NetBSD/lib/librumphijack/hijack.c
pooka 7a2f6e5362 Enforce that the path=/rump specifier specifies and actual path
prefix and doesn't accept e.g. /rumpdev (only /rump/dev).
2011-03-08 21:36:01 +00:00

2011 lines
47 KiB
C

/* $NetBSD: hijack.c,v 1.76 2011/03/08 21:36:01 pooka Exp $ */
/*-
* Copyright (c) 2011 Antti Kantee. All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__RCSID("$NetBSD: hijack.c,v 1.76 2011/03/08 21:36:01 pooka Exp $");
#define __ssp_weak_name(fun) _hijack_ ## fun
#include <sys/param.h>
#include <sys/types.h>
#include <sys/event.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/mount.h>
#include <sys/poll.h>
#include <sys/socket.h>
#include <sys/statvfs.h>
#include <rump/rumpclient.h>
#include <rump/rump_syscalls.h>
#include <assert.h>
#include <dlfcn.h>
#include <err.h>
#include <errno.h>
#include <fcntl.h>
#include <poll.h>
#include <pthread.h>
#include <signal.h>
#include <stdarg.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include "hijack.h"
enum dualcall {
DUALCALL_WRITE, DUALCALL_WRITEV, DUALCALL_PWRITE, DUALCALL_PWRITEV,
DUALCALL_IOCTL, DUALCALL_FCNTL,
DUALCALL_SOCKET, DUALCALL_ACCEPT, DUALCALL_BIND, DUALCALL_CONNECT,
DUALCALL_GETPEERNAME, DUALCALL_GETSOCKNAME, DUALCALL_LISTEN,
DUALCALL_RECVFROM, DUALCALL_RECVMSG,
DUALCALL_SENDTO, DUALCALL_SENDMSG,
DUALCALL_GETSOCKOPT, DUALCALL_SETSOCKOPT,
DUALCALL_SHUTDOWN,
DUALCALL_READ, DUALCALL_READV, DUALCALL_PREAD, DUALCALL_PREADV,
DUALCALL_DUP2,
DUALCALL_CLOSE,
DUALCALL_POLLTS,
DUALCALL_KEVENT,
DUALCALL_STAT, DUALCALL_LSTAT, DUALCALL_FSTAT,
DUALCALL_CHMOD, DUALCALL_LCHMOD, DUALCALL_FCHMOD,
DUALCALL_CHOWN, DUALCALL_LCHOWN, DUALCALL_FCHOWN,
DUALCALL_OPEN,
DUALCALL_STATVFS1, DUALCALL_FSTATVFS1,
DUALCALL_CHDIR, DUALCALL_FCHDIR,
DUALCALL_LSEEK,
DUALCALL_GETDENTS,
DUALCALL_UNLINK, DUALCALL_SYMLINK, DUALCALL_READLINK,
DUALCALL_RENAME,
DUALCALL_MKDIR, DUALCALL_RMDIR,
DUALCALL_UTIMES, DUALCALL_LUTIMES, DUALCALL_FUTIMES,
DUALCALL_TRUNCATE, DUALCALL_FTRUNCATE,
DUALCALL_FSYNC, DUALCALL_FSYNC_RANGE,
DUALCALL_MOUNT, DUALCALL_UNMOUNT,
DUALCALL___GETCWD,
DUALCALL_CHFLAGS, DUALCALL_LCHFLAGS, DUALCALL_FCHFLAGS,
DUALCALL_ACCESS,
DUALCALL_MKNOD,
DUALCALL__NUM
};
#define RSYS_STRING(a) __STRING(a)
#define RSYS_NAME(a) RSYS_STRING(__CONCAT(RUMP_SYS_RENAME_,a))
/*
* Would be nice to get this automatically in sync with libc.
* Also, this does not work for compat-using binaries!
