1508 lines
36 KiB
C
1508 lines
36 KiB
C
/* $NetBSD: sys_pipe.c,v 1.47 2003/12/04 19:38:24 atatat Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2003 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Paul Kranenburg.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the NetBSD
|
|
* Foundation, Inc. and its contributors.
|
|
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1996 John S. Dyson
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice immediately at the beginning of the file, without modification,
|
|
* this list of conditions, and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Absolutely no warranty of function or purpose is made by the author
|
|
* John S. Dyson.
|
|
* 4. Modifications may be freely made to this file if the above conditions
|
|
* are met.
|
|
*
|
|
* $FreeBSD: src/sys/kern/sys_pipe.c,v 1.95 2002/03/09 22:06:31 alfred Exp $
|
|
*/
|
|
|
|
/*
|
|
* This file contains a high-performance replacement for the socket-based
|
|
* pipes scheme originally used in FreeBSD/4.4Lite. It does not support
|
|
* all features of sockets, but does do everything that pipes normally
|
|
* do.
|
|
*
|
|
* Adaption for NetBSD UVM, including uvm_loan() based direct write, was
|
|
* written by Jaromir Dolecek.
|
|
*/
|
|
|
|
/*
|
|
* This code has two modes of operation, a small write mode and a large
|
|
* write mode. The small write mode acts like conventional pipes with
|
|
* a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
|
|
* "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
|
|
* and PIPE_SIZE in size it is mapped read-only into the kernel address space
|
|
* using the UVM page loan facility from where the receiving process can copy
|
|
* the data directly from the pages in the sending process.
|
|
*
|
|
* The constant PIPE_MINDIRECT is chosen to make sure that buffering will
|
|
* happen for small transfers so that the system will not spend all of
|
|
* its time context switching. PIPE_SIZE is constrained by the
|
|
* amount of kernel virtual memory.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.47 2003/12/04 19:38:24 atatat Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/fcntl.h>
|
|
#include <sys/file.h>
|
|
#include <sys/filedesc.h>
|
|
#include <sys/filio.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/ttycom.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/poll.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/uio.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/select.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/sa.h>
|
|
#include <sys/syscallargs.h>
|
|
#include <uvm/uvm.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/kernel.h>
|
|
|
|
#include <sys/pipe.h>
|
|
|
|
/*
|
|
* Avoid microtime(9), it's slow. We don't guard the read from time(9)
|
|
* with splclock(9) since we don't actually need to be THAT sure the access
|
|
* is atomic.
|
|
*/
|
|
#define PIPE_TIMESTAMP(tvp) (*(tvp) = time)
|
|
|
|
|
|
/*
|
|
* Use this define if you want to disable *fancy* VM things. Expect an
|
|
* approx 30% decrease in transfer rate.
|
|
*/
|
|
/* #define PIPE_NODIRECT */
|
|
|
|
/*
|
|
* interfaces to the outside world
|
|
*/
|
|
static int pipe_read(struct file *fp, off_t *offset, struct uio *uio,
|
|
struct ucred *cred, int flags);
|
|
static int pipe_write(struct file *fp, off_t *offset, struct uio *uio,
|
|
struct ucred *cred, int flags);
|
|
static int pipe_close(struct file *fp, struct proc *p);
|
|
static int pipe_poll(struct file *fp, int events, struct proc *p);
|
|
static int pipe_fcntl(struct file *fp, u_int com, void *data,
|
|
struct proc *p);
|
|
static int pipe_kqfilter(struct file *fp, struct knote *kn);
|
|
static int pipe_stat(struct file *fp, struct stat *sb, struct proc *p);
|
|
static int pipe_ioctl(struct file *fp, u_long cmd, void *data,
|
|
struct proc *p);
|
|
|
|
static struct fileops pipeops = {
|
|
pipe_read, pipe_write, pipe_ioctl, pipe_fcntl, pipe_poll,
|
|
pipe_stat, pipe_close, pipe_kqfilter
|
|
};
|
|
|
|
/*
|
|
* Default pipe buffer size(s), this can be kind-of large now because pipe
|
|
* space is pageable. The pipe code will try to maintain locality of
|
|
* reference for performance reasons, so small amounts of outstanding I/O
|
|
* will not wipe the cache.
|
|
*/
|
|
#define MINPIPESIZE (PIPE_SIZE/3)
|
|
#define MAXPIPESIZE (2*PIPE_SIZE/3)
|
|
|
|
/*
|
|
* Maximum amount of kva for pipes -- this is kind-of a soft limit, but
|
|
* is there so that on large systems, we don't exhaust it.
|
|
*/
|
|
#define MAXPIPEKVA (8*1024*1024)
|
|
static int maxpipekva = MAXPIPEKVA;
|
|
|
|
/*
|
|
* Limit for direct transfers, we cannot, of course limit
|
|
* the amount of kva for pipes in general though.
|
|
*/
|
|
#define LIMITPIPEKVA (16*1024*1024)
|
|
static int limitpipekva = LIMITPIPEKVA;
|
|
|
|
/*
|
|
* Limit the number of "big" pipes
|
|
*/
|
|
#define LIMITBIGPIPES 32
|
|
static int maxbigpipes = LIMITBIGPIPES;
|
|
static int nbigpipe = 0;
|
|
|
|
/*
|
|
* Amount of KVA consumed by pipe buffers.
|
|
*/
|
|
static int amountpipekva = 0;
|
|
|
|
MALLOC_DEFINE(M_PIPE, "pipe", "Pipe structures");
|
|
|
|
static void pipeclose(struct file *fp, struct pipe *pipe);
|
|
static void pipe_free_kmem(struct pipe *pipe);
|
|
static int pipe_create(struct pipe **pipep, int allockva);
|
|
static int pipelock(struct pipe *pipe, int catch);
|
|
static __inline void pipeunlock(struct pipe *pipe);
|
|
static void pipeselwakeup(struct pipe *pipe, struct pipe *sigp, void *data,
|
|
int code);
|
|
#ifndef PIPE_NODIRECT
|
|
static int pipe_direct_write(struct file *fp, struct pipe *wpipe,
|
|
struct uio *uio);
|
|
#endif
|
|
static int pipespace(struct pipe *pipe, int size);
|
|
|
|
#ifndef PIPE_NODIRECT
|
|
static int pipe_loan_alloc(struct pipe *, int);
|
|
static void pipe_loan_free(struct pipe *);
|
|
#endif /* PIPE_NODIRECT */
|
|
|
|
static struct pool pipe_pool;
|
|
|
|
/*
|
|
* The pipe system call for the DTYPE_PIPE type of pipes
|
|
*/
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
sys_pipe(l, v, retval)
|
|
struct lwp *l;
|
|
void *v;
|
|
register_t *retval;
|
|
{
|
|
struct file *rf, *wf;
|
|
struct pipe *rpipe, *wpipe;
|
|
int fd, error;
|
|
struct proc *p;
|
|
|
|
p = l->l_proc;
|
|
rpipe = wpipe = NULL;
|
|
if (pipe_create(&rpipe, 1) || pipe_create(&wpipe, 0)) {
|
|
pipeclose(NULL, rpipe);
|
|
pipeclose(NULL, wpipe);
|
|
return (ENFILE);
|
|
}
|
|
|
|
/*
|
|
* Note: the file structure returned from falloc() is marked
|
|
* as 'larval' initially. Unless we mark it as 'mature' by
|
|
* FILE_SET_MATURE(), any attempt to do anything with it would
|
|
* return EBADF, including e.g. dup(2) or close(2). This avoids
|
|
* file descriptor races if we block in the second falloc().
