keep track of the max so we get the current */
|
|
ru->ru_maxrss = vm_resident_count(vm) << (PAGE_SHIFT - 10);
|
|
#else
|
|
ru->ru_maxrss = vm->vm_rssmax << (PAGE_SHIFT - 10);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
ruadd(struct rusage *ru, struct rusage *ru2)
|
|
{
|
|
long *ip, *ip2;
|
|
int i;
|
|
|
|
timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
|
|
timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
|
|
if (ru->ru_maxrss < ru2->ru_maxrss)
|
|
ru->ru_maxrss = ru2->ru_maxrss;
|
|
ip = &ru->ru_first; ip2 = &ru2->ru_first;
|
|
for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
|
|
*ip++ += *ip2++;
|
|
}
|
|
|
|
void
|
|
rulwps(proc_t *p, struct rusage *ru)
|
|
{
|
|
lwp_t *l;
|
|
|
|
KASSERT(mutex_owned(p->p_lock));
|
|
|
|
LIST_FOREACH(l, &p->p_lwps, l_sibling) {
|
|
ruadd(ru, &l->l_ru);
|
|
ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
|
|
ru->ru_nivcsw += l->l_nivcsw;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* lim_copy: make a copy of the plimit structure.
|
|
*
|
|
* We use copy-on-write after fork, and copy when a limit is changed.
|
|
*/
|
|
struct plimit *
|
|
lim_copy(struct plimit *lim)
|
|
{
|
|
struct plimit *newlim;
|
|
char *corename;
|
|
size_t alen, len;
|
|
|
|
newlim = pool_cache_get(plimit_cache, PR_WAITOK);
|
|
mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE);
|
|
newlim->pl_writeable = false;
|
|
newlim->pl_refcnt = 1;
|
|
newlim->pl_sv_limit = NULL;
|
|
|
|
mutex_enter(&lim->pl_lock);
|
|
memcpy(newlim->pl_rlimit, lim->pl_rlimit,
|
|
sizeof(struct rlimit) * RLIM_NLIMITS);
|
|
|
|
/*
|
|
* Note: the common case is a use of default core name.
|
|
*/
|
|
alen = 0;
|
|
corename = NULL;
|
|
for (;;) {
|
|
if (lim->pl_corename == defcorename) {
|
|
newlim->pl_corename = defcorename;
|
|
newlim->pl_cnlen = 0;
|
|
break;
|
|
}
|
|
len = lim->pl_cnlen;
|
|
if (len == alen) {
|
|
newlim->pl_corename = corename;
|
|
newlim->pl_cnlen = len;
|
|
memcpy(corename, lim->pl_corename, len);
|
|
corename = NULL;
|
|
break;
|
|
}
|
|
mutex_exit(&lim->pl_lock);
|
|
if (corename) {
|
|
kmem_free(corename, alen);
|
|
}
|
|
alen = len;
|
|
corename = kmem_alloc(alen, KM_SLEEP);
|
|
mutex_enter(&lim->pl_lock);
|
|
}
|
|
mutex_exit(&lim->pl_lock);
|
|
|
|
if (corename) {
|
|
kmem_free(corename, alen);
|
|
}
|
|
return newlim;
|
|
}
|
|
|
|
void
|
|
lim_addref(struct plimit *lim)
|
|
{
|
|
atomic_inc_uint(&lim->pl_refcnt);
|
|
}
|
|
|
|
/*
|
|
* lim_privatise: give a process its own private plimit structure.
|
|
*/
|
|
void
|
|
lim_privatise(proc_t *p)
|
|
{
|
|
struct plimit *lim = p->p_limit, *newlim;
|
|
|
|
if (lim->pl_writeable) {
|
|
return;
|
|
}
|
|
|
|
newlim = lim_copy(lim);
|
|
|
|
mutex_enter(p->p_lock);
|
|
if (p->p_limit->pl_writeable) {
|
|
/* Other thread won the race. */
|
|
mutex_exit(p->p_lock);
|
|
lim_free(newlim);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Since p->p_limit can be accessed without locked held,
|
|
* old limit structure must not be deleted yet.
