NetBSD/sys/arch/x68k/dev/fd.c
tsutsui ef54da0a01 Fix hangup on the first floppy access since 2008.
Problem was reported by isaki@.

On X680x0 (and most other machines other than ISA FDC),
the ready line from FDD is connected to FDC and fdc driver can
be notified of the ready state after fd_set_motor() by interrupts.
In this case no need to use callout(9) to wait the FDD motor stabilized,
and the callout(9) method used in ISA fdc(4) driver rather caused
infinite unhandled interrupts since callout(9) was no longer invoked
during interrupt storm after vmlocking2 merge, I guess.

Should be pulled up to netbsd-5.
2011-04-10 15:23:06 +00:00

1680 lines
43 KiB
C

/* $NetBSD: fd.c,v 1.94 2011/04/10 15:23:06 tsutsui Exp $ */
/*-
* Copyright (c) 1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Charles M. Hannum and Minoura Makoto.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (c) 1990 The Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Don Ahn.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)fd.c 7.4 (Berkeley) 5/25/91
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: fd.c,v 1.94 2011/04/10 15:23:06 tsutsui Exp $");
#include "rnd.h"
#include "opt_ddb.h"
#include "opt_m68k_arch.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/kernel.h>
#include <sys/conf.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <sys/malloc.h>
#include <sys/device.h>
#include <sys/disklabel.h>
#include <sys/disk.h>
#include <sys/buf.h>
#include <sys/bufq.h>
#include <sys/uio.h>
#include <sys/syslog.h>
#include <sys/queue.h>
#include <sys/fdio.h>
#if NRND > 0
#include <sys/rnd.h>
#endif
#include <uvm/uvm_extern.h>
#include <dev/cons.h>
#include <machine/bus.h>
#include <machine/cpu.h>
#include <arch/x68k/dev/intiovar.h>
#include <arch/x68k/dev/dmacvar.h>
#include <arch/x68k/dev/fdreg.h>
#include <arch/x68k/dev/opmvar.h> /* for CT1 access */
#include "locators.h"
#ifdef FDDEBUG
#define DPRINTF(x) if (fddebug) printf x
int fddebug = 0;
#else
#define DPRINTF(x)
#endif
#define FDUNIT(dev) (minor(dev) / 8)
#define FDTYPE(dev) (minor(dev) % 8)
enum fdc_state {
DEVIDLE = 0,
MOTORWAIT,
DOSEEK,
SEEKWAIT,
SEEKTIMEDOUT,
SEEKCOMPLETE,
DOIO,
IOCOMPLETE,
IOTIMEDOUT,
DORESET,
RESETCOMPLETE,
RESETTIMEDOUT,
DORECAL,
RECALWAIT,
RECALTIMEDOUT,
RECALCOMPLETE,
DOCOPY,
DOIOHALF,
COPYCOMPLETE,
};
/* software state, per controller */
struct fdc_softc {
bus_space_tag_t sc_iot; /* intio i/o space identifier */
bus_space_handle_t sc_ioh; /* intio io handle */
struct callout sc_timo_ch; /* timeout callout */
struct callout sc_intr_ch; /* pseudo-intr callout */
bus_dma_tag_t sc_dmat; /* intio DMA tag */
bus_dmamap_t sc_dmamap; /* DMA map */
u_int8_t *sc_addr; /* physical address */
struct dmac_channel_stat *sc_dmachan; /* intio DMA channel */
struct dmac_dma_xfer *sc_xfer; /* DMA transfer */
struct fd_softc *sc_fd[4]; /* pointers to children */
TAILQ_HEAD(drivehead, fd_softc) sc_drives;
enum fdc_state sc_state;
int sc_errors; /* number of retries so far */
u_char sc_status[7]; /* copy of registers */
} fdc_softc;
int fdcintr(void *);
void fdcreset(struct fdc_softc *);
/* controller driver configuration */
int fdcprobe(device_t, cfdata_t, void *);
void fdcattach(device_t, device_t, void *);
int fdprint(void *, const char *);
CFATTACH_DECL_NEW(fdc, sizeof(struct fdc_softc),
fdcprobe, fdcattach, NULL, NULL);
extern struct cfdriver fdc_cd;
/*
* Floppies come in various flavors, e.g., 1.2MB vs 1.44MB; here is how
* we tell them apart.
*/
struct fd_type {
int sectrac; /* sectors per track */
int heads; /* number of heads */
int seccyl; /* sectors per cylinder */
int secsize; /* size code for sectors */
int datalen; /* data len when secsize = 0 */
int steprate; /* step rate and head unload time */
int gap1; /* gap len between sectors */
int gap2; /* formatting gap */
int cyls; /* total num of cylinders */
int size; /* size of disk in sectors */
int step; /* steps per cylinder */
int rate; /* transfer speed code */
const char *name;
};
/* The order of entries in the following table is important -- BEWARE! */
struct fd_type fd_types[] = {
{ 8,2,16,3,0xff,0xdf,0x35,0x74,77,1232,1,FDC_500KBPS, "1.2MB/[1024bytes/sector]" }, /* 1.2 MB japanese format */
{ 18,2,36,2,0xff,0xcf,0x1b,0x6c,80,2880,1,FDC_500KBPS,"1.44MB" }, /* 1.44MB diskette */
{ 15,2,30,2,0xff,0xdf,0x1b,0x54,80,2400,1,FDC_500KBPS, "1.2MB" }, /* 1.2 MB AT-diskettes */
{ 9,2,18,2,0xff,0xdf,0x23,0x50,40, 720,2,FDC_300KBPS, "360KB/AT" }, /* 360kB in 1.2MB drive */
{ 9,2,18,2,0xff,0xdf,0x2a,0x50,40, 720,1,FDC_250KBPS, "360KB/PC" }, /* 360kB PC diskettes */
{ 9,2,18,2,0xff,0xdf,0x2a,0x50,80,1440,1,FDC_250KBPS, "720KB" }, /* 3.5" 720kB diskette */
{ 9,2,18,2,0xff,0xdf,0x23,0x50,80,1440,1,FDC_300KBPS, "720KB/x" }, /* 720kB in 1.2MB drive */
{ 9,2,18,2,0xff,0xdf,0x2a,0x50,40, 720,2,FDC_250KBPS, "360KB/x" }, /* 360kB in 720kB drive */
};
/* software state, per disk (with up to 4 disks per ctlr) */