|
|
*/
|
|
|
|
error = falloc(p, &rf, &fd);
|
|
if (error)
|
|
goto free2;
|
|
retval[0] = fd;
|
|
rf->f_flag = FREAD;
|
|
rf->f_type = DTYPE_PIPE;
|
|
rf->f_data = (caddr_t)rpipe;
|
|
rf->f_ops = &pipeops;
|
|
|
|
error = falloc(p, &wf, &fd);
|
|
if (error)
|
|
goto free3;
|
|
retval[1] = fd;
|
|
wf->f_flag = FWRITE;
|
|
wf->f_type = DTYPE_PIPE;
|
|
wf->f_data = (caddr_t)wpipe;
|
|
wf->f_ops = &pipeops;
|
|
|
|
rpipe->pipe_peer = wpipe;
|
|
wpipe->pipe_peer = rpipe;
|
|
|
|
FILE_SET_MATURE(rf);
|
|
FILE_SET_MATURE(wf);
|
|
FILE_UNUSE(rf, p);
|
|
FILE_UNUSE(wf, p);
|
|
return (0);
|
|
free3:
|
|
FILE_UNUSE(rf, p);
|
|
ffree(rf);
|
|
fdremove(p->p_fd, retval[0]);
|
|
free2:
|
|
pipeclose(NULL, wpipe);
|
|
pipeclose(NULL, rpipe);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Allocate kva for pipe circular buffer, the space is pageable
|
|
* This routine will 'realloc' the size of a pipe safely, if it fails
|
|
* it will retain the old buffer.
|
|
* If it fails it will return ENOMEM.
|
|
*/
|
|
static int
|
|
pipespace(pipe, size)
|
|
struct pipe *pipe;
|
|
int size;
|
|
{
|
|
caddr_t buffer;
|
|
/*
|
|
* Allocate pageable virtual address space. Physical memory is
|
|
* allocated on demand.
|
|
*/
|
|
buffer = (caddr_t) uvm_km_valloc(kernel_map, round_page(size));
|
|
if (buffer == NULL)
|
|
return (ENOMEM);
|
|
|
|
/* free old resources if we're resizing */
|
|
pipe_free_kmem(pipe);
|
|
pipe->pipe_buffer.buffer = buffer;
|
|
pipe->pipe_buffer.size = size;
|
|
pipe->pipe_buffer.in = 0;
|
|
pipe->pipe_buffer.out = 0;
|
|
pipe->pipe_buffer.cnt = 0;
|
|
amountpipekva += pipe->pipe_buffer.size;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Initialize and allocate VM and memory for pipe.
|
|
*/
|
|
static int
|
|
pipe_create(pipep, allockva)
|
|
struct pipe **pipep;
|
|
int allockva;
|
|
{
|
|
struct pipe *pipe;
|
|
int error;
|
|
|
|
pipe = *pipep = pool_get(&pipe_pool, M_WAITOK);
|
|
if (pipe == NULL)
|
|
return (ENOMEM);
|
|
|
|
/* Initialize */
|
|
memset(pipe, 0, sizeof(struct pipe));
|
|
pipe->pipe_state = PIPE_SIGNALR;
|
|
|
|
if (allockva && (error = pipespace(pipe, PIPE_SIZE)))
|
|
return (error);
|
|
|
|
PIPE_TIMESTAMP(&pipe->pipe_ctime);
|
|
pipe->pipe_atime = pipe->pipe_ctime;
|
|
pipe->pipe_mtime = pipe->pipe_ctime;
|
|
simple_lock_init(&pipe->pipe_slock);
|
|
lockinit(&pipe->pipe_lock, PRIBIO | PCATCH, "pipelk", 0, 0);
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Lock a pipe for I/O, blocking other access
|
|
* Called with pipe spin lock held.
|
|
* Return with pipe spin lock released on success.
|
|
*/
|
|
static int
|
|
pipelock(pipe, catch)
|
|
struct pipe *pipe;
|
|
int catch;
|
|
{
|
|
int error;
|
|
|
|
LOCK_ASSERT(simple_lock_held(&pipe->pipe_slock));
|
|
|
|
while (1) {
|
|
error = lockmgr(&pipe->pipe_lock, LK_EXCLUSIVE | LK_INTERLOCK,
|
|
&pipe->pipe_slock);
|
|
if (error == 0)
|
|
break;
|
|
|
|
simple_lock(&pipe->pipe_slock);
|
|
if (catch || (error != EINTR && error != ERESTART))
|
|
break;
|
|
/*
|
|
* XXX XXX XXX
|
|
* The pipe lock is initialised with PCATCH on and we cannot
|
|
* override this in a lockmgr() call. Thus a pending signal
|
|
* will cause lockmgr() to return with EINTR or ERESTART.
|
|
* We cannot simply re-enter lockmgr() at this point since
|
|
* the pending signals have not yet been posted and would
|
|
* cause an immediate EINTR/ERESTART return again.
|
|
* As a workaround we pause for a while here, giving the lock
|
|
* a chance to drain, before trying again.
|
|
* XXX XXX XXX
|
|
*
|
|
* NOTE: Consider dropping PCATCH from this lock; in practice
|
|
* it is never held for long enough periods for having it
|
|
* interruptable at the start of pipe_read/pipe_write to be
|
|
* beneficial.
|
|
*/
|
|
(void) tsleep(&lbolt, PRIBIO, "rstrtpipelock", hz);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* unlock a pipe I/O lock
|
|
*/
|
|
static __inline void
|
|
pipeunlock(pipe)
|
|
struct pipe *pipe;
|
|
{
|
|
|
|
lockmgr(&pipe->pipe_lock, LK_RELEASE, NULL);
|
|
}
|
|
|
|
/*
|
|
* Select/poll wakup. This also sends SIGIO to peer connected to
|
|
* 'sigpipe' side of pipe.
