387 lines
9.3 KiB
C
387 lines
9.3 KiB
C
/* $NetBSD: auto.c,v 1.7 2004/08/27 09:06:25 christos Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 1999 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Christos Zoulas.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the NetBSD
|
|
* Foundation, Inc. and its contributors.
|
|
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Automatic move.
|
|
* intelligent ?
|
|
* Algo :
|
|
* IF scrapheaps don't exist THEN
|
|
* IF not in danger THEN
|
|
* stay at current position
|
|
* ELSE
|
|
* move away from the closest robot
|
|
* FI
|
|
* ELSE
|
|
* find closest heap
|
|
* find closest robot
|
|
* IF scrapheap is adjacent THEN
|
|
* move behind the scrapheap
|
|
* ELSE
|
|
* take the move that takes you away from the
|
|
* robots and closest to the heap
|
|
* FI
|
|
* FI
|
|
*/
|
|
#include "robots.h"
|
|
|
|
#define ABS(a) (((a)>0)?(a):-(a))
|
|
#define MIN(a,b) (((a)>(b))?(b):(a))
|
|
#define MAX(a,b) (((a)<(b))?(b):(a))
|
|
|
|
#define CONSDEBUG(a)
|
|
|
|
static int distance(int, int, int, int);
|
|
static int xinc(int);
|
|
static int yinc(int);
|
|
static const char *find_moves(void);
|
|
static COORD *closest_robot(int *);
|
|
static COORD *closest_heap(int *);
|
|
static char move_towards(int, int);
|
|
static char move_away(COORD *);
|
|
static char move_between(COORD *, COORD *);
|
|
static int between(COORD *, COORD *);
|
|
|
|
/* distance():
|
|
* return "move" number distance of the two coordinates
|
|
*/
|
|
static int
|
|
distance(x1, y1, x2, y2)
|
|
int x1, y1, x2, y2;
|
|
{
|
|
return MAX(ABS(ABS(x1) - ABS(x2)), ABS(ABS(y1) - ABS(y2)));
|
|
} /* end distance */
|
|
|
|
/* xinc():
|
|
* Return x coordinate moves
|
|
*/
|
|
static int
|
|
xinc(dir)
|
|
int dir;
|
|
{
|
|
switch(dir) {
|
|
case 'b':
|
|
case 'h':
|
|
case 'y':
|
|
return -1;
|
|
case 'l':
|
|
case 'n':
|
|
case 'u':
|
|
return 1;
|
|
case 'j':
|
|
case 'k':
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* yinc():
|
|
* Return y coordinate moves
|
|
*/
|
|
static int
|
|
yinc(dir)
|
|
int dir;
|
|
{
|
|
switch(dir) {
|
|
case 'k':
|
|
case 'u':
|
|
case 'y':
|
|
return -1;
|
|
case 'b':
|
|
case 'j':
|
|
case 'n':
|
|
return 1;
|
|
case 'h':
|
|
case 'l':
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* find_moves():
|
|
* Find possible moves
|
|
*/
|
|
static const char *
|
|
find_moves()
|
|
{
|
|
int x, y;
|
|
COORD test;
|
|
const char *m;
|
|
char *a;
|
|
static const char moves[] = ".hjklyubn";
|
|
static char ans[sizeof moves];
|
|
a = ans;
|
|
|
|
for(m = moves; *m; m++) {
|
|
test.x = My_pos.x + xinc(*m);
|
|
test.y = My_pos.y + yinc(*m);
|
|
move(test.y, test.x);
|
|
switch(winch(stdscr)) {
|
|