struct fd_softc {
device_t sc_dev;
struct disk sc_dk;
struct fd_type *sc_deftype; /* default type descriptor */
struct fd_type *sc_type; /* current type descriptor */
#if 0 /* see comments in fd_motor_on() */
struct callout sc_motoron_ch;
#endif
struct callout sc_motoroff_ch;
daddr_t sc_blkno; /* starting block number */
int sc_bcount; /* byte count left */
int sc_opts; /* user-set options */
int sc_skip; /* bytes already transferred */
int sc_nblks; /* number of blocks currently transferring */
int sc_nbytes; /* number of bytes currently transferring */
int sc_drive; /* physical unit number */
int sc_flags;
#define FD_BOPEN 0x01 /* it's open */
#define FD_COPEN 0x02 /* it's open */
#define FD_OPEN (FD_BOPEN|FD_COPEN) /* it's open */
#define FD_MOTOR 0x04 /* motor should be on */
#define FD_MOTOR_WAIT 0x08 /* motor coming up */
#define FD_ALIVE 0x10 /* alive */
int sc_cylin; /* where we think the head is */
TAILQ_ENTRY(fd_softc) sc_drivechain;
int sc_ops; /* I/O ops since last switch */
struct bufq_state *sc_q;/* pending I/O requests */
int sc_active; /* number of active I/O operations */
u_char *sc_copybuf; /* for secsize >=3 */
u_char sc_part; /* for secsize >=3 */
#define SEC_P10 0x02 /* first part */
#define SEC_P01 0x01 /* second part */
#define SEC_P11 0x03 /* both part */
#if NRND > 0
rndsource_element_t rnd_source;
#endif
};
/* floppy driver configuration */
int fdprobe(device_t, cfdata_t, void *);
void fdattach(device_t, device_t, void *);
CFATTACH_DECL_NEW(fd, sizeof(struct fd_softc),
fdprobe, fdattach, NULL, NULL);
extern struct cfdriver fd_cd;
dev_type_open(fdopen);
dev_type_close(fdclose);
dev_type_read(fdread);
dev_type_write(fdwrite);
dev_type_ioctl(fdioctl);
dev_type_strategy(fdstrategy);
const struct bdevsw fd_bdevsw = {
fdopen, fdclose, fdstrategy, fdioctl, nodump, nosize, D_DISK
};
const struct cdevsw fd_cdevsw = {
fdopen, fdclose, fdread, fdwrite, fdioctl,
nostop, notty, nopoll, nommap, nokqfilter, D_DISK
};
void fdstart(struct fd_softc *);
struct dkdriver fddkdriver = { fdstrategy };
void fd_set_motor(struct fdc_softc *, int);
void fd_motor_off(void *);
#if 0
void fd_motor_on(void *);
#endif
int fdcresult(struct fdc_softc *);
int out_fdc(bus_space_tag_t, bus_space_handle_t, u_char);
void fdcstart(struct fdc_softc *);
void fdcstatus(device_t, int, const char *);
void fdctimeout(void *);
void fdcpseudointr(void *);
void fdcretry(struct fdc_softc *);
void fdfinish(struct fd_softc *, struct buf *);
inline struct fd_type *fd_dev_to_type(struct fd_softc *, dev_t);
static int fdcpoll(struct fdc_softc *);
static int fdgetdisklabel(struct fd_softc *, dev_t);
static void fd_do_eject(struct fdc_softc *, int);
void fd_mountroot_hook(device_t);
/* DMA transfer routines */
inline static void fdc_dmastart(struct fdc_softc *, int, void *, vsize_t);
static int fdcdmaintr(void *);
static int fdcdmaerrintr(void *);
inline static void
fdc_dmastart(struct fdc_softc *fdc, int read, void *addr, vsize_t count)
{
int error;
DPRINTF(("fdc_dmastart: %s, addr = %p, count = %ld\n",
read ? "read" : "write", (void *) addr, count));
error = bus_dmamap_load(fdc->sc_dmat, fdc->sc_dmamap, addr, count,
0, BUS_DMA_NOWAIT);
if (error) {
panic ("fdc_dmastart: cannot load dmamap");
}
bus_dmamap_sync(fdc->sc_dmat, fdc->sc_dmamap, 0, count,
read?BUS_DMASYNC_PREREAD:BUS_DMASYNC_PREWRITE);
fdc->sc_xfer = dmac_prepare_xfer(fdc->sc_dmachan, fdc->sc_dmat,
fdc->sc_dmamap,
(read?
DMAC_OCR_DIR_DTM:DMAC_OCR_DIR_MTD),
(DMAC_SCR_MAC_COUNT_UP|
DMAC_SCR_DAC_NO_COUNT),
(u_int8_t*) (fdc->sc_addr +
fddata)); /* XXX */
dmac_start_xfer(fdc->sc_dmachan->ch_softc, fdc->sc_xfer);
}
static int
fdcdmaintr(void *arg)
{
struct fdc_softc *fdc = arg;
bus_dmamap_unload(fdc->sc_dmat, fdc->sc_dmamap);
return 0;
}
static int
fdcdmaerrintr(void *dummy)
{
DPRINTF(("fdcdmaerrintr\n"));
return 0;
}
/* ARGSUSED */
int
fdcprobe(device_t parent, cfdata_t cf, void *aux)
{
struct intio_attach_args *ia = aux;
if (strcmp(ia->ia_name, "fdc") != 0)
return 0;
if (ia->ia_addr == INTIOCF_ADDR_DEFAULT)
ia->ia_addr = FDC_ADDR;
if (ia->ia_intr == INTIOCF_INTR_DEFAULT)
ia->ia_intr = FDC_INTR;
if (ia->ia_dma == INTIOCF_DMA_DEFAULT)
ia->ia_dma = FDC_DMA;
if (ia->ia_dmaintr == INTIOCF_DMAINTR_DEFAULT)
ia->ia_dmaintr = FDC_DMAINTR;
if ((ia->ia_intr & 0x03) != 0)
return 0;
ia->ia_size = 0x2000;
if (intio_map_allocate_region (parent, ia, INTIO_MAP_TESTONLY))
return 0;
/* builtin device; always there */
return 1;
}
/*
* Arguments passed between fdcattach and fdprobe.
*/
struct fdc_attach_args {
int fa_drive;
struct fd_type *fa_deftype;
};
/*
* Print the location of a disk drive (called just before attaching the
* the drive). If `fdc' is not NULL, the drive was found but was not
* in the system config file; print the drive name as well.
* Return QUIET (config_find ignores this if the device was configured) to
* avoid printing `fdN not configured' messages.
