NetBSD/sys/nfs/nfs_syscalls.c

1395 lines
34 KiB
C

/* $NetBSD: nfs_syscalls.c,v 1.130 2008/01/02 19:26:46 yamt Exp $ */
/*
* Copyright (c) 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Rick Macklem at The University of Guelph.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)nfs_syscalls.c 8.5 (Berkeley) 3/30/95
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: nfs_syscalls.c,v 1.130 2008/01/02 19:26:46 yamt Exp $");
#include "fs_nfs.h"
#include "opt_nfs.h"
#include "opt_nfsserver.h"
#include "opt_iso.h"
#include "opt_inet.h"
#include "opt_compat_netbsd.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/vnode.h>
#include <sys/mount.h>
#include <sys/proc.h>
#include <sys/uio.h>
#include <sys/malloc.h>
#include <sys/kmem.h>
#include <sys/buf.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/signalvar.h>
#include <sys/domain.h>
#include <sys/protosw.h>
#include <sys/namei.h>
#include <sys/syslog.h>
#include <sys/filedesc.h>
#include <sys/kthread.h>
#include <sys/kauth.h>
#include <sys/syscallargs.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#ifdef ISO
#include <netiso/iso.h>
#endif
#include <nfs/xdr_subs.h>
#include <nfs/rpcv2.h>
#include <nfs/nfsproto.h>
#include <nfs/nfs.h>
#include <nfs/nfsm_subs.h>
#include <nfs/nfsrvcache.h>
#include <nfs/nfsmount.h>
#include <nfs/nfsnode.h>
#include <nfs/nfsrtt.h>
#include <nfs/nfs_var.h>
/* Global defs. */
extern int32_t (*nfsrv3_procs[NFS_NPROCS]) __P((struct nfsrv_descript *,
struct nfssvc_sock *,
struct lwp *, struct mbuf **));
extern int nfsrvw_procrastinate;
struct nfssvc_sock *nfs_udpsock;
#ifdef ISO
struct nfssvc_sock *nfs_cltpsock;
#endif
#ifdef INET6
struct nfssvc_sock *nfs_udp6sock;
#endif
int nuidhash_max = NFS_MAXUIDHASH;
#ifdef NFSSERVER
static int nfs_numnfsd = 0;
static struct nfsdrt nfsdrt;
#endif
#ifdef NFSSERVER
kmutex_t nfsd_lock;
struct nfssvc_sockhead nfssvc_sockhead;
kcondvar_t nfsd_initcv;
struct nfssvc_sockhead nfssvc_sockpending;
struct nfsdhead nfsd_head;
struct nfsdidlehead nfsd_idle_head;
int nfssvc_sockhead_flag;
int nfsd_head_flag;
#endif
#ifdef NFS
/*
* locking order:
* nfs_iodlist_lock -> nid_lock -> nm_lock
*/
kmutex_t nfs_iodlist_lock;
struct nfs_iodlist nfs_iodlist_idle;
struct nfs_iodlist nfs_iodlist_all;
int nfs_niothreads = -1; /* == "0, and has never been set" */
#endif
#ifdef NFSSERVER
static struct nfssvc_sock *nfsrv_sockalloc __P((void));
static void nfsrv_sockfree __P((struct nfssvc_sock *));
static void nfsd_rt __P((int, struct nfsrv_descript *, int));
#endif
/*
* NFS server system calls
*/
/*
* Nfs server pseudo system call for the nfsd's
* Based on the flag value it either:
* - adds a socket to the selection list
* - remains in the kernel as an nfsd
* - remains in the kernel as an nfsiod
*/
int
sys_nfssvc(struct lwp *l, const struct sys_nfssvc_args *uap, register_t *retval)
{
/* {
syscallarg(int) flag;
syscallarg(void *) argp;
} */
int error;
#ifdef NFSSERVER
struct file *fp;
struct mbuf *nam;
struct nfsd_args nfsdarg;
struct nfsd_srvargs nfsd_srvargs, *nsd = &nfsd_srvargs;
struct nfsd *nfsd;
struct nfssvc_sock *slp;
struct nfsuid *nuidp;
#endif
/*
* Must be super user
*/
error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
NULL);
if (error)
return (error);
/* Initialize NFS server / client shared data. */
nfs_init();
#ifdef NFSSERVER
mutex_enter(&nfsd_lock);
while (nfssvc_sockhead_flag & SLP_INIT) {
cv_wait(&nfsd_initcv, &nfsd_lock);
}
mutex_exit(&nfsd_lock);
#endif
if (SCARG(uap, flag) & NFSSVC_BIOD) {
#if defined(NFS) && defined(COMPAT_14)
error = kpause("nfsbiod", true, 0, NULL); /* dummy impl */
#else
error = ENOSYS;
#endif
} else if (SCARG(uap, flag) & NFSSVC_MNTD) {
error = ENOSYS;
} else if (SCARG(uap, flag) & NFSSVC_ADDSOCK) {
#ifndef NFSSERVER
error = ENOSYS;
#else
error = copyin(SCARG(uap, argp), (void *)&nfsdarg,
sizeof(nfsdarg));
if (error)
return (error);
/* getsock() will use the descriptor for us */
error = getsock(l->l_proc->p_fd, nfsdarg.sock, &fp);
if (error)
return (error);
/*
* Get the client address for connected sockets.