*/
#if !__NetBSD_Prereq__(5,99,7)
#define REALSELECT select
#define REALPOLLTS pollts
#define REALKEVENT kevent
#define REALSTAT __stat30
#define REALLSTAT __lstat30
#define REALFSTAT __fstat30
#define REALUTIMES utimes
#define REALLUTIMES lutimes
#define REALFUTIMES futimes
#define REALMKNOD mknod
#else
#define REALSELECT _sys___select50
#define REALPOLLTS _sys___pollts50
#define REALKEVENT _sys___kevent50
#define REALSTAT __stat50
#define REALLSTAT __lstat50
#define REALFSTAT __fstat50
#define REALUTIMES __utimes50
#define REALLUTIMES __lutimes50
#define REALFUTIMES __futimes50
#define REALMKNOD __mknod50
#endif
#define REALREAD _sys_read
#define REALPREAD _sys_pread
#define REALPWRITE _sys_pwrite
#define REALGETDENTS __getdents30
#define REALMOUNT __mount50
int REALSELECT(int, fd_set *, fd_set *, fd_set *, struct timeval *);
int REALPOLLTS(struct pollfd *, nfds_t,
const struct timespec *, const sigset_t *);
int REALKEVENT(int, const struct kevent *, size_t, struct kevent *, size_t,
const struct timespec *);
ssize_t REALREAD(int, void *, size_t);
ssize_t REALPREAD(int, void *, size_t, off_t);
ssize_t REALPWRITE(int, const void *, size_t, off_t);
int REALSTAT(const char *, struct stat *);
int REALLSTAT(const char *, struct stat *);
int REALFSTAT(int, struct stat *);
int REALGETDENTS(int, char *, size_t);
int REALUTIMES(const char *, const struct timeval [2]);
int REALLUTIMES(const char *, const struct timeval [2]);
int REALFUTIMES(int, const struct timeval [2]);
int REALMOUNT(const char *, const char *, int, void *, size_t);
int __getcwd(char *, size_t);
int REALMKNOD(const char *, mode_t, dev_t);
#define S(a) __STRING(a)
struct sysnames {
enum dualcall scm_callnum;
const char *scm_hostname;
const char *scm_rumpname;
} syscnames[] = {
{ DUALCALL_SOCKET, "__socket30", RSYS_NAME(SOCKET) },
{ DUALCALL_ACCEPT, "accept", RSYS_NAME(ACCEPT) },
{ DUALCALL_BIND, "bind", RSYS_NAME(BIND) },
{ DUALCALL_CONNECT, "connect", RSYS_NAME(CONNECT) },
{ DUALCALL_GETPEERNAME, "getpeername", RSYS_NAME(GETPEERNAME) },
{ DUALCALL_GETSOCKNAME, "getsockname", RSYS_NAME(GETSOCKNAME) },
{ DUALCALL_LISTEN, "listen", RSYS_NAME(LISTEN) },
{ DUALCALL_RECVFROM, "recvfrom", RSYS_NAME(RECVFROM) },
{ DUALCALL_RECVMSG, "recvmsg", RSYS_NAME(RECVMSG) },
{ DUALCALL_SENDTO, "sendto", RSYS_NAME(SENDTO) },
{ DUALCALL_SENDMSG, "sendmsg", RSYS_NAME(SENDMSG) },