|
|
*/
|
|
static void
|
|
pipeselwakeup(selp, sigp, data, code)
|
|
struct pipe *selp, *sigp;
|
|
void *data;
|
|
int code;
|
|
{
|
|
/*###406 [cc] warning: `band' might be used uninitialized in this function%%%*/
|
|
int band;
|
|
|
|
selnotify(&selp->pipe_sel, 0);
|
|
|
|
if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
|
|
return;
|
|
|
|
switch (code) {
|
|
case POLL_IN:
|
|
band = POLLIN|POLLRDNORM;
|
|
break;
|
|
case POLL_OUT:
|
|
band = POLLOUT|POLLWRNORM;
|
|
break;
|
|
case POLL_HUP:
|
|
band = POLLHUP;
|
|
break;
|
|
#if POLL_HUP != POLL_ERR
|
|
case POLL_ERR:
|
|
band = POLLERR;
|
|
break;
|
|
#endif
|
|
default:
|
|
band = 0;
|
|
#ifdef DIAGNOSTIC
|
|
printf("bad siginfo code %d in pipe notification.\n", code);
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static int
|
|
pipe_read(fp, offset, uio, cred, flags)
|
|
struct file *fp;
|
|
off_t *offset;
|
|
struct uio *uio;
|
|
struct ucred *cred;
|
|
int flags;
|
|
{
|
|
struct pipe *rpipe = (struct pipe *) fp->f_data;
|
|
struct pipebuf *bp = &rpipe->pipe_buffer;
|
|
int error;
|
|
size_t nread = 0;
|
|
size_t size;
|
|
size_t ocnt;
|
|
|
|
PIPE_LOCK(rpipe);
|
|
++rpipe->pipe_busy;
|
|
ocnt = bp->cnt;
|
|
|
|
again:
|
|
error = pipelock(rpipe, 1);
|
|
if (error)
|
|
goto unlocked_error;
|
|
|
|
while (uio->uio_resid) {
|
|
/*
|
|
* normal pipe buffer receive
|
|
*/
|
|
if (bp->cnt > 0) {
|
|
size = bp->size - bp->out;
|
|
if (size > bp->cnt)
|
|
size = bp->cnt;
|
|
if (size > uio->uio_resid)
|
|
size = uio->uio_resid;
|
|
|
|
error = uiomove(&bp->buffer[bp->out], size, uio);
|
|
if (error)
|
|
break;
|
|
|
|
bp->out += size;
|
|
if (bp->out >= bp->size)
|
|
bp->out = 0;
|
|
|
|
bp->cnt -= size;
|
|
|
|
/*
|
|
* If there is no more to read in the pipe, reset
|
|
* its pointers to the beginning. This improves
|
|
* cache hit stats.
|
|
*/
|
|
if (bp->cnt == 0) {
|
|
bp->in = 0;
|
|
bp->out = 0;
|
|
}
|
|
nread += size;
|
|
#ifndef PIPE_NODIRECT
|
|
} else if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
|
|
/*
|
|
* Direct copy, bypassing a kernel buffer.
|
|
*/
|
|
caddr_t va;
|
|
|
|
KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
|
|
|
|
size = rpipe->pipe_map.cnt;
|
|
if (size > uio->uio_resid)
|
|
size = uio->uio_resid;
|
|
|
|
va = (caddr_t) rpipe->pipe_map.kva +
|
|
rpipe->pipe_map.pos;
|
|
error = uiomove(va, size, uio);
|
|
if (error)
|
|
break;
|
|
nread += size;
|
|
rpipe->pipe_map.pos += size;
|
|
rpipe->pipe_map.cnt -= size;
|
|
if (rpipe->pipe_map.cnt == 0) {
|
|
PIPE_LOCK(rpipe);
|
|
rpipe->pipe_state &= ~PIPE_DIRECTR;
|
|
wakeup(rpipe);
|
|
PIPE_UNLOCK(rpipe);
|
|
}
|
|
#endif
|
|
} else {
|
|
/*
|
|
* Break if some data was read.
|
|
*/
|
|
if (nread > 0)
|
|
break;
|
|
|
|
PIPE_LOCK(rpipe);
|
|
|
|
/*
|
|
* detect EOF condition
|
|
* read returns 0 on EOF, no need to set error
|
|
*/
|
|
if (rpipe->pipe_state & PIPE_EOF) {
|
|
PIPE_UNLOCK(rpipe);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* don't block on non-blocking I/O
|
|
*/
|
|
if (fp->f_flag & FNONBLOCK) {
|
|
PIPE_UNLOCK(rpipe);
|
|
error = EAGAIN;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Unlock the pipe buffer for our remaining processing.
|
|
* We will either break out with an error or we will
|
|
* sleep and relock to loop.
|
|
*/
|
|
pipeunlock(rpipe);
|
|
|
|
/*
|
|
* The PIPE_DIRECTR flag is not under the control
|
|
* of the long-term lock (see pipe_direct_write()),
|
|
* so re-check now while holding the spin lock.
|
|
*/
|
|
if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
|
|
goto again;
|
|
|
|
/*
|
|
* We want to read more, wake up select/poll.
|
|
*/
|
|
pipeselwakeup(rpipe, rpipe->pipe_peer, fp->f_data,
|
|
POLL_IN);
|
|
|
|
/*
|
|
* If the "write-side" is blocked, wake it up now.
|
|
*/
|
|
if (rpipe->pipe_state & PIPE_WANTW) {
|
|
rpipe->pipe_state &= ~PIPE_WANTW;
|
|
wakeup(rpipe);
|
|
}
|
|
|
|
/* Now wait until the pipe is filled */
|
|
rpipe->pipe_state |= PIPE_WANTR;
|
|
error = ltsleep(rpipe, PRIBIO | PCATCH,
|
|
"piperd", 0, &rpipe->pipe_slock);
|
|
if (error != 0)
|
|
goto unlocked_error;
|
|
goto again;
|
|
}
|
|
}
|
|
|
|
if (error == 0)
|
|
PIPE_TIMESTAMP(&rpipe->pipe_atime);
|
|
|
|
PIPE_LOCK(rpipe);
|
|
pipeunlock(rpipe);
|
|
|
|
unlocked_error:
|
|
--rpipe->pipe_busy;
|
|
|
|
/*
|
|
* PIPE_WANTCLOSE processing only makes sense if pipe_busy is 0.