*/
if (nfsdarg.name == NULL || nfsdarg.namelen == 0)
nam = (struct mbuf *)0;
else {
error = sockargs(&nam, nfsdarg.name, nfsdarg.namelen,
MT_SONAME);
if (error) {
FILE_UNUSE(fp, NULL);
return (error);
}
}
error = nfssvc_addsock(fp, nam);
FILE_UNUSE(fp, NULL);
#endif /* !NFSSERVER */
} else if (SCARG(uap, flag) & NFSSVC_SETEXPORTSLIST) {
#ifndef NFSSERVER
error = ENOSYS;
#else
struct export_args *args;
struct mountd_exports_list mel;
error = copyin(SCARG(uap, argp), &mel, sizeof(mel));
if (error != 0)
return error;
args = (struct export_args *)malloc(mel.mel_nexports *
sizeof(struct export_args), M_TEMP, M_WAITOK);
error = copyin(mel.mel_exports, args, mel.mel_nexports *
sizeof(struct export_args));
if (error != 0) {
free(args, M_TEMP);
return error;
}
mel.mel_exports = args;
error = mountd_set_exports_list(&mel, l);
free(args, M_TEMP);
#endif /* !NFSSERVER */
} else {
#ifndef NFSSERVER
error = ENOSYS;
#else
error = copyin(SCARG(uap, argp), (void *)nsd, sizeof (*nsd));
if (error)
return (error);
if ((SCARG(uap, flag) & NFSSVC_AUTHIN) &&
((nfsd = nsd->nsd_nfsd)) != NULL &&
(nfsd->nfsd_slp->ns_flags & SLP_VALID)) {
slp = nfsd->nfsd_slp;
/*
* First check to see if another nfsd has already
* added this credential.
*/
LIST_FOREACH(nuidp, NUIDHASH(slp, nsd->nsd_cr.cr_uid),
nu_hash) {
if (kauth_cred_geteuid(nuidp->nu_cr) ==
nsd->nsd_cr.cr_uid &&
(!nfsd->nfsd_nd->nd_nam2 ||
netaddr_match(NU_NETFAM(nuidp),
&nuidp->nu_haddr, nfsd->nfsd_nd->nd_nam2)))
break;
}
if (nuidp) {
kauth_cred_hold(nuidp->nu_cr);
nfsd->nfsd_nd->nd_cr = nuidp->nu_cr;
nfsd->nfsd_nd->nd_flag |= ND_KERBFULL;
} else {
/*
* Nope, so we will.
*/
if (slp->ns_numuids < nuidhash_max) {
slp->ns_numuids++;
nuidp = kmem_alloc(sizeof(*nuidp), KM_SLEEP);
} else
nuidp = (struct nfsuid *)0;
if ((slp->ns_flags & SLP_VALID) == 0) {
if (nuidp)
kmem_free(nuidp, sizeof(*nuidp));
} else {
if (nuidp == (struct nfsuid *)0) {
nuidp = TAILQ_FIRST(&slp->ns_uidlruhead);
LIST_REMOVE(nuidp, nu_hash);
TAILQ_REMOVE(&slp->ns_uidlruhead, nuidp,
nu_lru);
if (nuidp->nu_flag & NU_NAM)
m_freem(nuidp->nu_nam);
}
nuidp->nu_flag = 0;
kauth_uucred_to_cred(nuidp->nu_cr,
&nsd->nsd_cr);
nuidp->nu_timestamp = nsd->nsd_timestamp;
nuidp->nu_expire = time_second + nsd->nsd_ttl;
/*
* and save the session key in nu_key.
*/
memcpy(nuidp->nu_key, nsd->nsd_key,
sizeof(nsd->nsd_key));
if (nfsd->nfsd_nd->nd_nam2) {
struct sockaddr_in *saddr;
saddr = mtod(nfsd->nfsd_nd->nd_nam2,
struct sockaddr_in *);
switch (saddr->sin_family) {
case AF_INET:
nuidp->nu_flag |= NU_INETADDR;
nuidp->nu_inetaddr =
saddr->sin_addr.s_addr;
break;
case AF_ISO:
default:
nuidp->nu_flag |= NU_NAM;
nuidp->nu_nam = m_copym(
nfsd->nfsd_nd->nd_nam2, 0,
M_COPYALL, M_WAIT);
break;
};
}
TAILQ_INSERT_TAIL(&slp->ns_uidlruhead, nuidp,
nu_lru);
LIST_INSERT_HEAD(NUIDHASH(slp, nsd->nsd_uid),
nuidp, nu_hash);
kauth_cred_hold(nuidp->nu_cr);
nfsd->nfsd_nd->nd_cr = nuidp->nu_cr;
nfsd->nfsd_nd->nd_flag |= ND_KERBFULL;
}
}
}
if ((SCARG(uap, flag) & NFSSVC_AUTHINFAIL) &&
(nfsd = nsd->nsd_nfsd))
nfsd->nfsd_flag |= NFSD_AUTHFAIL;
error = nfssvc_nfsd(nsd, SCARG(uap, argp), l);
#endif /* !NFSSERVER */
}
if (error == EINTR || error == ERESTART)
error = 0;
return (error);
}
#ifdef NFSSERVER
MALLOC_DEFINE(M_NFSD, "NFS daemon", "Nfs server daemon structure");
static struct nfssvc_sock *
nfsrv_sockalloc()
{
struct nfssvc_sock *slp;
slp = kmem_alloc(sizeof(*slp), KM_SLEEP);
memset(slp, 0, sizeof (struct nfssvc_sock));
/* XXX could be IPL_SOFTNET */
mutex_init(&slp->ns_lock, MUTEX_DRIVER, IPL_VM);
mutex_init(&slp->ns_alock, MUTEX_DRIVER, IPL_VM);
cv_init(&slp->ns_cv, "nfsdsock");
TAILQ_INIT(&slp->ns_uidlruhead);
LIST_INIT(&slp->ns_tq);
SIMPLEQ_INIT(&slp->ns_sendq);
mutex_enter(&nfsd_lock);
TAILQ_INSERT_TAIL(&nfssvc_sockhead, slp, ns_chain);
mutex_exit(&nfsd_lock);
return slp;
}
static void
nfsrv_sockfree(struct nfssvc_sock *slp)
{
KASSERT(slp->ns_so == NULL);
KASSERT(slp->ns_fp == NULL);
KASSERT((slp->ns_flags & SLP_VALID) == 0);
mutex_destroy(&slp->ns_lock);
mutex_destroy(&slp->ns_alock);
cv_destroy(&slp->ns_cv);
kmem_free(slp, sizeof(*slp));
}
/*
* Adds a socket to the list for servicing by nfsds.