*/
int
fdprint(void *aux, const char *fdc)
{
struct fdc_attach_args *fa = aux;
if (!fdc)
aprint_normal(" drive %d", fa->fa_drive);
return QUIET;
}
void
fdcattach(device_t parent, device_t self, void *aux)
{
struct fdc_softc *fdc = device_private(self);
bus_space_tag_t iot;
bus_space_handle_t ioh;
struct intio_attach_args *ia = aux;
struct fdc_attach_args fa;
iot = ia->ia_bst;
aprint_normal("\n");
callout_init(&fdc->sc_timo_ch, 0);
callout_init(&fdc->sc_intr_ch, 0);
/* Re-map the I/O space. */
bus_space_map(iot, ia->ia_addr, 0x2000, BUS_SPACE_MAP_SHIFTED, &ioh);
fdc->sc_iot = iot;
fdc->sc_ioh = ioh;
fdc->sc_addr = (void *)ia->ia_addr;
fdc->sc_dmat = ia->ia_dmat;
fdc->sc_state = DEVIDLE;
TAILQ_INIT(&fdc->sc_drives);
/* Initialize DMAC channel */
fdc->sc_dmachan = dmac_alloc_channel(parent, ia->ia_dma, "fdc",
ia->ia_dmaintr, fdcdmaintr, fdc,
ia->ia_dmaintr+1, fdcdmaerrintr,
fdc);
if (bus_dmamap_create(fdc->sc_dmat, FDC_MAXIOSIZE, 1, DMAC_MAXSEGSZ,
0, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW,
&fdc->sc_dmamap)) {
aprint_error_dev(self, "can't set up intio DMA map\n");
return;
}
if (intio_intr_establish(ia->ia_intr, "fdc", fdcintr, fdc))
panic ("Could not establish interrupt (duplicated vector?).");
intio_set_ivec(ia->ia_intr);
/* reset */
intio_disable_intr(SICILIAN_INTR_FDD);
intio_enable_intr(SICILIAN_INTR_FDC);
fdcresult(fdc);
fdcreset(fdc);
aprint_normal_dev(self, "uPD72065 FDC\n");
out_fdc(iot, ioh, NE7CMD_SPECIFY);/* specify command */
out_fdc(iot, ioh, 0xd0);
out_fdc(iot, ioh, 0x10);
/* physical limit: four drives per controller. */
for (fa.fa_drive = 0; fa.fa_drive < 4; fa.fa_drive++) {
(void)config_found(self, (void *)&fa, fdprint);
}
intio_enable_intr(SICILIAN_INTR_FDC);
}
void
fdcreset(struct fdc_softc *fdc)
{
bus_space_write_1(fdc->sc_iot, fdc->sc_ioh, fdsts, NE7CMD_RESET);
}
static int
fdcpoll(struct fdc_softc *fdc)
{
int i = 25000, n;
while (--i > 0) {
if ((intio_get_sicilian_intr() & SICILIAN_STAT_FDC)) {
out_fdc(fdc->sc_iot, fdc->sc_ioh, NE7CMD_SENSEI);
n = fdcresult(fdc);
break;
}
DELAY(100);
}
return i;
}
int
fdprobe(device_t parent, cfdata_t cf, void *aux)
{
struct fdc_softc *fdc = device_private(parent);
struct fd_type *type;
struct fdc_attach_args *fa = aux;
int drive = fa->fa_drive;
bus_space_tag_t iot = fdc->sc_iot;
bus_space_handle_t ioh = fdc->sc_ioh;
int n = 0;
int found = 0;
int i;
if (cf->cf_loc[FDCCF_UNIT] != FDCCF_UNIT_DEFAULT &&
cf->cf_loc[FDCCF_UNIT] != drive)
return 0;
type = &fd_types[0]; /* XXX 1.2MB */
intio_disable_intr(SICILIAN_INTR_FDC);
/* select drive and turn on motor */
bus_space_write_1(iot, ioh, fdctl, 0x80 | (type->rate << 4)| drive);
fdc_force_ready(FDCRDY);
fdcpoll(fdc);
retry:
out_fdc(iot, ioh, NE7CMD_RECAL);
out_fdc(iot, ioh, drive);
i = 25000;
while (--i > 0) {
if ((intio_get_sicilian_intr() & SICILIAN_STAT_FDC)) {
out_fdc(iot, ioh, NE7CMD_SENSEI);
n = fdcresult(fdc);
break;
}
DELAY(100);
}
#ifdef FDDEBUG
{
int _i;
DPRINTF(("fdprobe: status"));
for (_i = 0; _i < n; _i++)
DPRINTF((" %x", fdc->sc_status[_i]));
DPRINTF(("\n"));
}
#endif
if (n == 2) {
if ((fdc->sc_status[0] & 0xf0) == 0x20)
found = 1;
else if ((fdc->sc_status[0] & 0xf0) == 0xc0)
goto retry;
}
/* turn off motor */
bus_space_write_1(fdc->sc_iot, fdc->sc_ioh,
fdctl, (type->rate << 4)| drive);
fdc_force_ready(FDCSTBY);
if (!found) {
intio_enable_intr(SICILIAN_INTR_FDC);
return 0;
}
return 1;
}
/*
* Controller is working, and drive responded. Attach it.
*/
void
fdattach(device_t parent, device_t self, void *aux)
{
struct fdc_softc *fdc = device_private(parent);
struct fd_softc *fd = device_private(self);
struct fdc_attach_args *fa = aux;
struct fd_type *type = &fd_types[0]; /* XXX 1.2MB */
int drive = fa->fa_drive;
#if 0
callout_init(&fd->sc_motoron_ch, 0);
#endif
callout_init(&fd->sc_motoroff_ch, 0);
fd->sc_dev = self;
fd->sc_flags = 0;
if (type)
aprint_normal(": %s, %d cyl, %d head, %d sec\n", type->name,
type->cyls, type->heads, type->sectrac);
else
aprint_normal(": density unknown\n");
bufq_alloc(&fd->sc_q, "disksort", BUFQ_SORT_CYLINDER);
fd->sc_cylin = -1;
fd->sc_drive = drive;
fd->sc_deftype = type;
fdc->sc_fd[drive] = fd;
fd->sc_copybuf = (u_char *)malloc(PAGE_SIZE, M_DEVBUF, M_WAITOK);
if (fd->sc_copybuf == 0)
aprint_error("%s: WARNING!! malloc() failed.\n", __func__);
fd->sc_flags |= FD_ALIVE;
/*
* Initialize and attach the disk structure.
*/
disk_init(&fd->sc_dk, device_xname(fd->sc_dev), &fddkdriver);
disk_attach(&fd->sc_dk);
/*
* Establish a mountroot_hook anyway in case we booted
* with RB_ASKNAME and get selected as the boot device.