|
|
*/
|
|
if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANTCLOSE)) {
|
|
rpipe->pipe_state &= ~(PIPE_WANTCLOSE|PIPE_WANTW);
|
|
wakeup(rpipe);
|
|
} else if (bp->cnt < MINPIPESIZE) {
|
|
/*
|
|
* Handle write blocking hysteresis.
|
|
*/
|
|
if (rpipe->pipe_state & PIPE_WANTW) {
|
|
rpipe->pipe_state &= ~PIPE_WANTW;
|
|
wakeup(rpipe);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If anything was read off the buffer, signal to the writer it's
|
|
* possible to write more data. Also send signal if we are here for the
|
|
* first time after last write.
|
|
*/
|
|
if ((bp->size - bp->cnt) >= PIPE_BUF
|
|
&& (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
|
|
pipeselwakeup(rpipe, rpipe->pipe_peer, fp->f_data, POLL_OUT);
|
|
rpipe->pipe_state &= ~PIPE_SIGNALR;
|
|
}
|
|
|
|
PIPE_UNLOCK(rpipe);
|
|
return (error);
|
|
}
|
|
|
|
#ifndef PIPE_NODIRECT
|
|
/*
|
|
* Allocate structure for loan transfer.
|
|
*/
|
|
static int
|
|
pipe_loan_alloc(wpipe, npages)
|
|
struct pipe *wpipe;
|
|
int npages;
|
|
{
|
|
vsize_t len;
|
|
|
|
len = (vsize_t)npages << PAGE_SHIFT;
|
|
wpipe->pipe_map.kva = uvm_km_valloc_wait(kernel_map, len);
|
|
if (wpipe->pipe_map.kva == 0)
|
|
return (ENOMEM);
|
|
|
|
amountpipekva += len;
|
|
wpipe->pipe_map.npages = npages;
|
|
wpipe->pipe_map.pgs = malloc(npages * sizeof(struct vm_page *), M_PIPE,
|
|
M_WAITOK);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Free resources allocated for loan transfer.
|
|
*/
|
|
static void
|
|
pipe_loan_free(wpipe)
|
|
struct pipe *wpipe;
|
|
{
|
|
vsize_t len;
|
|
|
|
len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
|
|
uvm_km_free(kernel_map, wpipe->pipe_map.kva, len);
|
|
wpipe->pipe_map.kva = 0;
|
|
amountpipekva -= len;
|
|
free(wpipe->pipe_map.pgs, M_PIPE);
|
|
wpipe->pipe_map.pgs = NULL;
|
|
}
|
|
|
|
/*
|
|
* NetBSD direct write, using uvm_loan() mechanism.
|
|
* This implements the pipe buffer write mechanism. Note that only
|
|
* a direct write OR a normal pipe write can be pending at any given time.
|
|
* If there are any characters in the pipe buffer, the direct write will
|
|
* be deferred until the receiving process grabs all of the bytes from
|
|
* the pipe buffer. Then the direct mapping write is set-up.
|
|
*
|
|
* Called with the long-term pipe lock held.
|
|
*/
|
|
static int
|
|
pipe_direct_write(fp, wpipe, uio)
|
|
struct file *fp;
|
|
struct pipe *wpipe;
|
|
struct uio *uio;
|
|
{
|
|
int error, npages, j;
|
|
struct vm_page **pgs;
|
|
vaddr_t bbase, kva, base, bend;
|
|
vsize_t blen, bcnt;
|
|
voff_t bpos;
|
|
|
|
KASSERT(wpipe->pipe_map.cnt == 0);
|
|
|
|
/*
|
|
* Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
|
|
* not aligned to PAGE_SIZE.
|
|
*/
|
|
bbase = (vaddr_t)uio->uio_iov->iov_base;
|
|
base = trunc_page(bbase);
|
|
bend = round_page(bbase + uio->uio_iov->iov_len);
|
|
blen = bend - base;
|
|
bpos = bbase - base;
|
|
|
|
if (blen > PIPE_DIRECT_CHUNK) {
|
|
blen = PIPE_DIRECT_CHUNK;
|
|
bend = base + blen;
|
|
bcnt = PIPE_DIRECT_CHUNK - bpos;
|
|
} else {
|
|
bcnt = uio->uio_iov->iov_len;
|
|
}
|
|
npages = blen >> PAGE_SHIFT;
|
|
|
|
/*
|
|
* Free the old kva if we need more pages than we have
|
|
* allocated.
|
|
*/
|
|
if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
|
|
pipe_loan_free(wpipe);
|
|
|
|
/* Allocate new kva. */
|
|
if (wpipe->pipe_map.kva == 0) {
|
|
error = pipe_loan_alloc(wpipe, npages);
|
|
if (error)
|
|
return (error);
|
|
}
|
|
|
|
/* Loan the write buffer memory from writer process */
|
|
pgs = wpipe->pipe_map.pgs;
|
|
error = uvm_loan(&uio->uio_procp->p_vmspace->vm_map, base, blen,
|
|
pgs, UVM_LOAN_TOPAGE);
|
|
if (error) {
|
|
pipe_loan_free(wpipe);
|
|
return (error);
|
|
}
|
|
|
|
/* Enter the loaned pages to kva */
|
|
kva = wpipe->pipe_map.kva;
|
|
for (j = 0; j < npages; j++, kva += PAGE_SIZE) {
|
|
pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pgs[j]), VM_PROT_READ);
|
|
}
|
|
pmap_update(pmap_kernel());
|
|
|
|
/* Now we can put the pipe in direct write mode */
|
|
wpipe->pipe_map.pos = bpos;
|
|
wpipe->pipe_map.cnt = bcnt;
|
|
wpipe->pipe_state |= PIPE_DIRECTW;
|
|
|
|
/*
|
|
* But before we can let someone do a direct read,
|
|
* we have to wait until the pipe is drained.