*/
int
nfssvc_addsock(fp, mynam)
struct file *fp;
struct mbuf *mynam;
{
struct mbuf *m;
int siz;
struct nfssvc_sock *slp;
struct socket *so;
struct nfssvc_sock *tslp;
int error, s;
so = (struct socket *)fp->f_data;
tslp = (struct nfssvc_sock *)0;
/*
* Add it to the list, as required.
*/
if (so->so_proto->pr_protocol == IPPROTO_UDP) {
#ifdef INET6
if (so->so_proto->pr_domain->dom_family == AF_INET6)
tslp = nfs_udp6sock;
else
#endif
tslp = nfs_udpsock;
if (tslp->ns_flags & SLP_VALID) {
m_freem(mynam);
return (EPERM);
}
#ifdef ISO
} else if (so->so_proto->pr_protocol == ISOPROTO_CLTP) {
tslp = nfs_cltpsock;
if (tslp->ns_flags & SLP_VALID) {
m_freem(mynam);
return (EPERM);
}
#endif /* ISO */
}
if (so->so_type == SOCK_STREAM)
siz = NFS_MAXPACKET + sizeof (u_long);
else
siz = NFS_MAXPACKET;
error = soreserve(so, siz, siz);
if (error) {
m_freem(mynam);
return (error);
}
/*
* Set protocol specific options { for now TCP only } and
* reserve some space. For datagram sockets, this can get called
* repeatedly for the same socket, but that isn't harmful.
*/
if (so->so_type == SOCK_STREAM) {
m = m_get(M_WAIT, MT_SOOPTS);
MCLAIM(m, &nfs_mowner);
*mtod(m, int32_t *) = 1;
m->m_len = sizeof(int32_t);
sosetopt(so, SOL_SOCKET, SO_KEEPALIVE, m);
}
if ((so->so_proto->pr_domain->dom_family == AF_INET
#ifdef INET6
|| so->so_proto->pr_domain->dom_family == AF_INET6
#endif
) &&
so->so_proto->pr_protocol == IPPROTO_TCP) {
m = m_get(M_WAIT, MT_SOOPTS);
MCLAIM(m, &nfs_mowner);
*mtod(m, int32_t *) = 1;
m->m_len = sizeof(int32_t);
sosetopt(so, IPPROTO_TCP, TCP_NODELAY, m);
}
so->so_rcv.sb_flags &= ~SB_NOINTR;
so->so_rcv.sb_timeo = 0;
so->so_snd.sb_flags &= ~SB_NOINTR;
so->so_snd.sb_timeo = 0;
if (tslp) {
slp = tslp;
} else {
slp = nfsrv_sockalloc();
}
slp->ns_so = so;
slp->ns_nam = mynam;
mutex_enter(&fp->f_lock);
fp->f_count++;
mutex_exit(&fp->f_lock);
slp->ns_fp = fp;
slp->ns_flags = SLP_VALID;
slp->ns_aflags = SLP_A_NEEDQ;
slp->ns_gflags = 0;
slp->ns_sflags = 0;
KERNEL_LOCK(1, curlwp);
s = splsoftnet();
so->so_upcallarg = (void *)slp;
so->so_upcall = nfsrv_soupcall;
so->so_rcv.sb_flags |= SB_UPCALL;
splx(s);
KERNEL_UNLOCK_ONE(curlwp);
nfsrv_wakenfsd(slp);
return (0);
}
/*
* Called by nfssvc() for nfsds. Just loops around servicing rpc requests
* until it is killed by a signal.
*/
int
nfssvc_nfsd(nsd, argp, l)
struct nfsd_srvargs *nsd;
void *argp;
struct lwp *l;
{
struct timeval tv;
struct mbuf *m;
struct nfssvc_sock *slp;
struct nfsd *nfsd = nsd->nsd_nfsd;
struct nfsrv_descript *nd = NULL;
struct mbuf *mreq;
u_quad_t cur_usec;
int error = 0, cacherep, siz, sotype, writes_todo;
struct proc *p = l->l_proc;
int s;
bool doreinit;
#ifndef nolint
cacherep = RC_DOIT;
writes_todo = 0;
#endif
uvm_lwp_hold(l);
if (nfsd == NULL) {
nsd->nsd_nfsd = nfsd = kmem_alloc(sizeof(*nfsd), KM_SLEEP);
memset(nfsd, 0, sizeof (struct nfsd));
cv_init(&nfsd->nfsd_cv, "nfsd");
nfsd->nfsd_procp = p;
mutex_enter(&nfsd_lock);
while ((nfssvc_sockhead_flag & SLP_INIT) != 0) {
KASSERT(nfs_numnfsd == 0);
cv_wait(&nfsd_initcv, &nfsd_lock);
}
TAILQ_INSERT_TAIL(&nfsd_head, nfsd, nfsd_chain);
nfs_numnfsd++;
mutex_exit(&nfsd_lock);
}
/*
* Loop getting rpc requests until SIGKILL.