*/
mountroothook_establish(fd_mountroot_hook, fd->sc_dev);
#if NRND > 0
rnd_attach_source(&fd->rnd_source, device_xname(fd->sc_dev),
RND_TYPE_DISK, 0);
#endif
}
inline struct fd_type *
fd_dev_to_type(struct fd_softc *fd, dev_t dev)
{
int type = FDTYPE(dev);
if (type > (sizeof(fd_types) / sizeof(fd_types[0])))
return NULL;
return &fd_types[type];
}
void
fdstrategy(struct buf *bp)
{
struct fd_softc *fd;
int unit;
int sz;
int s;
unit = FDUNIT(bp->b_dev);
fd = device_lookup_private(&fd_cd, unit);
if (fd == NULL) {
bp->b_error = EINVAL;
goto done;
}
if (bp->b_blkno < 0 ||
(bp->b_bcount % FDC_BSIZE) != 0) {
DPRINTF(("fdstrategy: unit=%d, blkno=%" PRId64 ", "
"bcount=%d\n", unit,
bp->b_blkno, bp->b_bcount));
bp->b_error = EINVAL;
goto done;
}
/* If it's a null transfer, return immediately. */
if (bp->b_bcount == 0)
goto done;
sz = howmany(bp->b_bcount, FDC_BSIZE);
if (bp->b_blkno + sz >
(fd->sc_type->size << (fd->sc_type->secsize - 2))) {
sz = (fd->sc_type->size << (fd->sc_type->secsize - 2))
- bp->b_blkno;
if (sz == 0) {
/* If exactly at end of disk, return EOF. */
bp->b_resid = bp->b_bcount;
goto done;
}
if (sz < 0) {
/* If past end of disk, return EINVAL. */
bp->b_error = EINVAL;
goto done;
}
/* Otherwise, truncate request. */
bp->b_bcount = sz << DEV_BSHIFT;
}
bp->b_rawblkno = bp->b_blkno;
bp->b_cylinder = bp->b_blkno / (FDC_BSIZE / DEV_BSIZE)
/ (fd->sc_type->seccyl * (1 << (fd->sc_type->secsize - 2)));
DPRINTF(("fdstrategy: %s b_blkno %" PRId64 " b_bcount %d cylin %d\n",
bp->b_flags & B_READ ? "read" : "write",
bp->b_blkno, bp->b_bcount, bp->b_cylinder));
/* Queue transfer on drive, activate drive and controller if idle. */
s = splbio();
bufq_put(fd->sc_q, bp);
callout_stop(&fd->sc_motoroff_ch); /* a good idea */
if (fd->sc_active == 0)
fdstart(fd);
#ifdef DIAGNOSTIC
else {
struct fdc_softc *fdc = device_private(device_parent(fd->sc_dev));
if (fdc->sc_state == DEVIDLE) {
printf("fdstrategy: controller inactive\n");
fdcstart(fdc);
}
}
#endif
splx(s);
return;
done:
/* Toss transfer; we're done early. */
biodone(bp);
}
void
fdstart(struct fd_softc *fd)
{
struct fdc_softc *fdc = device_private(device_parent(fd->sc_dev));
int active = !TAILQ_EMPTY(&fdc->sc_drives);
/* Link into controller queue. */
fd->sc_active = 1;
TAILQ_INSERT_TAIL(&fdc->sc_drives, fd, sc_drivechain);
/* If controller not already active, start it. */
if (!active)
fdcstart(fdc);
}
void
fdfinish(struct fd_softc *fd, struct buf *bp)
{
struct fdc_softc *fdc = device_private(device_parent(fd->sc_dev));
/*
* Move this drive to the end of the queue to give others a `fair'
* chance. We only force a switch if N operations are completed while
* another drive is waiting to be serviced, since there is a long motor
* startup delay whenever we switch.
*/
(void)bufq_get(fd->sc_q);
if (TAILQ_NEXT(fd, sc_drivechain) && ++fd->sc_ops >= 8) {
fd->sc_ops = 0;
TAILQ_REMOVE(&fdc->sc_drives, fd, sc_drivechain);
if (bufq_peek(fd->sc_q) != NULL) {
TAILQ_INSERT_TAIL(&fdc->sc_drives, fd, sc_drivechain);
} else
fd->sc_active = 0;
}
bp->b_resid = fd->sc_bcount;
fd->sc_skip = 0;
#if NRND > 0
rnd_add_uint32(&fd->rnd_source, bp->b_blkno);
#endif
biodone(bp);
/* turn off motor 5s from now */
callout_reset(&fd->sc_motoroff_ch, 5 * hz, fd_motor_off, fd);
fdc->sc_state = DEVIDLE;
}
int
fdread(dev_t dev, struct uio *uio, int flags)
{
return (physio(fdstrategy, NULL, dev, B_READ, minphys, uio));
}
int
fdwrite(dev_t dev, struct uio *uio, int flags)
{
return (physio(fdstrategy, NULL, dev, B_WRITE, minphys, uio));
}
void
fd_set_motor(struct fdc_softc *fdc, int reset)
{
struct fd_softc *fd;
int n;
DPRINTF(("fd_set_motor:\n"));
for (n = 0; n < 4; n++)
if ((fd = fdc->sc_fd[n]) && (fd->sc_flags & FD_MOTOR)) {
bus_space_write_1(fdc->sc_iot, fdc->sc_ioh, fdctl,
0x80 | (fd->sc_type->rate << 4)| n);
}
}
void
fd_motor_off(void *arg)
{
struct fd_softc *fd = arg;
struct fdc_softc *fdc = device_private(device_parent(fd->sc_dev));
int s;
DPRINTF(("fd_motor_off:\n"));
s = splbio();
fd->sc_flags &= ~(FD_MOTOR | FD_MOTOR_WAIT);
bus_space_write_1 (fdc->sc_iot, fdc->sc_ioh, fdctl,
(fd->sc_type->rate << 4) | fd->sc_drive);
#if 0
fd_set_motor(fdc, 0); /* XXX */
#endif
splx(s);
}
#if 0 /* on x68k motor on triggers interrupts by state change of ready line. */
void
fd_motor_on(void *arg)
{
struct fd_softc *fd = arg;
struct fdc_softc *fdc = device_private(device_parent(fd->sc_dev));
int s;
DPRINTF(("fd_motor_on:\n"));
s = splbio();
fd->sc_flags &= ~FD_MOTOR_WAIT;
if ((TAILQ_FIRST(&fdc->sc_drives) == fd) && (fdc->sc_state == MOTORWAIT))
(void) fdcintr(fdc);
splx(s);
}
#endif
int
fdcresult(struct fdc_softc *fdc)
{
bus_space_tag_t iot = fdc->sc_iot;
bus_space_handle_t ioh = fdc->sc_ioh;
u_char i;
int j = 100000,
n = 0;
for (; j; j--) {
i = bus_space_read_1(iot, ioh, fdsts) &
(NE7_DIO | NE7_RQM | NE7_CB);
if (i == NE7_RQM)
return n;
if (i == (NE7_DIO | NE7_RQM | NE7_CB)) {
if (n >= sizeof(fdc->sc_status)) {