{ DUALCALL_GETSOCKOPT, "getsockopt", RSYS_NAME(GETSOCKOPT) },
{ DUALCALL_SETSOCKOPT, "setsockopt", RSYS_NAME(SETSOCKOPT) },
{ DUALCALL_SHUTDOWN, "shutdown", RSYS_NAME(SHUTDOWN) },
{ DUALCALL_READ, S(REALREAD), RSYS_NAME(READ) },
{ DUALCALL_READV, "readv", RSYS_NAME(READV) },
{ DUALCALL_PREAD, S(REALPREAD), RSYS_NAME(PREAD) },
{ DUALCALL_PREADV, "preadv", RSYS_NAME(PREADV) },
{ DUALCALL_WRITE, "write", RSYS_NAME(WRITE) },
{ DUALCALL_WRITEV, "writev", RSYS_NAME(WRITEV) },
{ DUALCALL_PWRITE, S(REALPWRITE), RSYS_NAME(PWRITE) },
{ DUALCALL_PWRITEV, "pwritev", RSYS_NAME(PWRITEV) },
{ DUALCALL_IOCTL, "ioctl", RSYS_NAME(IOCTL) },
{ DUALCALL_FCNTL, "fcntl", RSYS_NAME(FCNTL) },
{ DUALCALL_DUP2, "dup2", RSYS_NAME(DUP2) },
{ DUALCALL_CLOSE, "close", RSYS_NAME(CLOSE) },
{ DUALCALL_POLLTS, S(REALPOLLTS), RSYS_NAME(POLLTS) },
{ DUALCALL_KEVENT, S(REALKEVENT), RSYS_NAME(KEVENT) },
{ DUALCALL_STAT, S(REALSTAT), RSYS_NAME(STAT) },
{ DUALCALL_LSTAT, S(REALLSTAT), RSYS_NAME(LSTAT) },
{ DUALCALL_FSTAT, S(REALFSTAT), RSYS_NAME(FSTAT) },
{ DUALCALL_CHOWN, "chown", RSYS_NAME(CHOWN) },
{ DUALCALL_LCHOWN, "lchown", RSYS_NAME(LCHOWN) },
{ DUALCALL_FCHOWN, "fchown", RSYS_NAME(FCHOWN) },
{ DUALCALL_CHMOD, "chmod", RSYS_NAME(CHMOD) },
{ DUALCALL_LCHMOD, "lchmod", RSYS_NAME(LCHMOD) },
{ DUALCALL_FCHMOD, "fchmod", RSYS_NAME(FCHMOD) },
{ DUALCALL_UTIMES, S(REALUTIMES), RSYS_NAME(UTIMES) },
{ DUALCALL_LUTIMES, S(REALLUTIMES), RSYS_NAME(LUTIMES) },
{ DUALCALL_FUTIMES, S(REALFUTIMES), RSYS_NAME(FUTIMES) },
{ DUALCALL_OPEN, "open", RSYS_NAME(OPEN) },
{ DUALCALL_STATVFS1, "statvfs1", RSYS_NAME(STATVFS1) },
{ DUALCALL_FSTATVFS1, "fstatvfs1", RSYS_NAME(FSTATVFS1) },
{ DUALCALL_CHDIR, "chdir", RSYS_NAME(CHDIR) },
{ DUALCALL_FCHDIR, "fchdir", RSYS_NAME(FCHDIR) },
{ DUALCALL_LSEEK, "lseek", RSYS_NAME(LSEEK) },
{ DUALCALL_GETDENTS, "__getdents30", RSYS_NAME(GETDENTS) },
{ DUALCALL_UNLINK, "unlink", RSYS_NAME(UNLINK) },
{ DUALCALL_SYMLINK, "symlink", RSYS_NAME(SYMLINK) },
{ DUALCALL_READLINK, "readlink", RSYS_NAME(READLINK) },
{ DUALCALL_RENAME, "rename", RSYS_NAME(RENAME) },
{ DUALCALL_MKDIR, "mkdir", RSYS_NAME(MKDIR) },
{ DUALCALL_RMDIR, "rmdir", RSYS_NAME(RMDIR) },
{ DUALCALL_TRUNCATE, "truncate", RSYS_NAME(TRUNCATE) },
{ DUALCALL_FTRUNCATE, "ftruncate", RSYS_NAME(FTRUNCATE) },
{ DUALCALL_FSYNC, "fsync", RSYS_NAME(FSYNC) },
{ DUALCALL_FSYNC_RANGE, "fsync_range", RSYS_NAME(FSYNC_RANGE) },