*/
for (;;) {
bool dummy;
if ((curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD)
!= 0) {
preempt();
}
if (nfsd->nfsd_slp == NULL) {
mutex_enter(&nfsd_lock);
while (nfsd->nfsd_slp == NULL &&
(nfsd_head_flag & NFSD_CHECKSLP) == 0) {
SLIST_INSERT_HEAD(&nfsd_idle_head, nfsd,
nfsd_idle);
error = cv_wait_sig(&nfsd->nfsd_cv, &nfsd_lock);
if (error) {
slp = nfsd->nfsd_slp;
nfsd->nfsd_slp = NULL;
if (!slp)
SLIST_REMOVE(&nfsd_idle_head,
nfsd, nfsd, nfsd_idle);
mutex_exit(&nfsd_lock);
if (slp) {
nfsrv_wakenfsd(slp);
nfsrv_slpderef(slp);
}
goto done;
}
}
if (nfsd->nfsd_slp == NULL &&
(nfsd_head_flag & NFSD_CHECKSLP) != 0) {
slp = TAILQ_FIRST(&nfssvc_sockpending);
if (slp) {
KASSERT((slp->ns_gflags & SLP_G_DOREC)
!= 0);
TAILQ_REMOVE(&nfssvc_sockpending, slp,
ns_pending);
slp->ns_gflags &= ~SLP_G_DOREC;
slp->ns_sref++;
nfsd->nfsd_slp = slp;
} else
nfsd_head_flag &= ~NFSD_CHECKSLP;
}
KASSERT(nfsd->nfsd_slp == NULL ||
nfsd->nfsd_slp->ns_sref > 0);
mutex_exit(&nfsd_lock);
if ((slp = nfsd->nfsd_slp) == NULL)
continue;
if (slp->ns_flags & SLP_VALID) {
bool more;
if (nfsdsock_testbits(slp, SLP_A_NEEDQ)) {
nfsrv_rcv(slp);
}
if (nfsdsock_testbits(slp, SLP_A_DISCONN)) {
nfsrv_zapsock(slp);
}
error = nfsrv_dorec(slp, nfsd, &nd, &more);
getmicrotime(&tv);
cur_usec = (u_quad_t)tv.tv_sec * 1000000 +
(u_quad_t)tv.tv_usec;
writes_todo = 0;
if (error) {
struct nfsrv_descript *nd2;
mutex_enter(&nfsd_lock);
nd2 = LIST_FIRST(&slp->ns_tq);
if (nd2 != NULL &&
nd2->nd_time <= cur_usec) {
error = 0;
cacherep = RC_DOIT;
writes_todo = 1;
}
mutex_exit(&nfsd_lock);
}
if (error == 0 && more) {
nfsrv_wakenfsd(slp);
}
}
} else {
error = 0;
slp = nfsd->nfsd_slp;
}
KASSERT(slp != NULL);
KASSERT(nfsd->nfsd_slp == slp);
if (error || (slp->ns_flags & SLP_VALID) == 0) {
if (nd) {
nfsdreq_free(nd);
nd = NULL;
}
nfsd->nfsd_slp = NULL;
nfsrv_slpderef(slp);
continue;
}
sotype = slp->ns_so->so_type;
if (nd) {
getmicrotime(&nd->nd_starttime);
if (nd->nd_nam2)
nd->nd_nam = nd->nd_nam2;
else
nd->nd_nam = slp->ns_nam;
/*
* Check to see if authorization is needed.
*/
if (nfsd->nfsd_flag & NFSD_NEEDAUTH) {
nfsd->nfsd_flag &= ~NFSD_NEEDAUTH;
nsd->nsd_haddr = mtod(nd->nd_nam,
struct sockaddr_in *)->sin_addr.s_addr;
nsd->nsd_authlen = nfsd->nfsd_authlen;
nsd->nsd_verflen = nfsd->nfsd_verflen;
if (!copyout(nfsd->nfsd_authstr,
nsd->nsd_authstr, nfsd->nfsd_authlen) &&
!copyout(nfsd->nfsd_verfstr,
nsd->nsd_verfstr, nfsd->nfsd_verflen) &&
!copyout(nsd, argp, sizeof (*nsd))) {
uvm_lwp_rele(l);
return (ENEEDAUTH);
}
cacherep = RC_DROPIT;
} else
cacherep = nfsrv_getcache(nd, slp, &mreq);
if (nfsd->nfsd_flag & NFSD_AUTHFAIL) {
nfsd->nfsd_flag &= ~NFSD_AUTHFAIL;
nd->nd_procnum = NFSPROC_NOOP;
nd->nd_repstat =
(NFSERR_AUTHERR | AUTH_TOOWEAK);
cacherep = RC_DOIT;
}
}
/*
* Loop to get all the write rpc relies that have been
* gathered together.
*/
do {
#ifdef DIAGNOSTIC
int lockcount;
#endif
switch (cacherep) {
case RC_DOIT:
#ifdef DIAGNOSTIC
/*
* NFS server procs should neither release
* locks already held, nor leave things
* locked. Catch this sooner, rather than
* later (when we try to relock something we
* already have locked). Careful inspection
* of the failing routine usually turns up the
* lock leak.. once we know what it is..
*/
lockcount = l->l_locks;
#endif
mreq = NULL;
netexport_rdlock();
if (writes_todo || nd == NULL ||
(!(nd->nd_flag & ND_NFSV3) &&
nd->nd_procnum == NFSPROC_WRITE &&
nfsrvw_procrastinate > 0))
error = nfsrv_writegather(&nd, slp,
l, &mreq);
else
error =
(*(nfsrv3_procs[nd->nd_procnum]))
(nd, slp, l, &mreq);
netexport_rdunlock();
#ifdef DIAGNOSTIC
if (l->l_locks != lockcount) {
/*
* If you see this panic, audit
* nfsrv3_procs[nd->nd_procnum] for
* vnode locking errors (usually, it's
* due to forgetting to vput()
* something).