|
|
*/
|
|
newlim->pl_sv_limit = p->p_limit;
|
|
newlim->pl_writeable = true;
|
|
p->p_limit = newlim;
|
|
mutex_exit(p->p_lock);
|
|
}
|
|
|
|
void
|
|
lim_setcorename(proc_t *p, char *name, size_t len)
|
|
{
|
|
struct plimit *lim;
|
|
char *oname;
|
|
size_t olen;
|
|
|
|
lim_privatise(p);
|
|
lim = p->p_limit;
|
|
|
|
mutex_enter(&lim->pl_lock);
|
|
oname = lim->pl_corename;
|
|
olen = lim->pl_cnlen;
|
|
lim->pl_corename = name;
|
|
lim->pl_cnlen = len;
|
|
mutex_exit(&lim->pl_lock);
|
|
|
|
if (oname != defcorename) {
|
|
kmem_free(oname, olen);
|
|
}
|
|
}
|
|
|
|
void
|
|
lim_free(struct plimit *lim)
|
|
{
|
|
struct plimit *sv_lim;
|
|
|
|
do {
|
|
if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0) {
|
|
return;
|
|
}
|
|
if (lim->pl_corename != defcorename) {
|
|
kmem_free(lim->pl_corename, lim->pl_cnlen);
|
|
}
|
|
sv_lim = lim->pl_sv_limit;
|
|
mutex_destroy(&lim->pl_lock);
|
|
pool_cache_put(plimit_cache, lim);
|
|
} while ((lim = sv_lim) != NULL);
|
|
}
|
|
|
|
struct pstats *
|
|
pstatscopy(struct pstats *ps)
|
|
{
|
|
struct pstats *nps;
|
|
size_t len;
|
|
|
|
nps = pool_cache_get(pstats_cache, PR_WAITOK);
|
|
|
|
len = (char *)&nps->pstat_endzero - (char *)&nps->pstat_startzero;
|
|
memset(&nps->pstat_startzero, 0, len);
|
|
|
|
len = (char *)&nps->pstat_endcopy - (char *)&nps->pstat_startcopy;
|
|
memcpy(&nps->pstat_startcopy, &ps->pstat_startcopy, len);
|
|
|
|
return nps;
|
|
}
|
|
|
|
void
|
|
pstatsfree(struct pstats *ps)
|
|
{
|
|
|
|
pool_cache_put(pstats_cache, ps);
|
|
}
|
|
|
|
/*
|
|
* sysctl_proc_findproc: a routine for sysctl proc subtree helpers that
|
|
* need to pick a valid process by PID.
|
|
*
|
|
* => Hold a reference on the process, on success.
|
|
*/
|
|
static int
|
|
sysctl_proc_findproc(lwp_t *l, pid_t pid, proc_t **p2)
|
|
{
|
|
proc_t *p;
|
|
int error;
|
|
|
|
if (pid == PROC_CURPROC) {
|
|
p = l->l_proc;
|
|
} else {
|
|
mutex_enter(proc_lock);
|
|
p = proc_find(pid);
|
|
if (p == NULL) {
|
|
mutex_exit(proc_lock);
|
|
return ESRCH;
|
|
}
|
|
}
|
|
error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
|
|
if (pid != PROC_CURPROC) {
|
|
mutex_exit(proc_lock);
|
|
}
|
|
*p2 = p;
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* sysctl_proc_paxflags: helper routine to get process's paxctl flags
|
|
*/
|
|
static int
|
|
sysctl_proc_paxflags(SYSCTLFN_ARGS)
|
|
{
|
|
struct proc *p;
|
|
struct sysctlnode node;
|
|
int paxflags;
|
|
int error;
|
|
|
|
/* First, validate the request. */
|
|
if (namelen != 0 || name[-1] != PROC_PID_PAXFLAGS)
|
|
return EINVAL;
|
|
|
|
/* Find the process. Hold a reference (p_reflock), if found. */
|
|
error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
|
|
if (error)
|
|
return error;
|
|
|
|
/* XXX-elad */
|
|
error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
|
|
KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
|
|
if (error) {
|
|
rw_exit(&p->p_reflock);
|
|
return error;
|
|
}
|
|
|
|
/* Retrieve the limits. */
|
|
node = *rnode;
|
|
paxflags = p->p_pax;
|
|
node.sysctl_data = &paxflags;
|
|
|
|
error = sysctl_lookup(SYSCTLFN_CALL(&node));
|
|
|
|
/* If attempting to write new value, it's an error */
|
|
if (error == 0 && newp != NULL)
|
|
error = EACCES;
|
|
|
|
rw_exit(&p->p_reflock);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* sysctl_proc_corename: helper routine to get or set the core file name
|
|
* for a process specified by PID.