{ DUALCALL_MOUNT, S(REALMOUNT), RSYS_NAME(MOUNT) },
{ DUALCALL_UNMOUNT, "unmount", RSYS_NAME(UNMOUNT) },
{ DUALCALL___GETCWD, "__getcwd", RSYS_NAME(__GETCWD) },
{ DUALCALL_CHFLAGS, "chflags", RSYS_NAME(CHFLAGS) },
{ DUALCALL_LCHFLAGS, "lchflags", RSYS_NAME(LCHFLAGS) },
{ DUALCALL_FCHFLAGS, "fchflags", RSYS_NAME(FCHFLAGS) },
{ DUALCALL_ACCESS, "access", RSYS_NAME(ACCESS) },
{ DUALCALL_MKNOD, S(REALMKNOD), RSYS_NAME(MKNOD) },
};
#undef S
struct bothsys {
void *bs_host;
void *bs_rump;
} syscalls[DUALCALL__NUM];
#define GETSYSCALL(which, name) syscalls[DUALCALL_##name].bs_##which
static pid_t (*host_fork)(void);
static int (*host_daemon)(int, int);
static int (*host_execve)(const char *, char *const[], char *const[]);
static void * (*host_mmap)(void *, size_t, int, int, int, off_t);
/*
* This tracks if our process is in a subdirectory of /rump.
* It's preserved over exec.
*/
static bool pwdinrump;
enum pathtype { PATH_HOST, PATH_RUMP, PATH_RUMPBLANKET };
static bool fd_isrump(int);
static enum pathtype path_isrump(const char *);
/*
* Maintain a mapping table for the usual dup2 suspects.
* Could use atomic ops to operate on dup2vec, but an application
* racing there is not well-defined, so don't bother.
*/
/* note: you cannot change this without editing the env-passing code */
#define DUP2HIGH 2
static uint32_t dup2vec[DUP2HIGH+1];
#define DUP2BIT (1<<31)
#define DUP2ALIAS (1<<30)
#define DUP2FDMASK ((1<<30)-1)
static bool
isdup2d(int fd)
{
return fd <= DUP2HIGH && fd >= 0 && dup2vec[fd] & DUP2BIT;
}
static int
mapdup2(int hostfd)
{
_DIAGASSERT(isdup2d(hostfd));
return dup2vec[hostfd] & DUP2FDMASK;
}
static int
unmapdup2(int rumpfd)
{
int i;
for (i = 0; i <= DUP2HIGH; i++) {
if (dup2vec[i] & DUP2BIT &&
(dup2vec[i] & DUP2FDMASK) == (unsigned)rumpfd)
return i;
}
return -1;
}
static void
setdup2(int hostfd, int rumpfd)
{
if (hostfd > DUP2HIGH) {
_DIAGASSERT(0);
return;
}
dup2vec[hostfd] = DUP2BIT | DUP2ALIAS | rumpfd;
}
static void
clrdup2(int hostfd)
{
if (hostfd > DUP2HIGH) {
_DIAGASSERT(0);
return;
}
dup2vec[hostfd] = 0;
}
static bool
killdup2alias(int rumpfd)
{
int hostfd;
if ((hostfd = unmapdup2(rumpfd)) == -1)
return false;
if (dup2vec[hostfd] & DUP2ALIAS) {
dup2vec[hostfd] &= ~DUP2ALIAS;
return true;
}
return false;
}
//#define DEBUGJACK
#ifdef DEBUGJACK
#define DPRINTF(x) mydprintf x
static void
mydprintf(const char *fmt, ...)