*/
#ifdef DEBUG
extern void printlockedvnodes(void);
printlockedvnodes();
#endif
printf("nfsd: locking botch in op %d"
" (before %d, after %d)\n",
nd ? nd->nd_procnum : -1,
lockcount, l->l_locks);
}
#endif
if (mreq == NULL) {
if (nd != NULL) {
if (nd->nd_nam2)
m_free(nd->nd_nam2);
if (nd->nd_mrep)
m_freem(nd->nd_mrep);
}
break;
}
if (error) {
nfsstats.srv_errs++;
nfsrv_updatecache(nd, false, mreq);
if (nd->nd_nam2)
m_freem(nd->nd_nam2);
break;
}
nfsstats.srvrpccnt[nd->nd_procnum]++;
nfsrv_updatecache(nd, true, mreq);
nd->nd_mrep = (struct mbuf *)0;
case RC_REPLY:
m = mreq;
siz = 0;
while (m) {
siz += m->m_len;
m = m->m_next;
}
if (siz <= 0 || siz > NFS_MAXPACKET) {
printf("mbuf siz=%d\n",siz);
panic("Bad nfs svc reply");
}
m = mreq;
m->m_pkthdr.len = siz;
m->m_pkthdr.rcvif = (struct ifnet *)0;
/*
* For stream protocols, prepend a Sun RPC
* Record Mark.
*/
if (sotype == SOCK_STREAM) {
M_PREPEND(m, NFSX_UNSIGNED, M_WAIT);
*mtod(m, u_int32_t *) =
htonl(0x80000000 | siz);
}
nd->nd_mreq = m;
if (nfsrtton) {
nfsd_rt(slp->ns_so->so_type, nd,
cacherep);
}
error = nfsdsock_sendreply(slp, nd);
nd = NULL;
if (error == EPIPE)
nfsrv_zapsock(slp);
if (error == EINTR || error == ERESTART) {
nfsd->nfsd_slp = NULL;
nfsrv_slpderef(slp);
goto done;
}
break;
case RC_DROPIT:
if (nfsrtton)
nfsd_rt(sotype, nd, cacherep);
m_freem(nd->nd_mrep);
m_freem(nd->nd_nam2);
break;
}
if (nd) {
nfsdreq_free(nd);
nd = NULL;
}
/*
* Check to see if there are outstanding writes that
* need to be serviced.
*/
getmicrotime(&tv);
cur_usec = (u_quad_t)tv.tv_sec * 1000000 +
(u_quad_t)tv.tv_usec;
s = splsoftclock();
if (LIST_FIRST(&slp->ns_tq) &&
LIST_FIRST(&slp->ns_tq)->nd_time <= cur_usec) {
cacherep = RC_DOIT;
writes_todo = 1;
} else
writes_todo = 0;
splx(s);
} while (writes_todo);
if (nfsrv_dorec(slp, nfsd, &nd, &dummy)) {
nfsd->nfsd_slp = NULL;
nfsrv_slpderef(slp);
}
}
done:
mutex_enter(&nfsd_lock);
TAILQ_REMOVE(&nfsd_head, nfsd, nfsd_chain);
doreinit = --nfs_numnfsd == 0;
if (doreinit)
nfssvc_sockhead_flag |= SLP_INIT;
mutex_exit(&nfsd_lock);
cv_destroy(&nfsd->nfsd_cv);
kmem_free(nfsd, sizeof(*nfsd));
nsd->nsd_nfsd = NULL;
if (doreinit)
nfsrv_init(true); /* Reinitialize everything */
uvm_lwp_rele(l);
return (error);
}
/*
* Shut down a socket associated with an nfssvc_sock structure.
* Should be called with the send lock set, if required.
* The trick here is to increment the sref at the start, so that the nfsds
* will stop using it and clear ns_flag at the end so that it will not be
* reassigned during cleanup.
*
* called at splsoftnet.
*/
void
nfsrv_zapsock(slp)
struct nfssvc_sock *slp;
{
struct nfsuid *nuidp, *nnuidp;
struct nfsrv_descript *nwp;
struct socket *so;
struct mbuf *m;
int s;
if (nfsdsock_drain(slp)) {
return;
}
mutex_enter(&nfsd_lock);
if (slp->ns_gflags & SLP_G_DOREC) {
TAILQ_REMOVE(&nfssvc_sockpending, slp, ns_pending);
slp->ns_gflags &= ~SLP_G_DOREC;
}
mutex_exit(&nfsd_lock);
so = slp->ns_so;
KASSERT(so != NULL);
KERNEL_LOCK(1, curlwp);
s = splsoftnet();
so->so_upcall = NULL;
so->so_upcallarg = NULL;
so->so_rcv.sb_flags &= ~SB_UPCALL;
splx(s);
soshutdown(so, SHUT_RDWR);
KERNEL_UNLOCK_ONE(curlwp);
if (slp->ns_nam)
m_free(slp->ns_nam);
m_freem(slp->ns_raw);
m = slp->ns_rec;
while (m != NULL) {
struct mbuf *n;
n = m->m_nextpkt;
m_freem(m);
m = n;
}
for (nuidp = TAILQ_FIRST(&slp->ns_uidlruhead); nuidp != 0;
nuidp = nnuidp) {
nnuidp = TAILQ_NEXT(nuidp, nu_lru);
LIST_REMOVE(nuidp, nu_hash);
TAILQ_REMOVE(&slp->ns_uidlruhead, nuidp, nu_lru);
if (nuidp->nu_flag & NU_NAM)
m_freem(nuidp->nu_nam);
kmem_free(nuidp, sizeof(*nuidp));
}
mutex_enter(&nfsd_lock);
while ((nwp = LIST_FIRST(&slp->ns_tq)) != NULL) {
LIST_REMOVE(nwp, nd_tq);
mutex_exit(&nfsd_lock);
nfsdreq_free(nwp);
mutex_enter(&nfsd_lock);
}
mutex_exit(&nfsd_lock);
}
/*
* Derefence a server socket structure. If it has no more references and
* is no longer valid, you can throw it away.