log(LOG_ERR, "fdcresult: overrun\n");
return -1;
}
fdc->sc_status[n++] =
bus_space_read_1(iot, ioh, fddata);
}
delay(10);
}
log(LOG_ERR, "fdcresult: timeout\n");
return -1;
}
int
out_fdc(bus_space_tag_t iot, bus_space_handle_t ioh, u_char x)
{
int i = 100000;
while ((bus_space_read_1(iot, ioh, fdsts) & NE7_DIO) && i-- > 0);
if (i <= 0)
return -1;
while ((bus_space_read_1(iot, ioh, fdsts) & NE7_RQM) == 0 && i-- > 0);
if (i <= 0)
return -1;
bus_space_write_1(iot, ioh, fddata, x);
return 0;
}
int
fdopen(dev_t dev, int flags, int mode, struct lwp *l)
{
int unit;
struct fd_softc *fd;
struct fd_type *type;
struct fdc_softc *fdc;
unit = FDUNIT(dev);
fd = device_lookup_private(&fd_cd, unit);
if (fd == NULL)
return ENXIO;
type = fd_dev_to_type(fd, dev);
if (type == NULL)
return ENXIO;
if ((fd->sc_flags & FD_OPEN) != 0 &&
fd->sc_type != type)
return EBUSY;
fdc = device_private(device_parent(fd->sc_dev));
if ((fd->sc_flags & FD_OPEN) == 0) {
/* Lock eject button */
bus_space_write_1(fdc->sc_iot, fdc->sc_ioh, fdout,
0x40 | ( 1 << unit));
bus_space_write_1(fdc->sc_iot, fdc->sc_ioh, fdout, 0x40);
}
fd->sc_type = type;
fd->sc_cylin = -1;
switch (mode) {
case S_IFCHR:
fd->sc_flags |= FD_COPEN;
break;
case S_IFBLK:
fd->sc_flags |= FD_BOPEN;
break;
}
fdgetdisklabel(fd, dev);
return 0;
}
int
fdclose(dev_t dev, int flags, int mode, struct lwp *l)
{
int unit = FDUNIT(dev);
struct fd_softc *fd = device_lookup_private(&fd_cd, unit);
struct fdc_softc *fdc = device_private(device_parent(fd->sc_dev));
DPRINTF(("fdclose %d\n", unit));
switch (mode) {
case S_IFCHR:
fd->sc_flags &= ~FD_COPEN;
break;
case S_IFBLK:
fd->sc_flags &= ~FD_BOPEN;
break;
}
if ((fd->sc_flags & FD_OPEN) == 0) {
bus_space_write_1(fdc->sc_iot, fdc->sc_ioh, fdout,
( 1 << unit));
bus_space_write_1(fdc->sc_iot, fdc->sc_ioh, fdout, 0);
}
return 0;
}
void
fdcstart(struct fdc_softc *fdc)
{
#ifdef DIAGNOSTIC
/* only got here if controller's drive queue was inactive; should
be in idle state */
if (fdc->sc_state != DEVIDLE) {
printf("fdcstart: not idle\n");
return;
}
#endif
(void) fdcintr(fdc);
}
static void
fdcpstatus(int n, struct fdc_softc *fdc)
{
char bits[64];
switch (n) {
case 0:
printf("\n");
break;
case 2:
snprintb(bits, sizeof(bits), NE7_ST0BITS, fdc->sc_status[0]);
printf(" (st0 %s cyl %d)\n", bits, fdc->sc_status[1]);
break;
case 7:
snprintb(bits, sizeof(bits), NE7_ST0BITS, fdc->sc_status[0]);
printf(" (st0 %s", bits);
snprintb(bits, sizeof(bits), NE7_ST1BITS, fdc->sc_status[1]);
printf(" st1 %s", bits);
snprintb(bits, sizeof(bits), NE7_ST2BITS, fdc->sc_status[2]);
printf(" st2 %s", bits);
printf(" cyl %d head %d sec %d)\n",
fdc->sc_status[3], fdc->sc_status[4], fdc->sc_status[5]);
break;
#ifdef DIAGNOSTIC
default:
printf("\nfdcstatus: weird size");
break;
#endif
}
}
void
fdcstatus(device_t dv, int n, const char *s)
{
struct fdc_softc *fdc = device_private(device_parent(dv));
if (n == 0) {
out_fdc(fdc->sc_iot, fdc->sc_ioh, NE7CMD_SENSEI);
(void) fdcresult(fdc);
n = 2;
}
printf("%s: %s: state %d", device_xname(dv), s, fdc->sc_state);
fdcpstatus(n, fdc);
}
void
fdctimeout(void *arg)
{
struct fdc_softc *fdc = arg;
struct fd_softc *fd = TAILQ_FIRST(&fdc->sc_drives);
int s;
s = splbio();
fdcstatus(fd->sc_dev, 0, "timeout");
if (bufq_peek(fd->sc_q) != NULL)
fdc->sc_state++;
else
fdc->sc_state = DEVIDLE;
(void) fdcintr(fdc);
splx(s);
}
#if 0
void
fdcpseudointr(void *arg)
{
int s;
struct fdc_softc *fdc = arg;
/* just ensure it has the right spl */
s = splbio();
(void) fdcintr(fdc);
splx(s);
}
#endif
int
fdcintr(void *arg)
{
struct fdc_softc *fdc = arg;
#define st0 fdc->sc_status[0]
#define cyl fdc->sc_status[1]
struct fd_softc *fd;
struct buf *bp;
bus_space_tag_t iot = fdc->sc_iot;
bus_space_handle_t ioh = fdc->sc_ioh;
int read, head, sec, pos, i, sectrac, nblks;
int tmp;
struct fd_type *type;
loop:
fd = TAILQ_FIRST(&fdc->sc_drives);
if (fd == NULL) {
DPRINTF(("fdcintr: set DEVIDLE\n"));
if (fdc->sc_state == DEVIDLE) {
if (intio_get_sicilian_intr() & SICILIAN_STAT_FDC) {
out_fdc(iot, ioh, NE7CMD_SENSEI);
if ((tmp = fdcresult(fdc)) != 2 ||
(st0 & 0xf8) != 0x20) {
goto loop;
}
}
}
/* no drives waiting; end */
fdc->sc_state = DEVIDLE;
return 1;
}
/* Is there a transfer to this drive? If not, deactivate drive. */
bp = bufq_peek(fd->sc_q);
if (bp == NULL) {
fd->sc_ops = 0;
TAILQ_REMOVE(&fdc->sc_drives, fd, sc_drivechain);
fd->sc_active = 0;
goto loop;
}
switch (fdc->sc_state) {
case DEVIDLE:
DPRINTF(("fdcintr: in DEVIDLE\n"));
fdc->sc_errors = 0;
fd->sc_skip = 0;
fd->sc_bcount = bp->b_bcount;
fd->sc_blkno = bp->b_blkno / (FDC_BSIZE / DEV_BSIZE);
callout_stop(&fd->sc_motoroff_ch);
if ((fd->sc_flags & FD_MOTOR_WAIT) != 0) {
fdc->sc_state = MOTORWAIT;
return 1;
}
if ((fd->sc_flags & FD_MOTOR) == 0) {
/* Turn on the motor */
/* being careful about other drives. */
for (i = 0; i < 4; i++) {
struct fd_softc *ofd = fdc->sc_fd[i];
if (ofd && ofd->sc_flags & FD_MOTOR) {