case ' ':
|
|
case PLAYER:
|
|
for(x = test.x - 1; x <= test.x + 1; x++) {
|
|
for(y = test.y - 1; y <= test.y + 1; y++) {
|
|
move(y, x);
|
|
if(winch(stdscr) == ROBOT)
|
|
goto bad;
|
|
}
|
|
}
|
|
*a++ = *m;
|
|
}
|
|
bad:;
|
|
}
|
|
*a = 0;
|
|
if(ans[0])
|
|
return ans;
|
|
else
|
|
return "t";
|
|
}
|
|
|
|
/* closest_robot():
|
|
* return the robot closest to us
|
|
* and put in dist its distance
|
|
*/
|
|
static COORD *
|
|
closest_robot(dist)
|
|
int *dist;
|
|
{
|
|
COORD *rob, *end, *minrob = NULL;
|
|
int tdist, mindist;
|
|
|
|
mindist = 1000000;
|
|
end = &Robots[MAXROBOTS];
|
|
for (rob = Robots; rob < end; rob++) {
|
|
tdist = distance(My_pos.x, My_pos.y, rob->x, rob->y);
|
|
if (tdist < mindist) {
|
|
minrob = rob;
|
|
mindist = tdist;
|
|
}
|
|
}
|
|
*dist = mindist;
|
|
return minrob;
|
|
} /* end closest_robot */
|
|
|
|
/* closest_heap():
|
|
* return the heap closest to us
|
|
* and put in dist its distance
|
|
*/
|
|
static COORD *
|
|
closest_heap(dist)
|
|
int *dist;
|
|
{
|
|
COORD *hp, *end, *minhp = NULL;
|
|
int mindist, tdist;
|
|
|
|
mindist = 1000000;
|
|
end = &Scrap[MAXROBOTS];
|
|
for (hp = Scrap; hp < end; hp++) {
|
|
if (hp->x == 0 && hp->y == 0)
|
|
break;
|
|
tdist = distance(My_pos.x, My_pos.y, hp->x, hp->y);
|
|
if (tdist < mindist) {
|
|
minhp = hp;
|
|
mindist = tdist;
|
|
}
|
|
}
|
|
*dist = mindist;
|
|
return minhp;
|
|
} /* end closest_heap */
|
|
|
|
/* move_towards():
|
|
* move as close to the given direction as possible
|
|
*/
|
|
static char
|
|
move_towards(dx, dy)
|
|
int dx, dy;
|
|
{
|
|
char ok_moves[10], best_move;
|
|
char *ptr;
|
|
int move_judge, cur_judge, mvx, mvy;
|
|
|
|
(void)strcpy(ok_moves, find_moves());
|
|
best_move = ok_moves[0];
|
|
if (best_move != 't') {
|
|
mvx = xinc(best_move);
|
|
mvy = yinc(best_move);
|
|
move_judge = ABS(mvx - dx) + ABS(mvy - dy);
|
|
for (ptr = &ok_moves[1]; *ptr != '\0'; ptr++) {
|
|
mvx = xinc(*ptr);
|
|
mvy = yinc(*ptr);
|
|
cur_judge = ABS(mvx - dx) + ABS(mvy - dy);
|
|
if (cur_judge < move_judge) {
|
|
move_judge = cur_judge;
|
|
best_move = *ptr;
|
|
}
|
|
}
|
|
}
|
|
return best_move;
|
|
} /* end move_towards */
|
|
|
|
/* move_away():
|
|
* move away form the robot given
|
|
*/
|
|
static char
|
|
move_away(rob)
|
|
COORD *rob;
|
|
{
|
|
int dx, dy;
|
|
|
|
dx = sign(My_pos.x - rob->x);
|
|
dy = sign(My_pos.y - rob->y);
|
|
return move_towards(dx, dy);
|
|
} /* end move_away */
|
|
|
|
|
|
/* move_between():
|
|
* move the closest heap between us and the closest robot
|
|
*/
|
|
static char
|
|
move_between(rob, hp)
|
|
COORD *rob;
|
|
COORD *hp;
|
|
{
|
|
int dx, dy;
|
|
float slope, cons;
|
|
|
|
/* equation of the line between us and the closest robot */