*/
void
nfsrv_slpderef(slp)
struct nfssvc_sock *slp;
{
uint32_t ref;
mutex_enter(&nfsd_lock);
KASSERT(slp->ns_sref > 0);
ref = --slp->ns_sref;
mutex_exit(&nfsd_lock);
if (ref == 0 && (slp->ns_flags & SLP_VALID) == 0) {
struct file *fp;
mutex_enter(&nfsd_lock);
KASSERT((slp->ns_gflags & SLP_G_DOREC) == 0);
TAILQ_REMOVE(&nfssvc_sockhead, slp, ns_chain);
mutex_exit(&nfsd_lock);
fp = slp->ns_fp;
if (fp != NULL) {
slp->ns_fp = NULL;
KASSERT(fp != NULL);
KASSERT(fp->f_data == slp->ns_so);
mutex_enter(&fp->f_lock);
FILE_USE(fp);
closef(fp, (struct lwp *)0);
slp->ns_so = NULL;
}
nfsrv_sockfree(slp);
}
}
/*
* Initialize the data structures for the server.
* Handshake with any new nfsds starting up to avoid any chance of
* corruption.
*/
void
nfsrv_init(terminating)
int terminating;
{
struct nfssvc_sock *slp;
if (!terminating) {
/* XXX could be IPL_SOFTNET */
mutex_init(&nfsd_lock, MUTEX_DRIVER, IPL_VM);
cv_init(&nfsd_initcv, "nfsdinit");
}
mutex_enter(&nfsd_lock);
if (!terminating && (nfssvc_sockhead_flag & SLP_INIT) != 0)
panic("nfsd init");
nfssvc_sockhead_flag |= SLP_INIT;
if (terminating) {
KASSERT(SLIST_EMPTY(&nfsd_idle_head));
KASSERT(TAILQ_EMPTY(&nfsd_head));
while ((slp = TAILQ_FIRST(&nfssvc_sockhead)) != NULL) {
mutex_exit(&nfsd_lock);
KASSERT(slp->ns_sref == 0);
slp->ns_sref++;
nfsrv_zapsock(slp);
nfsrv_slpderef(slp);
mutex_enter(&nfsd_lock);
}
KASSERT(TAILQ_EMPTY(&nfssvc_sockpending));
mutex_exit(&nfsd_lock);
nfsrv_cleancache(); /* And clear out server cache */
} else {
mutex_exit(&nfsd_lock);
nfs_pub.np_valid = 0;
}
TAILQ_INIT(&nfssvc_sockhead);
TAILQ_INIT(&nfssvc_sockpending);
TAILQ_INIT(&nfsd_head);
SLIST_INIT(&nfsd_idle_head);
nfsd_head_flag &= ~NFSD_CHECKSLP;
nfs_udpsock = nfsrv_sockalloc();
#ifdef INET6
nfs_udp6sock = nfsrv_sockalloc();
#endif
#ifdef ISO
nfs_cltpsock = nfsrv_sockalloc();
#endif
mutex_enter(&nfsd_lock);
nfssvc_sockhead_flag &= ~SLP_INIT;
cv_broadcast(&nfsd_initcv);
mutex_exit(&nfsd_lock);
}
/*
* Add entries to the server monitor log.
*/
static void
nfsd_rt(sotype, nd, cacherep)
int sotype;
struct nfsrv_descript *nd;
int cacherep;
{
struct timeval tv;
struct drt *rt;
rt = &nfsdrt.drt[nfsdrt.pos];
if (cacherep == RC_DOIT)
rt->flag = 0;
else if (cacherep == RC_REPLY)
rt->flag = DRT_CACHEREPLY;
else
rt->flag = DRT_CACHEDROP;
if (sotype == SOCK_STREAM)
rt->flag |= DRT_TCP;
if (nd->nd_flag & ND_NFSV3)
rt->flag |= DRT_NFSV3;
rt->proc = nd->nd_procnum;
if (mtod(nd->nd_nam, struct sockaddr *)->sa_family == AF_INET)
rt->ipadr = mtod(nd->nd_nam, struct sockaddr_in *)->sin_addr.s_addr;
else
rt->ipadr = INADDR_ANY;
getmicrotime(&tv);
rt->resptime = ((tv.tv_sec - nd->nd_starttime.tv_sec) * 1000000) +
(tv.tv_usec - nd->nd_starttime.tv_usec);
rt->tstamp = tv;
nfsdrt.pos = (nfsdrt.pos + 1) % NFSRTTLOGSIZ;
}
#endif /* NFSSERVER */
#ifdef NFS
int nfs_defect = 0;
/*
* Asynchronous I/O threads for client nfs.
* They do read-ahead and write-behind operations on the block I/O cache.
* Never returns unless it fails or gets killed.
*/
static void
nfssvc_iod(void *arg)
{
struct buf *bp;
struct nfs_iod *myiod;
struct nfsmount *nmp;
myiod = kmem_alloc(sizeof(*myiod), KM_SLEEP);
mutex_init(&myiod->nid_lock, MUTEX_DEFAULT, IPL_NONE);
cv_init(&myiod->nid_cv, "nfsiod");
myiod->nid_exiting = false;
myiod->nid_mount = NULL;
mutex_enter(&nfs_iodlist_lock);
LIST_INSERT_HEAD(&nfs_iodlist_all, myiod, nid_all);
mutex_exit(&nfs_iodlist_lock);
for (;;) {
mutex_enter(&nfs_iodlist_lock);
LIST_INSERT_HEAD(&nfs_iodlist_idle, myiod, nid_idle);
mutex_exit(&nfs_iodlist_lock);
mutex_enter(&myiod->nid_lock);
while (/*CONSTCOND*/ true) {
nmp = myiod->nid_mount;
if (nmp) {
myiod->nid_mount = NULL;
break;
}
if (__predict_false(myiod->nid_exiting)) {
/*
* drop nid_lock to preserve locking order.