callout_stop(&ofd->sc_motoroff_ch);
ofd->sc_flags &=
~(FD_MOTOR | FD_MOTOR_WAIT);
break;
}
}
fd->sc_flags |= FD_MOTOR | FD_MOTOR_WAIT;
fd_set_motor(fdc, 0);
fdc->sc_state = MOTORWAIT;
#if 0 /* no need to callout on x68k; motor on will trigger interrupts */
/* allow .5s for motor to stabilize */
callout_reset(&fd->sc_motoron_ch, hz / 2,
fd_motor_on, fd);
#endif
return 1;
}
/* Make sure the right drive is selected. */
fd_set_motor(fdc, 0);
/* fall through */
case DOSEEK:
doseek:
DPRINTF(("fdcintr: in DOSEEK\n"));
if (fd->sc_cylin == bp->b_cylinder)
goto doio;
out_fdc(iot, ioh, NE7CMD_SPECIFY);/* specify command */
out_fdc(iot, ioh, 0xd0); /* XXX const */
out_fdc(iot, ioh, 0x10);
out_fdc(iot, ioh, NE7CMD_SEEK); /* seek function */
out_fdc(iot, ioh, fd->sc_drive); /* drive number */
out_fdc(iot, ioh, bp->b_cylinder * fd->sc_type->step);
fd->sc_cylin = -1;
fdc->sc_state = SEEKWAIT;
iostat_seek(fd->sc_dk.dk_stats);
disk_busy(&fd->sc_dk);
callout_reset(&fdc->sc_timo_ch, 4 * hz, fdctimeout, fdc);
return 1;
case DOIO:
doio:
DPRINTF(("fdcintr: DOIO: "));
type = fd->sc_type;
sectrac = type->sectrac;
pos = fd->sc_blkno % (sectrac * (1 << (type->secsize - 2)));
sec = pos / (1 << (type->secsize - 2));
if (type->secsize == 2) {
fd->sc_part = SEC_P11;
nblks = (sectrac - sec) << (type->secsize - 2);
nblks = min(nblks, fd->sc_bcount / FDC_BSIZE);
DPRINTF(("nblks(0)"));
} else if ((fd->sc_blkno % 2) == 0) {
if (fd->sc_bcount & 0x00000200) {
if (fd->sc_bcount == FDC_BSIZE) {
fd->sc_part = SEC_P10;
nblks = 1;
DPRINTF(("nblks(1)"));
} else {
fd->sc_part = SEC_P11;
nblks = (sectrac - sec) * 2;
nblks = min(nblks, fd->sc_bcount
/ FDC_BSIZE - 1);
DPRINTF(("nblks(2)"));
}
} else {
fd->sc_part = SEC_P11;
nblks = (sectrac - sec)
<< (type->secsize - 2);
nblks = min(nblks, fd->sc_bcount / FDC_BSIZE);
DPRINTF(("nblks(3)"));
}
} else {
fd->sc_part = SEC_P01;
nblks = 1;
DPRINTF(("nblks(4)"));
}
nblks = min(nblks, FDC_MAXIOSIZE / FDC_BSIZE);
DPRINTF((" %d\n", nblks));
fd->sc_nblks = nblks;
fd->sc_nbytes = nblks * FDC_BSIZE;
head = (fd->sc_blkno
% (type->seccyl * (1 << (type->secsize - 2))))
/ (type->sectrac * (1 << (type->secsize - 2)));
#ifdef DIAGNOSTIC
{int block;
block = ((fd->sc_cylin * type->heads + head) * type->sectrac
+ sec) * (1 << (type->secsize - 2));
block += (fd->sc_part == SEC_P01) ? 1 : 0;
if (block != fd->sc_blkno) {
printf("C H R N: %d %d %d %d\n",
fd->sc_cylin, head, sec, type->secsize);
printf("fdcintr: doio: block %d != blkno %" PRId64 "\n",
block, fd->sc_blkno);
#ifdef DDB
Debugger();
#endif
}
}
#endif
read = bp->b_flags & B_READ;
DPRINTF(("fdcintr: %s drive %d track %d "
"head %d sec %d nblks %d, skip %d\n",
read ? "read" : "write", fd->sc_drive, fd->sc_cylin,
head, sec, nblks, fd->sc_skip));
DPRINTF(("C H R N: %d %d %d %d\n", fd->sc_cylin, head, sec,
type->secsize));
if (fd->sc_part != SEC_P11)
goto docopy;
fdc_dmastart(fdc, read, (char *)bp->b_data + fd->sc_skip,
fd->sc_nbytes);
if (read)
out_fdc(iot, ioh, NE7CMD_READ); /* READ */
else
out_fdc(iot, ioh, NE7CMD_WRITE); /* WRITE */
out_fdc(iot, ioh, (head << 2) | fd->sc_drive);
out_fdc(iot, ioh, bp->b_cylinder); /* cylinder */
out_fdc(iot, ioh, head);
out_fdc(iot, ioh, sec + 1); /* sector +1 */
out_fdc(iot, ioh, type->secsize); /* sector size */
out_fdc(iot, ioh, type->sectrac); /* sectors/track */
out_fdc(iot, ioh, type->gap1); /* gap1 size */
out_fdc(iot, ioh, type->datalen); /* data length */
fdc->sc_state = IOCOMPLETE;
disk_busy(&fd->sc_dk);
/* allow 2 seconds for operation */
callout_reset(&fdc->sc_timo_ch, 2 * hz, fdctimeout, fdc);
return 1; /* will return later */
case DOCOPY:
docopy:
DPRINTF(("fdcintr: DOCOPY:\n"));
type = fd->sc_type;
head = (fd->sc_blkno
% (type->seccyl * (1 << (type->secsize - 2))))
/ (type->sectrac * (1 << (type->secsize - 2)));
pos = fd->sc_blkno % (type->sectrac * (1 << (type->secsize - 2)));
sec = pos / (1 << (type->secsize - 2));
fdc_dmastart(fdc, B_READ, fd->sc_copybuf, 1024);
out_fdc(iot, ioh, NE7CMD_READ); /* READ */
out_fdc(iot, ioh, (head << 2) | fd->sc_drive);
out_fdc(iot, ioh, bp->b_cylinder); /* cylinder */
out_fdc(iot, ioh, head);
out_fdc(iot, ioh, sec + 1); /* sector +1 */
out_fdc(iot, ioh, type->secsize); /* sector size */
out_fdc(iot, ioh, type->sectrac); /* sectors/track */
out_fdc(iot, ioh, type->gap1); /* gap1 size */
out_fdc(iot, ioh, type->datalen); /* data length */
fdc->sc_state = COPYCOMPLETE;
/* allow 2 seconds for operation */
callout_reset(&fdc->sc_timo_ch, 2 * hz, fdctimeout, fdc);
return 1; /* will return later */
case DOIOHALF:
doiohalf:
DPRINTF((" DOIOHALF:\n"));
type = fd->sc_type;
sectrac = type->sectrac;
pos = fd->sc_blkno % (sectrac * (1 << (type->secsize - 2)));
sec = pos / (1 << (type->secsize - 2));
head = (fd->sc_blkno
% (type->seccyl * (1 << (type->secsize - 2))))
/ (type->sectrac * (1 << (type->secsize - 2)));
#ifdef DIAGNOSTIC
{int block;
block = ((fd->sc_cylin * type->heads + head) *