{
va_list ap;
if (isdup2d(STDERR_FILENO))
return;
va_start(ap, fmt);
vfprintf(stderr, fmt, ap);
va_end(ap);
}
static const char *
whichfd(int fd)
{
if (fd == -1)
return "-1";
else if (fd_isrump(fd))
return "rump";
else
return "host";
}
static const char *
whichpath(const char *path)
{
if (path_isrump(path))
return "rump";
else
return "host";
}
#else
#define DPRINTF(x)
#endif
#define FDCALL(type, name, rcname, args, proto, vars) \
type name args \
{ \
type (*fun) proto; \
\
DPRINTF(("%s -> %d (%s)\n", __STRING(name), fd, whichfd(fd))); \
if (fd_isrump(fd)) { \
fun = syscalls[rcname].bs_rump; \
fd = fd_host2rump(fd); \
} else { \
fun = syscalls[rcname].bs_host; \
} \
\
return fun vars; \
}
#define PATHCALL(type, name, rcname, args, proto, vars) \
type name args \
{ \
type (*fun) proto; \
enum pathtype pt; \
\
DPRINTF(("%s -> %s (%s)\n", __STRING(name), path, \
whichpath(path))); \
if ((pt = path_isrump(path)) != PATH_HOST) { \
fun = syscalls[rcname].bs_rump; \
if (pt == PATH_RUMP) \
path = path_host2rump(path); \
} else { \
fun = syscalls[rcname].bs_host; \
} \
\
return fun vars; \
}
/*
* These variables are set from the RUMPHIJACK string and control
* which operations can product rump kernel file descriptors.
* This should be easily extendable for future needs.
*/
#define RUMPHIJACK_DEFAULT "path=/rump,socket=all:nolocal"
static bool rumpsockets[PF_MAX];
static const char *rumpprefix;
static size_t rumpprefixlen;
static struct {
int pf;
const char *name;
} socketmap[] = {
{ PF_LOCAL, "local" },
{ PF_INET, "inet" },
{ PF_LINK, "link" },
#ifdef PF_OROUTE
{ PF_OROUTE, "oroute" },
#endif
{ PF_ROUTE, "route" },
{ PF_INET6, "inet6" },
#ifdef PF_MPLS
{ PF_MPLS, "mpls" },
#endif
{ -1, NULL }
};
static void
sockparser(char *buf)
{
char *p, *l;
bool value;
int i;
/* if "all" is present, it must be specified first */
if (strncmp(buf, "all", strlen("all")) == 0) {
for (i = 0; i < (int)__arraycount(rumpsockets); i++) {
rumpsockets[i] = true;
}
buf += strlen("all");
if (*buf == ':')
buf++;
}
for (p = strtok_r(buf, ":", &l); p; p = strtok_r(NULL, ":", &l)) {
value = true;
if (strncmp(p, "no", strlen("no")) == 0) {
value = false;
p += strlen("no");
}
for (i = 0; socketmap[i].name; i++) {
if (strcmp(p, socketmap[i].name) == 0) {
rumpsockets[socketmap[i].pf] = value;
break;
}
}
if (socketmap[i].name == NULL) {
warnx("invalid socket specifier %s", p);
}
}
}
static void
pathparser(char *buf)
{
/* sanity-check */
if (*buf != '/')
errx(1, "hijack path specifier must begin with ``/''");
rumpprefixlen = strlen(buf);
if (rumpprefixlen < 2)
errx(1, "invalid hijack prefix: %s", buf);
if (buf[rumpprefixlen-1] == '/' && strspn(buf, "/") != rumpprefixlen)
errx(1, "hijack prefix may end in slash only if pure "
"slash, gave %s", buf);
if ((rumpprefix = strdup(buf)) == NULL)
err(1, "strdup");
rumpprefixlen = strlen(rumpprefix);