*/
mutex_exit(&myiod->nid_lock);
mutex_enter(&nfs_iodlist_lock);
mutex_enter(&myiod->nid_lock);
/*
* recheck nid_mount because nfs_asyncio can
* pick us in the meantime as we are still on
* nfs_iodlist_lock.
*/
if (myiod->nid_mount != NULL) {
mutex_exit(&nfs_iodlist_lock);
continue;
}
LIST_REMOVE(myiod, nid_idle);
mutex_exit(&nfs_iodlist_lock);
goto quit;
}
cv_wait(&myiod->nid_cv, &myiod->nid_lock);
}
mutex_exit(&myiod->nid_lock);
mutex_enter(&nmp->nm_lock);
while ((bp = TAILQ_FIRST(&nmp->nm_bufq)) != NULL) {
/* Take one off the front of the list */
TAILQ_REMOVE(&nmp->nm_bufq, bp, b_freelist);
nmp->nm_bufqlen--;
if (nmp->nm_bufqlen < 2 * nmp->nm_bufqiods) {
cv_broadcast(&nmp->nm_aiocv);
}
mutex_exit(&nmp->nm_lock);
KERNEL_LOCK(1, curlwp);
(void)nfs_doio(bp);
KERNEL_UNLOCK_LAST(curlwp);
mutex_enter(&nmp->nm_lock);
/*
* If there are more than one iod on this mount,
* then defect so that the iods can be shared out
* fairly between the mounts
*/
if (nfs_defect && nmp->nm_bufqiods > 1) {
break;
}
}
KASSERT(nmp->nm_bufqiods > 0);
nmp->nm_bufqiods--;
mutex_exit(&nmp->nm_lock);
}
quit:
KASSERT(myiod->nid_mount == NULL);
mutex_exit(&myiod->nid_lock);
cv_destroy(&myiod->nid_cv);
mutex_destroy(&myiod->nid_lock);
kmem_free(myiod, sizeof(*myiod));
kthread_exit(0);
}
void
nfs_iodinit()
{
mutex_init(&nfs_iodlist_lock, MUTEX_DEFAULT, IPL_NONE);
LIST_INIT(&nfs_iodlist_all);
LIST_INIT(&nfs_iodlist_idle);
}
int
nfs_set_niothreads(int newval)
{
struct nfs_iod *nid;
int error = 0;
#if defined(MULTIPROCESSOR)
int hold_count;
#endif /* defined(MULTIPROCESSOR) */
KERNEL_UNLOCK_ALL(curlwp, &hold_count);
mutex_enter(&nfs_iodlist_lock);
/* clamp to sane range */
nfs_niothreads = max(0, min(newval, NFS_MAXASYNCDAEMON));
while (nfs_numasync != nfs_niothreads && error == 0) {
while (nfs_numasync < nfs_niothreads) {
/*
* kthread_create can wait for pagedaemon and
* pagedaemon can wait for nfsiod which needs to acquire
* nfs_iodlist_lock.
*/
mutex_exit(&nfs_iodlist_lock);
error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
nfssvc_iod, NULL, NULL, "nfsio");
mutex_enter(&nfs_iodlist_lock);
if (error) {
/* give up */
nfs_niothreads = nfs_numasync;
break;
}
nfs_numasync++;
}
while (nfs_numasync > nfs_niothreads) {
nid = LIST_FIRST(&nfs_iodlist_all);
if (nid == NULL) {
/* iod has not started yet. */
kpause("nfsiorm", false, hz, &nfs_iodlist_lock);
continue;
}
LIST_REMOVE(nid, nid_all);
mutex_enter(&nid->nid_lock);
KASSERT(!nid->nid_exiting);
nid->nid_exiting = true;
cv_signal(&nid->nid_cv);
mutex_exit(&nid->nid_lock);
nfs_numasync--;
}
}
mutex_exit(&nfs_iodlist_lock);
KERNEL_LOCK(hold_count, curlwp);
return error;
}
/*
* Get an authorization string for the uid by having the mount_nfs sitting
* on this mount point porpous out of the kernel and do it.
*/
int
nfs_getauth(nmp, rep, cred, auth_str, auth_len, verf_str, verf_len, key)
struct nfsmount *nmp;
struct nfsreq *rep;
kauth_cred_t cred;
char **auth_str;
int *auth_len;
char *verf_str;
int *verf_len;
NFSKERBKEY_T key; /* return session key */
{
int error = 0;
while ((nmp->nm_iflag & NFSMNT_WAITAUTH) == 0) {
nmp->nm_iflag |= NFSMNT_WANTAUTH;
(void) tsleep((void *)&nmp->nm_authtype, PSOCK,
"nfsauth1", 2 * hz);
error = nfs_sigintr(nmp, rep, rep->r_lwp);
if (error) {
nmp->nm_iflag &= ~NFSMNT_WANTAUTH;
return (error);
}
}
nmp->nm_iflag &= ~(NFSMNT_WAITAUTH | NFSMNT_WANTAUTH);
nmp->nm_authstr = *auth_str = (char *)malloc(RPCAUTH_MAXSIZ, M_TEMP, M_WAITOK);
nmp->nm_authlen = RPCAUTH_MAXSIZ;
nmp->nm_verfstr = verf_str;
nmp->nm_verflen = *verf_len;
nmp->nm_authuid = kauth_cred_geteuid(cred);
wakeup((void *)&nmp->nm_authstr);
/*
* And wait for mount_nfs to do its stuff.