type->sectrac + sec)
* (1 << (type->secsize - 2));
block += (fd->sc_part == SEC_P01) ? 1 : 0;
if (block != fd->sc_blkno) {
printf("fdcintr: block %d != blkno %" PRId64 "\n",
block, fd->sc_blkno);
#ifdef DDB
Debugger();
#endif
}
}
#endif
if ((read = bp->b_flags & B_READ)) {
memcpy((char *)bp->b_data + fd->sc_skip, fd->sc_copybuf
+ (fd->sc_part & SEC_P01 ? FDC_BSIZE : 0),
FDC_BSIZE);
fdc->sc_state = IOCOMPLETE;
goto iocomplete2;
} else {
memcpy((char *)fd->sc_copybuf
+ (fd->sc_part & SEC_P01 ? FDC_BSIZE : 0),
(char *)bp->b_data + fd->sc_skip, FDC_BSIZE);
fdc_dmastart(fdc, read, fd->sc_copybuf, 1024);
}
out_fdc(iot, ioh, NE7CMD_WRITE); /* WRITE */
out_fdc(iot, ioh, (head << 2) | fd->sc_drive);
out_fdc(iot, ioh, bp->b_cylinder); /* cylinder */
out_fdc(iot, ioh, head);
out_fdc(iot, ioh, sec + 1); /* sector +1 */
out_fdc(iot, ioh, fd->sc_type->secsize); /* sector size */
out_fdc(iot, ioh, sectrac); /* sectors/track */
out_fdc(iot, ioh, fd->sc_type->gap1); /* gap1 size */
out_fdc(iot, ioh, fd->sc_type->datalen); /* data length */
fdc->sc_state = IOCOMPLETE;
/* allow 2 seconds for operation */
callout_reset(&fdc->sc_timo_ch, 2 * hz, fdctimeout, fdc);
return 1; /* will return later */
case SEEKWAIT:
callout_stop(&fdc->sc_timo_ch);
fdc->sc_state = SEEKCOMPLETE;
/* allow 1/50 second for heads to settle */
#if 0
callout_reset(&fdc->sc_intr_ch, hz / 50, fdcpseudointr, fdc);
#endif
return 1;
case SEEKCOMPLETE:
/* Make sure seek really happened */
DPRINTF(("fdcintr: SEEKCOMPLETE: FDC status = %x\n",
bus_space_read_1(fdc->sc_iot, fdc->sc_ioh, fdsts)));
out_fdc(iot, ioh, NE7CMD_SENSEI);
tmp = fdcresult(fdc);
if ((st0 & 0xf8) == 0xc0) {
DPRINTF(("fdcintr: first seek!\n"));
fdc->sc_state = DORECAL;
goto loop;
} else if (tmp != 2 ||
(st0 & 0xf8) != 0x20 ||
cyl != bp->b_cylinder) {
#ifdef FDDEBUG
fdcstatus(fd->sc_dev, 2, "seek failed");
#endif
fdcretry(fdc);
goto loop;
}
fd->sc_cylin = bp->b_cylinder;
goto doio;
case IOTIMEDOUT:
#if 0
isa_dmaabort(fdc->sc_drq);
#endif
case SEEKTIMEDOUT:
case RECALTIMEDOUT:
case RESETTIMEDOUT:
fdcretry(fdc);
goto loop;
case IOCOMPLETE: /* IO DONE, post-analyze */
callout_stop(&fdc->sc_timo_ch);
DPRINTF(("fdcintr: in IOCOMPLETE\n"));
if ((tmp = fdcresult(fdc)) != 7 || (st0 & 0xf8) != 0) {
#if 0
isa_dmaabort(fdc->sc_drq);
#endif
fdcstatus(fd->sc_dev, tmp, bp->b_flags & B_READ ?
"read failed" : "write failed");
printf("blkno %" PRId64 " nblks %d\n",
fd->sc_blkno, fd->sc_nblks);
fdcretry(fdc);
goto loop;
}
#if 0
isa_dmadone(bp->b_flags & B_READ, bp->b_data + fd->sc_skip,
nblks * FDC_BSIZE, fdc->sc_drq);
#endif
iocomplete2:
if (fdc->sc_errors) {
diskerr(bp, "fd", "soft error (corrected)", LOG_PRINTF,
fd->sc_skip / FDC_BSIZE, (struct disklabel *)NULL);
printf("\n");
fdc->sc_errors = 0;
}
fd->sc_blkno += fd->sc_nblks;
fd->sc_skip += fd->sc_nbytes;
fd->sc_bcount -= fd->sc_nbytes;
DPRINTF(("fd->sc_bcount = %d\n", fd->sc_bcount));
if (fd->sc_bcount > 0) {
bp->b_cylinder = fd->sc_blkno
/ (fd->sc_type->seccyl
* (1 << (fd->sc_type->secsize - 2)));
goto doseek;
}
fdfinish(fd, bp);
goto loop;
case COPYCOMPLETE: /* IO DONE, post-analyze */
DPRINTF(("fdcintr: COPYCOMPLETE:"));
callout_stop(&fdc->sc_timo_ch);
if ((tmp = fdcresult(fdc)) != 7 || (st0 & 0xf8) != 0) {
printf("fdcintr: resnum=%d, st0=%x\n", tmp, st0);
#if 0
isa_dmaabort(fdc->sc_drq);
#endif
fdcstatus(fd->sc_dev, 7, bp->b_flags & B_READ ?
"read failed" : "write failed");
printf("blkno %" PRId64 " nblks %d\n",
fd->sc_blkno, fd->sc_nblks);
fdcretry(fdc);
goto loop;
}
goto doiohalf;
case DORESET:
DPRINTF(("fdcintr: in DORESET\n"));
/* try a reset, keep motor on */
fd_set_motor(fdc, 1);
DELAY(100);
fd_set_motor(fdc, 0);
fdc->sc_state = RESETCOMPLETE;
callout_reset(&fdc->sc_timo_ch, hz / 2, fdctimeout, fdc);
return 1; /* will return later */
case RESETCOMPLETE:
DPRINTF(("fdcintr: in RESETCOMPLETE\n"));
callout_stop(&fdc->sc_timo_ch);
/* clear the controller output buffer */
for (i = 0; i < 4; i++) {
out_fdc(iot, ioh, NE7CMD_SENSEI);
(void) fdcresult(fdc);
}
/* fall through */
case DORECAL:
DPRINTF(("fdcintr: in DORECAL\n"));
out_fdc(iot, ioh, NE7CMD_RECAL); /* recalibrate function */
out_fdc(iot, ioh, fd->sc_drive);
fdc->sc_state = RECALWAIT;
callout_reset(&fdc->sc_timo_ch, 5 * hz, fdctimeout, fdc);
return 1; /* will return later */
case RECALWAIT:
DPRINTF(("fdcintr: in RECALWAIT\n"));
callout_stop(&fdc->sc_timo_ch);
fdc->sc_state = RECALCOMPLETE;
/* allow 1/30 second for heads to settle */
#if 0
callout_reset(&fdc->sc_intr_ch, hz / 30, fdcpseudointr, fdc);
#endif
return 1; /* will return later */
case RECALCOMPLETE:
DPRINTF(("fdcintr: in RECALCOMPLETE\n"));
out_fdc(iot, ioh, NE7CMD_SENSEI);
tmp = fdcresult(fdc);
if ((st0 & 0xf8) == 0xc0) {
DPRINTF(("fdcintr: first seek!\n"));
fdc->sc_state = DORECAL;
goto loop;
} else if (tmp != 2 || (st0 & 0xf8) != 0x20 || cyl != 0) {
#ifdef FDDEBUG
fdcstatus(fd->sc_dev, 2, "recalibrate failed");
#endif
fdcretry(fdc);