}
static struct blanket {
const char *pfx;
size_t len;
} *blanket;
static int nblanket;
static void
blanketparser(char *buf)
{
char *p, *l;
int i;
for (nblanket = 0, p = buf; p; p = strchr(p+1, ':'), nblanket++)
continue;
blanket = malloc(nblanket * sizeof(*blanket));
if (blanket == NULL)
err(1, "alloc blanket %d", nblanket);
for (p = strtok_r(buf, ":", &l), i = 0; p;
p = strtok_r(NULL, ":", &l), i++) {
blanket[i].pfx = strdup(p);
if (blanket[i].pfx == NULL)
err(1, "strdup blanket");
blanket[i].len = strlen(p);
if (blanket[i].len == 0 || *blanket[i].pfx != '/')
errx(1, "invalid blanket specifier %s", p);
if (*(blanket[i].pfx + blanket[i].len-1) == '/')
errx(1, "invalid blanket specifier %s", p);
}
}
static struct {
void (*parsefn)(char *);
const char *name;
} hijackparse[] = {
{ sockparser, "socket" },
{ pathparser, "path" },
{ blanketparser, "blanket" },
{ NULL, NULL },
};
static void
parsehijack(char *hijack)
{
char *p, *p2, *l;
const char *hijackcopy;
int i;
if ((hijackcopy = strdup(hijack)) == NULL)
err(1, "strdup");
/* disable everything explicitly */
for (i = 0; i < PF_MAX; i++)
rumpsockets[i] = false;
for (p = strtok_r(hijack, ",", &l); p; p = strtok_r(NULL, ",", &l)) {
p2 = strchr(p, '=');
if (!p2)
errx(1, "invalid hijack specifier: %s", hijackcopy);
for (i = 0; hijackparse[i].parsefn; i++) {
if (strncmp(hijackparse[i].name, p,
(size_t)(p2-p)) == 0) {
hijackparse[i].parsefn(p2+1);
break;
}
}
}
}
static void __attribute__((constructor))
rcinit(void)
{
char buf[1024];
unsigned i, j;
host_fork = dlsym(RTLD_NEXT, "fork");
host_daemon = dlsym(RTLD_NEXT, "daemon");
host_execve = dlsym(RTLD_NEXT, "execve");
host_mmap = dlsym(RTLD_NEXT, "mmap");
/*
* In theory cannot print anything during lookups because
* we might not have the call vector set up. so, the errx()
* is a bit of a strech, but it might work.
*/
for (i = 0; i < DUALCALL__NUM; i++) {
/* build runtime O(1) access */
for (j = 0; j < __arraycount(syscnames); j++) {
if (syscnames[j].scm_callnum == i)
break;
}
if (j == __arraycount(syscnames))
errx(1, "rumphijack error: syscall pos %d missing", i);
syscalls[i].bs_host = dlsym(RTLD_NEXT,
syscnames[j].scm_hostname);
if (syscalls[i].bs_host == NULL)
errx(1, "hostcall %s not found!",
syscnames[j].scm_hostname);
syscalls[i].bs_rump = dlsym(RTLD_NEXT,
syscnames[j].scm_rumpname);
if (syscalls[i].bs_rump == NULL)
errx(1, "rumpcall %s not found!",
syscnames[j].scm_rumpname);
}
if (rumpclient_init() == -1)
err(1, "rumpclient init");
/* check which syscalls we're supposed to hijack */
if (getenv_r("RUMPHIJACK", buf, sizeof(buf)) == -1) {
strcpy(buf, RUMPHIJACK_DEFAULT);
}
parsehijack(buf);
/* set client persistence level */
if (getenv_r("RUMPHIJACK_RETRYCONNECT", buf, sizeof(buf)) != -1) {
if (strcmp(buf, "die") == 0)
rumpclient_setconnretry(RUMPCLIENT_RETRYCONN_DIE);
else if (strcmp(buf, "inftime") == 0)