|
|
*/
|
|
|
|
/* Relase the pipe lock while we wait */
|
|
PIPE_LOCK(wpipe);
|
|
pipeunlock(wpipe);
|
|
|
|
while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
|
|
if (wpipe->pipe_state & PIPE_WANTR) {
|
|
wpipe->pipe_state &= ~PIPE_WANTR;
|
|
wakeup(wpipe);
|
|
}
|
|
|
|
wpipe->pipe_state |= PIPE_WANTW;
|
|
error = ltsleep(wpipe, PRIBIO | PCATCH, "pipdwc", 0,
|
|
&wpipe->pipe_slock);
|
|
if (error == 0 && wpipe->pipe_state & PIPE_EOF)
|
|
error = EPIPE;
|
|
}
|
|
|
|
/* Pipe is drained; next read will off the direct buffer */
|
|
wpipe->pipe_state |= PIPE_DIRECTR;
|
|
|
|
/* Wait until the reader is done */
|
|
while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
|
|
if (wpipe->pipe_state & PIPE_WANTR) {
|
|
wpipe->pipe_state &= ~PIPE_WANTR;
|
|
wakeup(wpipe);
|
|
}
|
|
pipeselwakeup(wpipe, wpipe, fp->f_data, POLL_IN);
|
|
error = ltsleep(wpipe, PRIBIO | PCATCH, "pipdwt", 0,
|
|
&wpipe->pipe_slock);
|
|
if (error == 0 && wpipe->pipe_state & PIPE_EOF)
|
|
error = EPIPE;
|
|
}
|
|
|
|
/* Take pipe out of direct write mode */
|
|
wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
|
|
|
|
/* Acquire the pipe lock and cleanup */
|
|
(void)pipelock(wpipe, 0);
|
|
if (pgs != NULL) {
|
|
pmap_kremove(wpipe->pipe_map.kva, blen);
|
|
uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
|
|
}
|
|
if (error || amountpipekva > maxpipekva)
|
|
pipe_loan_free(wpipe);
|
|
|
|
if (error) {
|
|
pipeselwakeup(wpipe, wpipe, fp->f_data, POLL_ERR);
|
|
|
|
/*
|
|
* If nothing was read from what we offered, return error
|
|
* straight on. Otherwise update uio resid first. Caller
|
|
* will deal with the error condition, returning short
|
|
* write, error, or restarting the write(2) as appropriate.
|
|
*/
|
|
if (wpipe->pipe_map.cnt == bcnt) {
|
|
wpipe->pipe_map.cnt = 0;
|
|
wakeup(wpipe);
|
|
return (error);
|
|
}
|
|
|
|
bcnt -= wpipe->pipe_map.cnt;
|
|
}
|
|
|
|
uio->uio_resid -= bcnt;
|
|
/* uio_offset not updated, not set/used for write(2) */
|
|
uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
|
|
uio->uio_iov->iov_len -= bcnt;
|
|
if (uio->uio_iov->iov_len == 0) {
|
|
uio->uio_iov++;
|
|
uio->uio_iovcnt--;
|
|
}
|
|
|
|
wpipe->pipe_map.cnt = 0;
|
|
return (error);
|
|
}
|
|
#endif /* !PIPE_NODIRECT */
|
|
|
|
static int
|
|
pipe_write(fp, offset, uio, cred, flags)
|
|
struct file *fp;
|
|
off_t *offset;
|
|
struct uio *uio;
|
|
struct ucred *cred;
|
|
int flags;
|
|
{
|
|
struct pipe *wpipe, *rpipe;
|
|
struct pipebuf *bp;
|
|
int error;
|
|
|
|
/* We want to write to our peer */
|
|
rpipe = (struct pipe *) fp->f_data;
|
|
|
|
retry:
|
|
error = 0;
|
|
PIPE_LOCK(rpipe);
|
|
wpipe = rpipe->pipe_peer;
|
|
|
|
/*
|
|
* Detect loss of pipe read side, issue SIGPIPE if lost.
|
|
*/
|
|
if (wpipe == NULL)
|
|
error = EPIPE;
|
|
else if (simple_lock_try(&wpipe->pipe_slock) == 0) {
|
|
/* Deal with race for peer */
|
|
PIPE_UNLOCK(rpipe);
|
|
goto retry;
|
|
} else if ((wpipe->pipe_state & PIPE_EOF) != 0) {
|
|
PIPE_UNLOCK(wpipe);
|
|
error = EPIPE;
|
|
}
|
|
|
|
PIPE_UNLOCK(rpipe);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
++wpipe->pipe_busy;
|
|
|
|
/* Aquire the long-term pipe lock */
|
|
if ((error = pipelock(wpipe,1)) != 0) {
|
|
--wpipe->pipe_busy;
|
|
if (wpipe->pipe_busy == 0
|
|
&& (wpipe->pipe_state & PIPE_WANTCLOSE)) {
|
|
wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
|
|
wakeup(wpipe);
|
|
}
|
|
PIPE_UNLOCK(wpipe);
|
|
return (error);
|
|
}
|
|
|
|
bp = &wpipe->pipe_buffer;
|
|
|
|
/*
|
|
* If it is advantageous to resize the pipe buffer, do so.
|
|
*/
|
|
if ((uio->uio_resid > PIPE_SIZE) &&
|
|
(nbigpipe < maxbigpipes) &&
|
|
#ifndef PIPE_NODIRECT
|
|
(wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
|
|
#endif
|
|
(bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
|
|
|
|
if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
|
|
nbigpipe++;
|
|
}
|
|
|
|
while (uio->uio_resid) {
|
|
size_t space;
|
|
|
|
#ifndef PIPE_NODIRECT
|
|
/*
|
|
* Pipe buffered writes cannot be coincidental with
|
|
* direct writes. Also, only one direct write can be
|
|
* in progress at any one time. We wait until the currently
|
|
* executing direct write is completed before continuing.
|
|
*
|
|
* We break out if a signal occurs or the reader goes away.
|
|
*/
|
|
while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
|
|
PIPE_LOCK(wpipe);
|
|
if (wpipe->pipe_state & PIPE_WANTR) {
|
|
wpipe->pipe_state &= ~PIPE_WANTR;
|
|
wakeup(wpipe);
|
|
}
|
|
pipeunlock(wpipe);
|
|
error = ltsleep(wpipe, PRIBIO | PCATCH,
|
|
"pipbww", 0, &wpipe->pipe_slock);
|
|
|
|
(void)pipelock(wpipe, 0);
|
|
if (wpipe->pipe_state & PIPE_EOF)
|
|
error = EPIPE;
|
|
}
|
|
if (error)
|
|
break;
|
|
|
|
/*
|
|
* If the transfer is large, we can gain performance if
|
|
* we do process-to-process copies directly.
|
|
* If the write is non-blocking, we don't use the
|
|
* direct write mechanism.
|
|
*
|
|
* The direct write mechanism will detect the reader going
|
|
* away on us.
|
|
*/
|
|
if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
|
|
(fp->f_flag & FNONBLOCK) == 0 &&
|
|
(wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
|
|
error = pipe_direct_write(fp, wpipe, uio);
|
|
|
|
/*
|
|
* Break out if error occured, unless it's ENOMEM.
|
|
* ENOMEM means we failed to allocate some resources
|
|
* for direct write, so we just fallback to ordinary
|
|
* write. If the direct write was successful,
|
|
* process rest of data via ordinary write.