*/
while ((nmp->nm_iflag & NFSMNT_HASAUTH) == 0 && error == 0) {
(void) tsleep((void *)&nmp->nm_authlen, PSOCK,
"nfsauth2", 2 * hz);
error = nfs_sigintr(nmp, rep, rep->r_lwp);
}
if (nmp->nm_iflag & NFSMNT_AUTHERR) {
nmp->nm_iflag &= ~NFSMNT_AUTHERR;
error = EAUTH;
}
if (error)
free((void *)*auth_str, M_TEMP);
else {
*auth_len = nmp->nm_authlen;
*verf_len = nmp->nm_verflen;
memcpy(key, nmp->nm_key, sizeof (NFSKERBKEY_T));
}
nmp->nm_iflag &= ~NFSMNT_HASAUTH;
nmp->nm_iflag |= NFSMNT_WAITAUTH;
if (nmp->nm_iflag & NFSMNT_WANTAUTH) {
nmp->nm_iflag &= ~NFSMNT_WANTAUTH;
wakeup((void *)&nmp->nm_authtype);
}
return (error);
}
/*
* Get a nickname authenticator and verifier.
*/
int
nfs_getnickauth(struct nfsmount *nmp, kauth_cred_t cred, char **auth_str,
int *auth_len, char *verf_str, int verf_len)
{
struct timeval ktvin, ktvout, tv;
struct nfsuid *nuidp;
u_int32_t *nickp, *verfp;
memset(&ktvout, 0, sizeof ktvout); /* XXX gcc */
#ifdef DIAGNOSTIC
if (verf_len < (4 * NFSX_UNSIGNED))
panic("nfs_getnickauth verf too small");
#endif
LIST_FOREACH(nuidp, NMUIDHASH(nmp, kauth_cred_geteuid(cred)), nu_hash) {
if (kauth_cred_geteuid(nuidp->nu_cr) == kauth_cred_geteuid(cred))
break;
}
if (!nuidp || nuidp->nu_expire < time_second)
return (EACCES);
/*
* Move to the end of the lru list (end of lru == most recently used).
*/
TAILQ_REMOVE(&nmp->nm_uidlruhead, nuidp, nu_lru);
TAILQ_INSERT_TAIL(&nmp->nm_uidlruhead, nuidp, nu_lru);
nickp = (u_int32_t *)malloc(2 * NFSX_UNSIGNED, M_TEMP, M_WAITOK);
*nickp++ = txdr_unsigned(RPCAKN_NICKNAME);
*nickp = txdr_unsigned(nuidp->nu_nickname);
*auth_str = (char *)nickp;
*auth_len = 2 * NFSX_UNSIGNED;
/*
* Now we must encrypt the verifier and package it up.
*/
verfp = (u_int32_t *)verf_str;
*verfp++ = txdr_unsigned(RPCAKN_NICKNAME);
getmicrotime(&tv);
if (tv.tv_sec > nuidp->nu_timestamp.tv_sec ||
(tv.tv_sec == nuidp->nu_timestamp.tv_sec &&
tv.tv_usec > nuidp->nu_timestamp.tv_usec))
nuidp->nu_timestamp = tv;
else
nuidp->nu_timestamp.tv_usec++;
ktvin.tv_sec = txdr_unsigned(nuidp->nu_timestamp.tv_sec);
ktvin.tv_usec = txdr_unsigned(nuidp->nu_timestamp.tv_usec);
/*
* Now encrypt the timestamp verifier in ecb mode using the session
* key.
*/
#ifdef NFSKERB
XXX
#endif
*verfp++ = ktvout.tv_sec;
*verfp++ = ktvout.tv_usec;
*verfp = 0;
return (0);
}
/*
* Save the current nickname in a hash list entry on the mount point.
*/
int
nfs_savenickauth(nmp, cred, len, key, mdp, dposp, mrep)
struct nfsmount *nmp;
kauth_cred_t cred;
int len;
NFSKERBKEY_T key;
struct mbuf **mdp;
char **dposp;
struct mbuf *mrep;
{
struct nfsuid *nuidp;
u_int32_t *tl;
int32_t t1;
struct mbuf *md = *mdp;
struct timeval ktvin, ktvout;
u_int32_t nick;
char *dpos = *dposp, *cp2;
int deltasec, error = 0;
memset(&ktvout, 0, sizeof ktvout); /* XXX gcc */
if (len == (3 * NFSX_UNSIGNED)) {
nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
ktvin.tv_sec = *tl++;
ktvin.tv_usec = *tl++;
nick = fxdr_unsigned(u_int32_t, *tl);
/*
* Decrypt the timestamp in ecb mode.
*/
#ifdef NFSKERB
XXX
#endif
ktvout.tv_sec = fxdr_unsigned(long, ktvout.tv_sec);
ktvout.tv_usec = fxdr_unsigned(long, ktvout.tv_usec);
deltasec = time_second - ktvout.tv_sec;
if (deltasec < 0)
deltasec = -deltasec;
/*
* If ok, add it to the hash list for the mount point.
*/
if (deltasec <= NFS_KERBCLOCKSKEW) {
if (nmp->nm_numuids < nuidhash_max) {
nmp->nm_numuids++;
nuidp = kmem_alloc(sizeof(*nuidp), KM_SLEEP);
} else {
nuidp = TAILQ_FIRST(&nmp->nm_uidlruhead);
LIST_REMOVE(nuidp, nu_hash);
TAILQ_REMOVE(&nmp->nm_uidlruhead, nuidp,
nu_lru);
}
nuidp->nu_flag = 0;
kauth_cred_seteuid(nuidp->nu_cr, kauth_cred_geteuid(cred));
nuidp->nu_expire = time_second + NFS_KERBTTL;
nuidp->nu_timestamp = ktvout;
nuidp->nu_nickname = nick;
memcpy(nuidp->nu_key, key, sizeof (NFSKERBKEY_T));
TAILQ_INSERT_TAIL(&nmp->nm_uidlruhead, nuidp,
nu_lru);
LIST_INSERT_HEAD(NMUIDHASH(nmp, kauth_cred_geteuid(cred)),
nuidp, nu_hash);
}
} else
nfsm_adv(nfsm_rndup(len));
nfsmout:
*mdp = md;
*dposp = dpos;
return (error);
}
#endif /* NFS */