|
|
*/
|
|
static int
|
|
sysctl_proc_corename(SYSCTLFN_ARGS)
|
|
{
|
|
struct proc *p;
|
|
struct plimit *lim;
|
|
char *cnbuf, *cname;
|
|
struct sysctlnode node;
|
|
size_t len;
|
|
int error;
|
|
|
|
/* First, validate the request. */
|
|
if (namelen != 0 || name[-1] != PROC_PID_CORENAME)
|
|
return EINVAL;
|
|
|
|
/* Find the process. Hold a reference (p_reflock), if found. */
|
|
error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
|
|
if (error)
|
|
return error;
|
|
|
|
/* XXX-elad */
|
|
error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
|
|
KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
|
|
if (error) {
|
|
rw_exit(&p->p_reflock);
|
|
return error;
|
|
}
|
|
|
|
cnbuf = PNBUF_GET();
|
|
|
|
if (oldp) {
|
|
/* Get case: copy the core name into the buffer. */
|
|
error = kauth_authorize_process(l->l_cred,
|
|
KAUTH_PROCESS_CORENAME, p,
|
|
KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL);
|
|
if (error) {
|
|
goto done;
|
|
}
|
|
lim = p->p_limit;
|
|
mutex_enter(&lim->pl_lock);
|
|
strlcpy(cnbuf, lim->pl_corename, MAXPATHLEN);
|
|
mutex_exit(&lim->pl_lock);
|
|
}
|
|
|
|
node = *rnode;
|
|
node.sysctl_data = cnbuf;
|
|
error = sysctl_lookup(SYSCTLFN_CALL(&node));
|
|
|
|
/* Return if error, or if caller is only getting the core name. */
|
|
if (error || newp == NULL) {
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* Set case. Check permission and then validate new core name.
|
|
* It must be either "core", "/core", or end in ".core".
|
|
*/
|
|
error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME,
|
|
p, KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cnbuf, NULL);
|
|
if (error) {
|
|
goto done;
|
|
}
|
|
len = strlen(cnbuf);
|
|
if ((len < 4 || strcmp(cnbuf + len - 4, "core") != 0) ||
|
|
(len > 4 && cnbuf[len - 5] != '/' && cnbuf[len - 5] != '.')) {
|
|
error = EINVAL;
|
|
goto done;
|
|
}
|
|
|
|
/* Allocate, copy and set the new core name for plimit structure. */
|
|
cname = kmem_alloc(++len, KM_NOSLEEP);
|
|
if (cname == NULL) {
|
|
error = ENOMEM;
|
|
goto done;
|
|
}
|
|
memcpy(cname, cnbuf, len);
|
|
lim_setcorename(p, cname, len);
|
|
done:
|
|
rw_exit(&p->p_reflock);
|
|
PNBUF_PUT(cnbuf);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* sysctl_proc_stop: helper routine for checking/setting the stop flags.