|
|
*/
|
|
if (error == 0)
|
|
continue;
|
|
|
|
if (error != ENOMEM)
|
|
break;
|
|
}
|
|
#endif /* PIPE_NODIRECT */
|
|
|
|
space = bp->size - bp->cnt;
|
|
|
|
/* Writes of size <= PIPE_BUF must be atomic. */
|
|
if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
|
|
space = 0;
|
|
|
|
if (space > 0) {
|
|
int size; /* Transfer size */
|
|
int segsize; /* first segment to transfer */
|
|
|
|
/*
|
|
* Transfer size is minimum of uio transfer
|
|
* and free space in pipe buffer.
|
|
*/
|
|
if (space > uio->uio_resid)
|
|
size = uio->uio_resid;
|
|
else
|
|
size = space;
|
|
/*
|
|
* First segment to transfer is minimum of
|
|
* transfer size and contiguous space in
|
|
* pipe buffer. If first segment to transfer
|
|
* is less than the transfer size, we've got
|
|
* a wraparound in the buffer.
|
|
*/
|
|
segsize = bp->size - bp->in;
|
|
if (segsize > size)
|
|
segsize = size;
|
|
|
|
/* Transfer first segment */
|
|
error = uiomove(&bp->buffer[bp->in], segsize, uio);
|
|
|
|
if (error == 0 && segsize < size) {
|
|
/*
|
|
* Transfer remaining part now, to
|
|
* support atomic writes. Wraparound
|
|
* happened.
|
|
*/
|
|
#ifdef DEBUG
|
|
if (bp->in + segsize != bp->size)
|
|
panic("Expected pipe buffer wraparound disappeared");
|
|
#endif
|
|
|
|
error = uiomove(&bp->buffer[0],
|
|
size - segsize, uio);
|
|
}
|
|
if (error)
|
|
break;
|
|
|
|
bp->in += size;
|
|
if (bp->in >= bp->size) {
|
|
#ifdef DEBUG
|
|
if (bp->in != size - segsize + bp->size)
|
|
panic("Expected wraparound bad");
|
|
#endif
|
|
bp->in = size - segsize;
|
|
}
|
|
|
|
bp->cnt += size;
|
|
#ifdef DEBUG
|
|
if (bp->cnt > bp->size)
|
|
panic("Pipe buffer overflow");
|
|
#endif
|
|
} else {
|
|
/*
|
|
* If the "read-side" has been blocked, wake it up now.
|
|
*/
|
|
PIPE_LOCK(wpipe);
|
|
if (wpipe->pipe_state & PIPE_WANTR) {
|
|
wpipe->pipe_state &= ~PIPE_WANTR;
|
|
wakeup(wpipe);
|
|
}
|
|
PIPE_UNLOCK(wpipe);
|
|
|
|
/*
|
|
* don't block on non-blocking I/O
|
|
*/
|
|
if (fp->f_flag & FNONBLOCK) {
|
|
error = EAGAIN;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* We have no more space and have something to offer,
|
|
* wake up select/poll.
|
|
*/
|
|
if (bp->cnt)
|
|
pipeselwakeup(wpipe, wpipe, fp->f_data,
|
|
POLL_OUT);
|
|
|
|
PIPE_LOCK(wpipe);
|
|
pipeunlock(wpipe);
|
|
wpipe->pipe_state |= PIPE_WANTW;
|
|
error = ltsleep(wpipe, PRIBIO | PCATCH, "pipewr", 0,
|
|
&wpipe->pipe_slock);
|
|
(void)pipelock(wpipe, 0);
|
|
if (error != 0)
|
|
break;
|
|
/*
|
|
* If read side wants to go away, we just issue a signal
|
|
* to ourselves.
|
|
*/
|
|
if (wpipe->pipe_state & PIPE_EOF) {
|
|
error = EPIPE;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
PIPE_LOCK(wpipe);
|
|
--wpipe->pipe_busy;
|
|
if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
|
|
wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
|
|
wakeup(wpipe);
|
|
} else if (bp->cnt > 0) {
|
|
/*
|
|
* If we have put any characters in the buffer, we wake up
|
|
* the reader.
|
|
*/
|
|
if (wpipe->pipe_state & PIPE_WANTR) {
|
|
wpipe->pipe_state &= ~PIPE_WANTR;
|
|
wakeup(wpipe);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Don't return EPIPE if I/O was successful
|
|
*/
|
|
if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
|
|
error = 0;
|
|
|
|
if (error == 0)
|
|
PIPE_TIMESTAMP(&wpipe->pipe_mtime);
|
|
|
|
/*
|
|
* We have something to offer, wake up select/poll.
|
|
* wpipe->pipe_map.cnt is always 0 in this point (direct write
|
|
* is only done synchronously), so check only wpipe->pipe_buffer.cnt
|
|
*/
|
|
if (bp->cnt)
|
|
pipeselwakeup(wpipe, wpipe, fp->f_data, POLL_OUT);
|
|
|
|
/*
|
|
* Arrange for next read(2) to do a signal.
|
|
*/
|
|
wpipe->pipe_state |= PIPE_SIGNALR;
|
|
|
|
pipeunlock(wpipe);
|
|
PIPE_UNLOCK(wpipe);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* we implement a very minimal set of ioctls for compatibility with sockets.