|
|
if (My_pos.x == rob->x) {
|
|
/*
|
|
* me and the robot are aligned in x
|
|
* change my x so I get closer to the heap
|
|
* and my y far from the robot
|
|
*/
|
|
dx = - sign(My_pos.x - hp->x);
|
|
dy = sign(My_pos.y - rob->y);
|
|
CONSDEBUG(("aligned in x"));
|
|
}
|
|
else if (My_pos.y == rob->y) {
|
|
/*
|
|
* me and the robot are aligned in y
|
|
* change my y so I get closer to the heap
|
|
* and my x far from the robot
|
|
*/
|
|
dx = sign(My_pos.x - rob->x);
|
|
dy = -sign(My_pos.y - hp->y);
|
|
CONSDEBUG(("aligned in y"));
|
|
}
|
|
else {
|
|
CONSDEBUG(("no aligned"));
|
|
slope = (My_pos.y - rob->y) / (My_pos.x - rob->x);
|
|
cons = slope * rob->y;
|
|
if (ABS(My_pos.x - rob->x) > ABS(My_pos.y - rob->y)) {
|
|
/*
|
|
* we are closest to the robot in x
|
|
* move away from the robot in x and
|
|
* close to the scrap in y
|
|
*/
|
|
dx = sign(My_pos.x - rob->x);
|
|
dy = sign(((slope * ((float) hp->x)) + cons) -
|
|
((float) hp->y));
|
|
}
|
|
else {
|
|
dx = sign(((slope * ((float) hp->x)) + cons) -
|
|
((float) hp->y));
|
|
dy = sign(My_pos.y - rob->y);
|
|
}
|
|
}
|
|
CONSDEBUG(("me (%d,%d) robot(%d,%d) heap(%d,%d) delta(%d,%d)",
|
|
My_pos.x, My_pos.y, rob->x, rob->y, hp->x, hp->y, dx, dy));
|
|
return move_towards(dx, dy);
|
|
} /* end move_between */
|
|
|
|
/* between():
|
|
* Return true if the heap is between us and the robot
|
|
*/
|
|
int
|
|
between(rob, hp)
|
|
COORD *rob;
|
|
COORD *hp;
|
|
{
|
|
/* I = @ */
|
|
if (hp->x > rob->x && My_pos.x < rob->x)
|
|
return 0;
|
|
/* @ = I */
|
|
if (hp->x < rob->x && My_pos.x > rob->x)
|
|
return 0;
|
|
/* @ */
|
|
/* = */
|
|
/* I */
|
|
if (hp->y < rob->y && My_pos.y > rob->y)
|
|
return 0;
|
|
/* I */
|
|
/* = */
|
|
/* @ */
|
|
if (hp->y > rob->y && My_pos.y < rob->y)
|
|
return 0;
|
|
return 1;
|
|
} /* end between */
|
|
|
|
/* automove():
|
|
* find and do the best move if flag
|
|
* else get the first move;
|
|
*/
|
|
char
|
|
automove()
|
|
{
|
|
#if 0
|
|
return find_moves()[0];
|
|
#else
|
|
COORD *robot_close;
|
|
COORD *heap_close;
|
|
int robot_dist, robot_heap, heap_dist;
|
|
|
|
robot_close = closest_robot(&robot_dist);
|
|
if (robot_dist > 1)
|
|
return('.');
|
|
if (!Num_scrap)
|
|
/* no scrap heaps just run away */
|
|
return move_away(robot_close);
|
|
|
|
heap_close = closest_heap(&heap_dist);
|
|
robot_heap = distance(robot_close->x, robot_close->y,
|
|
heap_close->x, heap_close->y);
|
|
if (robot_heap <= heap_dist && !between(robot_close, heap_close)) {
|
|
/*
|
|
* robot is closest to us from the heap. Run away!
|
|
*/
|
|
return move_away(robot_close);
|
|
}
|
|
|
|
return move_between(robot_close, heap_close);
|
|
#endif
|
|
} /* end automove */
|