goto loop;
}
fd->sc_cylin = 0;
goto doseek;
case MOTORWAIT:
#if 0 /* on x68k motor on triggers interrupts by state change of ready line. */
if (fd->sc_flags & FD_MOTOR_WAIT)
return 1; /* time's not up yet */
#else
/* check drive ready by state change interrupt */
KASSERT(fd->sc_flags & FD_MOTOR_WAIT);
out_fdc(iot, ioh, NE7CMD_SENSEI);
tmp = fdcresult(fdc);
if (tmp != 2 || (st0 & 0xc0) != 0xc0 /* ready changed */) {
printf("%s: unexpected interrupt during MOTORWAIT",
device_xname(fd->sc_dev));
fdcpstatus(7, fdc);
return 1;
}
fd->sc_flags &= ~FD_MOTOR_WAIT;
#endif
goto doseek;
default:
fdcstatus(fd->sc_dev, 0, "stray interrupt");
return 1;
}
#ifdef DIAGNOSTIC
panic("fdcintr: impossible");
#endif
#undef st0
#undef cyl
}
void
fdcretry(struct fdc_softc *fdc)
{
struct fd_softc *fd;
struct buf *bp;
DPRINTF(("fdcretry:\n"));
fd = TAILQ_FIRST(&fdc->sc_drives);
bp = bufq_peek(fd->sc_q);
switch (fdc->sc_errors) {
case 0:
/* try again */
fdc->sc_state = SEEKCOMPLETE;
break;
case 1: case 2: case 3:
/* didn't work; try recalibrating */
fdc->sc_state = DORECAL;
break;
case 4:
/* still no go; reset the bastard */
fdc->sc_state = DORESET;
break;
default:
diskerr(bp, "fd", "hard error", LOG_PRINTF,
fd->sc_skip, (struct disklabel *)NULL);
fdcpstatus(7, fdc);
bp->b_error = EIO;
fdfinish(fd, bp);
}
fdc->sc_errors++;
}
int
fdioctl(dev_t dev, u_long cmd, void *addr, int flag, struct lwp *l)
{
struct fd_softc *fd = device_lookup_private(&fd_cd, FDUNIT(dev));
struct fdc_softc *fdc = device_private(device_parent(fd->sc_dev));
int part = DISKPART(dev);
struct disklabel buffer;
int error;
DPRINTF(("fdioctl:"));
switch (cmd) {
case DIOCGDINFO:
DPRINTF(("DIOCGDINFO\n"));
#if 1
*(struct disklabel *)addr = *(fd->sc_dk.dk_label);
return(0);
#else
memset(&buffer, 0, sizeof(buffer));
buffer.d_secpercyl = fd->sc_type->seccyl;
buffer.d_type = DTYPE_FLOPPY;
buffer.d_secsize = 128 << fd->sc_type->secsize;
if (readdisklabel(dev, fdstrategy, &buffer, NULL) != NULL)
return EINVAL;
*(struct disklabel *)addr = buffer;
return 0;
#endif
case DIOCGPART:
DPRINTF(("DIOCGPART\n"));
((struct partinfo *)addr)->disklab = fd->sc_dk.dk_label;
((struct partinfo *)addr)->part =
&fd->sc_dk.dk_label->d_partitions[part];
return(0);
case DIOCWLABEL:
DPRINTF(("DIOCWLABEL\n"));
if ((flag & FWRITE) == 0)
return EBADF;
/* XXX do something */
return 0;
case DIOCWDINFO:
DPRINTF(("DIOCWDINFO\n"));
if ((flag & FWRITE) == 0)
return EBADF;
error = setdisklabel(&buffer, (struct disklabel *)addr,
0, NULL);
if (error)
return error;
error = writedisklabel(dev, fdstrategy, &buffer, NULL);
return error;
case DIOCLOCK:
/*
* Nothing to do here, really.
*/
return 0; /* XXX */
case DIOCEJECT:
DPRINTF(("DIOCEJECT\n"));
if (*(int *)addr == 0) {
/*
* Don't force eject: check that we are the only
* partition open. If so, unlock it.
*/
if ((fd->sc_dk.dk_openmask & ~(1 << part)) != 0 ||
fd->sc_dk.dk_bopenmask + fd->sc_dk.dk_copenmask !=
fd->sc_dk.dk_openmask) {
return (EBUSY);
}
}
/* FALLTHROUGH */
case ODIOCEJECT:
DPRINTF(("ODIOCEJECT\n"));
fd_do_eject(fdc, FDUNIT(dev));
return 0;
default:
return ENOTTY;
}
#ifdef DIAGNOSTIC
panic("fdioctl: impossible");
#endif
}
void
fd_do_eject(struct fdc_softc *fdc, int unit)
{
bus_space_write_1(fdc->sc_iot, fdc->sc_ioh, fdout,
0x20 | ( 1 << unit));
DELAY(1); /* XXX */
bus_space_write_1(fdc->sc_iot, fdc->sc_ioh, fdout, 0x20);
}
/*
* Build disk label. For now we only create a label from what we know
* from 'sc'.
*/
static int
fdgetdisklabel(struct fd_softc *sc, dev_t dev)
{
struct disklabel *lp;
int part;
DPRINTF(("fdgetdisklabel()\n"));
part = DISKPART(dev);
lp = sc->sc_dk.dk_label;
memset(lp, 0, sizeof(struct disklabel));
lp->d_secsize = 128 << sc->sc_type->secsize;
lp->d_ntracks = sc->sc_type->heads;
lp->d_nsectors = sc->sc_type->sectrac;
lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
lp->d_ncylinders = sc->sc_type->size / lp->d_secpercyl;
lp->d_secperunit = sc->sc_type->size;
lp->d_type = DTYPE_FLOPPY;
lp->d_rpm = 300; /* XXX */
lp->d_interleave = 1; /* FIXME: is this OK? */
lp->d_bbsize = 0;
lp->d_sbsize = 0;
lp->d_npartitions = part + 1;
#define STEP_DELAY 6000 /* 6ms (6000us) delay after stepping */
lp->d_trkseek = STEP_DELAY; /* XXX */
lp->d_magic = DISKMAGIC;
lp->d_magic2 = DISKMAGIC;
lp->d_checksum = dkcksum(lp);
lp->d_partitions[part].p_size = lp->d_secperunit;
lp->d_partitions[part].p_fstype = FS_UNUSED;
lp->d_partitions[part].p_fsize = 1024;
lp->d_partitions[part].p_frag = 8;
return(0);
}
/*
* Mountroot hook: prompt the user to enter the root file system
* floppy.
*/
void
fd_mountroot_hook(device_t dev)
{
struct fd_softc *fd = device_private(dev);
struct fdc_softc *fdc = device_private(device_parent(fd->sc_dev));
int c;
/* XXX device_unit() abuse */
fd_do_eject(fdc, device_unit(dev));
printf("Insert filesystem floppy and press return.");
for (;;) {
c = cngetc();
if ((c == '\r') || (c == '\n')) {
printf("\n");
break;
}
}
}