|
|
*/
|
|
static int
|
|
sysctl_proc_stop(SYSCTLFN_ARGS)
|
|
{
|
|
struct proc *p;
|
|
int isset, flag, error = 0;
|
|
struct sysctlnode node;
|
|
|
|
if (namelen != 0)
|
|
return EINVAL;
|
|
|
|
/* Find the process. Hold a reference (p_reflock), if found. */
|
|
error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
|
|
if (error)
|
|
return error;
|
|
|
|
/* XXX-elad */
|
|
error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
|
|
KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
|
|
if (error) {
|
|
goto out;
|
|
}
|
|
|
|
/* Determine the flag. */
|
|
switch (rnode->sysctl_num) {
|
|
case PROC_PID_STOPFORK:
|
|
flag = PS_STOPFORK;
|
|
break;
|
|
case PROC_PID_STOPEXEC:
|
|
flag = PS_STOPEXEC;
|
|
break;
|
|
case PROC_PID_STOPEXIT:
|
|
flag = PS_STOPEXIT;
|
|
break;
|
|
default:
|
|
error = EINVAL;
|
|
goto out;
|
|
}
|
|
isset = (p->p_flag & flag) ? 1 : 0;
|
|
node = *rnode;
|
|
node.sysctl_data = &isset;
|
|
error = sysctl_lookup(SYSCTLFN_CALL(&node));
|
|
|
|
/* Return if error, or if callers is only getting the flag. */
|
|
if (error || newp == NULL) {
|
|
goto out;
|
|
}
|
|
|
|
/* Check if caller can set the flags. */
|
|
error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
|
|
p, KAUTH_ARG(flag), NULL, NULL);
|
|
if (error) {
|
|
goto out;
|
|
}
|
|
mutex_enter(p->p_lock);
|
|
if (isset) {
|
|
p->p_sflag |= flag;
|
|
} else {
|
|
p->p_sflag &= ~flag;
|
|
}
|
|
mutex_exit(p->p_lock);
|
|
out:
|
|
rw_exit(&p->p_reflock);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* sysctl_proc_plimit: helper routine to get/set rlimits of a process.
|
|
*/
|
|
static int
|
|
sysctl_proc_plimit(SYSCTLFN_ARGS)
|
|
{
|
|
struct proc *p;
|
|
u_int limitno;
|
|
int which, error = 0;
|
|
struct rlimit alim;
|
|
struct sysctlnode node;
|
|
|
|
if (namelen != 0)
|
|
return EINVAL;
|
|
|
|
which = name[-1];
|
|
if (which != PROC_PID_LIMIT_TYPE_SOFT &&
|
|
which != PROC_PID_LIMIT_TYPE_HARD)
|
|
return EINVAL;
|
|
|
|
limitno = name[-2] - 1;
|
|
if (limitno >= RLIM_NLIMITS)
|
|
return EINVAL;
|
|
|
|
if (name[-3] != PROC_PID_LIMIT)
|
|
return EINVAL;
|
|
|
|
/* Find the process. Hold a reference (p_reflock), if found. */
|
|
error = sysctl_proc_findproc(l, (pid_t)name[-4], &p);
|
|
if (error)
|
|
return error;
|
|
|
|
/* XXX-elad */
|
|
error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
|
|
KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
|
|
if (error)
|
|
goto out;
|
|
|
|
/* Check if caller can retrieve the limits. */
|
|
if (newp == NULL) {
|
|
error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
|
|
p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim,
|
|
KAUTH_ARG(which));
|
|
if (error)
|
|
goto out;
|
|
}
|
|
|
|
/* Retrieve the limits. */
|
|
node = *rnode;
|
|
memcpy(&alim, &p->p_rlimit[limitno], sizeof(alim));
|
|
if (which == PROC_PID_LIMIT_TYPE_HARD) {
|
|
node.sysctl_data = &alim.rlim_max;
|
|
} else {
|
|
node.sysctl_data = &alim.rlim_cur;
|
|
}
|
|
error = sysctl_lookup(SYSCTLFN_CALL(&node));
|
|
|
|
/* Return if error, or if we are only retrieving the limits. */
|
|
if (error || newp == NULL) {
|
|
goto out;
|
|
}
|
|
error = dosetrlimit(l, p, limitno, &alim);
|
|
out:
|
|
rw_exit(&p->p_reflock);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Setup sysctl nodes.