|
|
*/
|
|
int
|
|
pipe_ioctl(fp, cmd, data, p)
|
|
struct file *fp;
|
|
u_long cmd;
|
|
void *data;
|
|
struct proc *p;
|
|
{
|
|
struct pipe *pipe = (struct pipe *)fp->f_data;
|
|
|
|
switch (cmd) {
|
|
|
|
case FIONBIO:
|
|
return (0);
|
|
|
|
case FIOASYNC:
|
|
PIPE_LOCK(pipe);
|
|
if (*(int *)data) {
|
|
pipe->pipe_state |= PIPE_ASYNC;
|
|
} else {
|
|
pipe->pipe_state &= ~PIPE_ASYNC;
|
|
}
|
|
PIPE_UNLOCK(pipe);
|
|
return (0);
|
|
|
|
case FIONREAD:
|
|
PIPE_LOCK(pipe);
|
|
#ifndef PIPE_NODIRECT
|
|
if (pipe->pipe_state & PIPE_DIRECTW)
|
|
*(int *)data = pipe->pipe_map.cnt;
|
|
else
|
|
#endif
|
|
*(int *)data = pipe->pipe_buffer.cnt;
|
|
PIPE_UNLOCK(pipe);
|
|
return (0);
|
|
|
|
case TIOCSPGRP:
|
|
case FIOSETOWN:
|
|
return fsetown(p, &pipe->pipe_pgid, cmd, data);
|
|
|
|
case TIOCGPGRP:
|
|
case FIOGETOWN:
|
|
return fgetown(p, pipe->pipe_pgid, cmd, data);
|
|
|
|
}
|
|
return (EPASSTHROUGH);
|
|
}
|
|
|
|
int
|
|
pipe_poll(fp, events, td)
|
|
struct file *fp;
|
|
int events;
|
|
struct proc *td;
|
|
{
|
|
struct pipe *rpipe = (struct pipe *)fp->f_data;
|
|
struct pipe *wpipe;
|
|
int eof = 0;
|
|
int revents = 0;
|
|
|
|
retry:
|
|
PIPE_LOCK(rpipe);
|
|
wpipe = rpipe->pipe_peer;
|
|
if (wpipe != NULL && simple_lock_try(&wpipe->pipe_slock) == 0) {
|
|
/* Deal with race for peer */
|
|
PIPE_UNLOCK(rpipe);
|
|
goto retry;
|
|
}
|
|
|
|
if (events & (POLLIN | POLLRDNORM))
|
|
if ((rpipe->pipe_buffer.cnt > 0) ||
|
|
#ifndef PIPE_NODIRECT
|
|
(rpipe->pipe_state & PIPE_DIRECTR) ||
|
|
#endif
|
|
(rpipe->pipe_state & PIPE_EOF))
|
|
revents |= events & (POLLIN | POLLRDNORM);
|
|
|
|
eof |= (rpipe->pipe_state & PIPE_EOF);
|
|
PIPE_UNLOCK(rpipe);
|
|
|
|
if (wpipe == NULL)
|
|
revents |= events & (POLLOUT | POLLWRNORM);
|
|
else {
|
|
if (events & (POLLOUT | POLLWRNORM))
|
|
if ((wpipe->pipe_state & PIPE_EOF) || (
|
|
#ifndef PIPE_NODIRECT
|
|
(wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
|
|
#endif
|
|
(wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
|
|
revents |= events & (POLLOUT | POLLWRNORM);
|
|
|
|
eof |= (wpipe->pipe_state & PIPE_EOF);
|
|
PIPE_UNLOCK(wpipe);
|
|
}
|
|
|
|
if (wpipe == NULL || eof)
|
|
revents |= POLLHUP;
|
|
|
|
if (revents == 0) {
|
|
if (events & (POLLIN | POLLRDNORM))
|
|
selrecord(td, &rpipe->pipe_sel);
|
|
|
|
if (events & (POLLOUT | POLLWRNORM))
|
|
selrecord(td, &wpipe->pipe_sel);
|
|
}
|
|
|
|
return (revents);
|
|
}
|
|
|
|
static int
|
|
pipe_stat(fp, ub, td)
|
|
struct file *fp;
|
|
struct stat *ub;
|
|
struct proc *td;
|
|
{
|
|
struct pipe *pipe = (struct pipe *)fp->f_data;
|
|
|
|
memset((caddr_t)ub, 0, sizeof(*ub));
|
|
ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
|
|
ub->st_blksize = pipe->pipe_buffer.size;
|
|
ub->st_size = pipe->pipe_buffer.cnt;
|
|
ub->st_blocks = (ub->st_size) ? 1 : 0;
|
|
TIMEVAL_TO_TIMESPEC(&pipe->pipe_atime, &ub->st_atimespec)
|
|
TIMEVAL_TO_TIMESPEC(&pipe->pipe_mtime, &ub->st_mtimespec);
|
|
TIMEVAL_TO_TIMESPEC(&pipe->pipe_ctime, &ub->st_ctimespec);
|
|
ub->st_uid = fp->f_cred->cr_uid;
|
|
ub->st_gid = fp->f_cred->cr_gid;
|
|
/*
|
|
* Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
|
|
* XXX (st_dev, st_ino) should be unique.
|
|
*/
|
|
return (0);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static int
|
|
pipe_close(fp, td)
|
|
struct file *fp;
|
|
struct proc *td;
|
|
{
|
|
struct pipe *pipe = (struct pipe *)fp->f_data;
|
|
|
|
fp->f_data = NULL;
|
|
pipeclose(fp, pipe);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
pipe_free_kmem(pipe)
|
|
struct pipe *pipe;
|
|
{
|
|
|
|
if (pipe->pipe_buffer.buffer != NULL) {
|
|
if (pipe->pipe_buffer.size > PIPE_SIZE)
|
|
--nbigpipe;
|
|
amountpipekva -= pipe->pipe_buffer.size;
|
|
uvm_km_free(kernel_map,
|
|
(vaddr_t)pipe->pipe_buffer.buffer,
|
|
pipe->pipe_buffer.size);
|
|
pipe->pipe_buffer.buffer = NULL;
|
|
}
|
|
#ifndef PIPE_NODIRECT
|
|
if (pipe->pipe_map.kva != 0) {
|
|
pipe_loan_free(pipe);
|
|
pipe->pipe_map.cnt = 0;
|
|
pipe->pipe_map.kva = 0;
|
|
pipe->pipe_map.pos = 0;
|
|
pipe->pipe_map.npages = 0;
|
|
}
|
|
#endif /* !PIPE_NODIRECT */
|
|
}
|
|
|
|
/*
|
|
* shutdown the pipe
|
|
*/
|
|
static void
|
|
pipeclose(fp, pipe)
|
|
struct file *fp;
|
|
struct pipe *pipe;
|
|
{
|
|
struct pipe *ppipe;
|
|
|
|
if (pipe == NULL)
|
|
return;
|
|
|
|
retry:
|
|
PIPE_LOCK(pipe);
|
|
|
|
if (fp)
|
|
pipeselwakeup(pipe, pipe, fp->f_data, POLL_HUP);
|
|
|
|
/*
|
|
* If the other side is blocked, wake it up saying that
|
|
* we want to close it down.
|
|
*/
|
|
while (pipe->pipe_busy) {
|
|
wakeup(pipe);
|
|
pipe->pipe_state |= PIPE_WANTCLOSE | PIPE_EOF;
|
|
ltsleep(pipe, PRIBIO, "pipecl", 0, &pipe->pipe_slock);
|
|
}
|
|
|
|
/*
|
|
* Disconnect from peer
|
|
*/
|
|
if ((ppipe = pipe->pipe_peer) != NULL) {
|
|
/* Deal with race for peer */
|
|
if (simple_lock_try(&ppipe->pipe_slock) == 0) {
|
|
PIPE_UNLOCK(pipe);
|
|
goto retry;
|
|
}
|
|
if (fp)
|
|
pipeselwakeup(ppipe, ppipe, fp->f_data, POLL_HUP);
|
|
|
|
ppipe->pipe_state |= PIPE_EOF;
|
|
wakeup(ppipe);
|
|
ppipe->pipe_peer = NULL;
|
|
PIPE_UNLOCK(ppipe);
|
|
}
|
|
|
|
(void)lockmgr(&pipe->pipe_lock, LK_DRAIN | LK_INTERLOCK,
|
|
&pipe->pipe_slock);
|
|
|
|
/*
|
|
* free resources
|
|
*/
|
|
pipe_free_kmem(pipe);
|
|
pool_put(&pipe_pool, pipe);
|
|
}
|
|
|
|
static void
|
|
filt_pipedetach(struct knote *kn)
|
|
{
|
|
struct pipe *pipe = (struct pipe *)kn->kn_fp->f_data;
|
|
|
|
switch(kn->kn_filter) {
|
|
case EVFILT_WRITE:
|
|
/* need the peer structure, not our own */
|
|
pipe = pipe->pipe_peer;
|
|
/* XXXSMP: race for peer */
|
|
|
|
/* if reader end already closed, just return */
|
|
if (pipe == NULL)
|
|
return;
|
|
|
|
break;
|
|
default:
|
|
/* nothing to do */
|
|
break;
|
|
}
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (kn->kn_hook != pipe)
|
|
panic("filt_pipedetach: inconsistent knote");
|
|
#endif
|
|
|
|
PIPE_LOCK(pipe);
|
|
SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
|
|
PIPE_UNLOCK(pipe);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static int
|
|
filt_piperead(struct knote *kn, long hint)
|
|
{
|
|
struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
|
|
struct pipe *wpipe = rpipe->pipe_peer;
|
|
|
|
PIPE_LOCK(rpipe);
|
|
kn->kn_data = rpipe->pipe_buffer.cnt;
|
|
if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
|
|
kn->kn_data = rpipe->pipe_map.cnt;
|
|
|
|
/* XXXSMP: race for peer */
|
|
if ((rpipe->pipe_state & PIPE_EOF) ||
|
|
(wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
|
|
kn->kn_flags |= EV_EOF;
|
|
PIPE_UNLOCK(rpipe);
|
|
return (1);
|
|
}
|
|
PIPE_UNLOCK(rpipe);
|
|
return (kn->kn_data > 0);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static int
|
|
filt_pipewrite(struct knote *kn, long hint)
|
|
{
|
|
struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
|
|
struct pipe *wpipe = rpipe->pipe_peer;
|
|
|
|
PIPE_LOCK(rpipe);
|
|
/* XXXSMP: race for peer */
|
|
if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
|
|
kn->kn_data = 0;
|
|
kn->kn_flags |= EV_EOF;
|
|
PIPE_UNLOCK(rpipe);
|
|
return (1);
|
|
}
|
|
kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
|
|
if (wpipe->pipe_state & PIPE_DIRECTW)
|
|
kn->kn_data = 0;
|
|
|
|
PIPE_UNLOCK(rpipe);
|
|
return (kn->kn_data >= PIPE_BUF);
|
|
}
|
|
|
|
static const struct filterops pipe_rfiltops =
|
|
{ 1, NULL, filt_pipedetach, filt_piperead };
|
|
static const struct filterops pipe_wfiltops =
|
|
{ 1, NULL, filt_pipedetach, filt_pipewrite };
|
|
|
|
/*ARGSUSED*/
|
|
static int
|
|
pipe_kqfilter(struct file *fp, struct knote *kn)
|
|
{
|
|
struct pipe *pipe;
|
|
|
|
pipe = (struct pipe *)kn->kn_fp->f_data;
|
|
switch (kn->kn_filter) {
|
|
case EVFILT_READ:
|
|
kn->kn_fop = &pipe_rfiltops;
|
|
break;
|
|
case EVFILT_WRITE:
|
|
kn->kn_fop = &pipe_wfiltops;
|
|
/* XXXSMP: race for peer */
|
|
pipe = pipe->pipe_peer;
|
|
if (pipe == NULL) {
|
|
/* other end of pipe has been closed */
|
|
return (EBADF);
|
|
}
|
|
break;
|
|
default:
|
|
return (1);
|
|
}
|
|
kn->kn_hook = pipe;
|
|
|
|
PIPE_LOCK(pipe);
|
|
SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
|
|
PIPE_UNLOCK(pipe);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
pipe_fcntl(fp, cmd, data, p)
|
|
struct file *fp;
|
|
u_int cmd;
|
|
void *data;
|
|
struct proc *p;
|
|
{
|
|
if (cmd == F_SETFL)
|
|
return (0);
|
|
else
|
|
return (EOPNOTSUPP);
|
|
}
|
|
|
|
/*
|
|
* Handle pipe sysctls.
|
|
*/
|
|
SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
|
|
{
|
|
|
|
sysctl_createv(SYSCTL_PERMANENT,
|
|
CTLTYPE_NODE, "kern", NULL,
|
|
NULL, 0, NULL, 0,
|
|
CTL_KERN, CTL_EOL);
|
|
sysctl_createv(SYSCTL_PERMANENT,
|
|
CTLTYPE_NODE, "pipe", NULL,
|
|
NULL, 0, NULL, 0,
|
|
CTL_KERN, KERN_PIPE, CTL_EOL);
|
|
|
|
sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
|
|
CTLTYPE_INT, "maxkvasz", NULL,
|
|
NULL, 0, &maxpipekva, 0,
|
|
CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
|
|
sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
|
|
CTLTYPE_INT, "maxloankvasz", NULL,
|
|
NULL, 0, &limitpipekva, 0,
|
|
CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
|
|
sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
|
|
CTLTYPE_INT, "maxbigpipes", NULL,
|
|
NULL, 0, &maxbigpipes, 0,
|
|
CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
|
|
sysctl_createv(SYSCTL_PERMANENT,
|
|
CTLTYPE_INT, "nbigpipes", NULL,
|
|
NULL, 0, &nbigpipe, 0,
|
|
CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
|
|
sysctl_createv(SYSCTL_PERMANENT,
|
|
CTLTYPE_INT, "kvasize", NULL,
|
|
NULL, 0, &amountpipekva, 0,
|
|
CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
|
|
}
|
|
|
|
/*
|
|
* Initialize pipe structs.
|
|
*/
|
|
void
|
|
pipe_init(void)
|
|
{
|
|
pool_init(&pipe_pool, sizeof(struct pipe), 0, 0, 0, "pipepl", NULL);
|
|
}
|