|
|
*/
|
|
static void
|
|
sysctl_proc_setup(void)
|
|
{
|
|
|
|
sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
|
|
CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
|
|
CTLTYPE_NODE, "curproc",
|
|
SYSCTL_DESCR("Per-process settings"),
|
|
NULL, 0, NULL, 0,
|
|
CTL_PROC, PROC_CURPROC, CTL_EOL);
|
|
|
|
sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
|
|
CTLFLAG_PERMANENT|CTLFLAG_READONLY,
|
|
CTLTYPE_INT, "paxflags",
|
|
SYSCTL_DESCR("Process PAX control flags"),
|
|
sysctl_proc_paxflags, 0, NULL, 0,
|
|
CTL_PROC, PROC_CURPROC, PROC_PID_PAXFLAGS, CTL_EOL);
|
|
|
|
sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
|
|
CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
|
|
CTLTYPE_STRING, "corename",
|
|
SYSCTL_DESCR("Core file name"),
|
|
sysctl_proc_corename, 0, NULL, MAXPATHLEN,
|
|
CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
|
|
sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
|
|
CTLFLAG_PERMANENT,
|
|
CTLTYPE_NODE, "rlimit",
|
|
SYSCTL_DESCR("Process limits"),
|
|
NULL, 0, NULL, 0,
|
|
CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
|
|
|
|
#define create_proc_plimit(s, n) do { \
|
|
sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \
|
|
CTLFLAG_PERMANENT, \
|
|
CTLTYPE_NODE, s, \
|
|
SYSCTL_DESCR("Process " s " limits"), \
|
|
NULL, 0, NULL, 0, \
|
|
CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
|
|
CTL_EOL); \
|
|
sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \
|
|
CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
|
|
CTLTYPE_QUAD, "soft", \
|
|
SYSCTL_DESCR("Process soft " s " limit"), \
|
|
sysctl_proc_plimit, 0, NULL, 0, \
|
|
CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
|
|
PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL); \
|
|
sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \
|
|
CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
|
|
CTLTYPE_QUAD, "hard", \
|
|
SYSCTL_DESCR("Process hard " s " limit"), \
|
|
sysctl_proc_plimit, 0, NULL, 0, \
|
|
CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
|
|
PROC_PID_LIMIT_TYPE_HARD, CTL_EOL); \
|
|
} while (0/*CONSTCOND*/)
|
|
|
|
create_proc_plimit("cputime", PROC_PID_LIMIT_CPU);
|
|
create_proc_plimit("filesize", PROC_PID_LIMIT_FSIZE);
|
|
create_proc_plimit("datasize", PROC_PID_LIMIT_DATA);
|
|
create_proc_plimit("stacksize", PROC_PID_LIMIT_STACK);
|
|
create_proc_plimit("coredumpsize", PROC_PID_LIMIT_CORE);
|
|
create_proc_plimit("memoryuse", PROC_PID_LIMIT_RSS);
|
|
create_proc_plimit("memorylocked", PROC_PID_LIMIT_MEMLOCK);
|
|
create_proc_plimit("maxproc", PROC_PID_LIMIT_NPROC);
|
|
create_proc_plimit("descriptors", PROC_PID_LIMIT_NOFILE);
|
|
create_proc_plimit("sbsize", PROC_PID_LIMIT_SBSIZE);
|
|
create_proc_plimit("vmemoryuse", PROC_PID_LIMIT_AS);
|
|
create_proc_plimit("maxlwp", PROC_PID_LIMIT_NTHR);
|
|
|
|
#undef create_proc_plimit
|
|
|
|
sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
|
|
CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
|
|
CTLTYPE_INT, "stopfork",
|
|
SYSCTL_DESCR("Stop process at fork(2)"),
|
|
sysctl_proc_stop, 0, NULL, 0,
|
|
CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
|
|
sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
|
|
CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
|
|
CTLTYPE_INT, "stopexec",
|
|
SYSCTL_DESCR("Stop process at execve(2)"),
|
|
sysctl_proc_stop, 0, NULL, 0,
|
|
CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
|
|
sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
|
|
CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
|
|
CTLTYPE_INT, "stopexit",
|
|
SYSCTL_DESCR("Stop process before completing exit"),
|
|
sysctl_proc_stop, 0, NULL, 0,
|
|
CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
|
|
}
|