rumpclient_setconnretry(RUMPCLIENT_RETRYCONN_INFTIME);
else if (strcmp(buf, "once") == 0)
rumpclient_setconnretry(RUMPCLIENT_RETRYCONN_ONCE);
else {
time_t timeout;
char *ep;
timeout = (time_t)strtoll(buf, &ep, 10);
if (timeout <= 0 || ep != buf + strlen(buf))
errx(1, "RUMPHIJACK_RETRYCONNECT must be "
"keyword or integer, got: %s", buf);
rumpclient_setconnretry(timeout);
}
}
if (getenv_r("RUMPHIJACK__DUP2INFO", buf, sizeof(buf)) == 0) {
if (sscanf(buf, "%u,%u,%u",
&dup2vec[0], &dup2vec[1], &dup2vec[2]) != 3) {
warnx("invalid dup2mask: %s", buf);
memset(dup2vec, 0, sizeof(dup2vec));
}
unsetenv("RUMPHIJACK__DUP2INFO");
}
if (getenv_r("RUMPHIJACK__PWDINRUMP", buf, sizeof(buf)) == 0) {
pwdinrump = true;
unsetenv("RUMPHIJACK__PWDINRUMP");
}
}
/* Need runtime selection. low for now due to FD_SETSIZE */
#define HIJACK_FDOFF 128
static int
fd_rump2host(int fd)
{
if (fd == -1)
return fd;
return fd + HIJACK_FDOFF;
}
static int
fd_rump2host_withdup(int fd)
{
int hfd;
_DIAGASSERT(fd != -1);
hfd = unmapdup2(fd);
if (hfd != -1) {
_DIAGASSERT(hfd <= DUP2HIGH);
return hfd;
}
return fd_rump2host(fd);
}
static int
fd_host2rump(int fd)
{
if (!isdup2d(fd))
return fd - HIJACK_FDOFF;
else
return mapdup2(fd);
}
static bool
fd_isrump(int fd)
{
return isdup2d(fd) || fd >= HIJACK_FDOFF;
}
#define assertfd(_fd_) assert(ISDUP2D(_fd_) || (_fd_) >= HIJACK_FDOFF)
static enum pathtype
path_isrump(const char *path)
{
size_t plen;
int i;
if (rumpprefix == NULL && nblanket == 0)
return PATH_HOST;
if (*path == '/') {
plen = strlen(path);
if (rumpprefix && plen >= rumpprefixlen) {
if (strncmp(path, rumpprefix, rumpprefixlen) == 0
&& (plen == rumpprefixlen
|| *(path + rumpprefixlen) == '/')) {
return PATH_RUMP;
}
}
for (i = 0; i < nblanket; i++) {
if (strncmp(path, blanket[i].pfx, blanket[i].len) == 0)
return PATH_RUMPBLANKET;
}
return PATH_HOST;
} else {
return pwdinrump ? PATH_RUMP : PATH_HOST;
}
}
static const char *rootpath = "/";
static const char *
path_host2rump(const char *path)
{
const char *rv;
if (*path == '/') {
rv = path + rumpprefixlen;
if (*rv == '\0')
rv = rootpath;
} else {
rv = path;
}
return rv;
}
static int
dodup(int oldd, int minfd)
{
int (*op_fcntl)(int, int, ...);
int newd;
int isrump;
DPRINTF(("dup -> %d (minfd %d)\n", oldd, minfd));
if (fd_isrump(oldd)) {
op_fcntl = GETSYSCALL(rump, FCNTL);
oldd = fd_host2rump(oldd);
if (minfd >= HIJACK_FDOFF)
minfd -= HIJACK_FDOFF;
isrump = 1;
} else {
op_fcntl = GETSYSCALL(host, FCNTL);
isrump = 0;
}
newd = op_fcntl(oldd, F_DUPFD, minfd);
if (isrump)
newd = fd_rump2host(newd);
DPRINTF(("dup <- %d\n", newd));
return newd;
}
/*
* dup a host file descriptor so that it doesn't collide with the dup2mask
*/
static int
fd_dupgood(int fd)
{
int (*op_fcntl)(int, int, ...) = GETSYSCALL(host, FCNTL);
int (*op_close)(int) = GETSYSCALL(host, CLOSE);
int ofd, i;
for (i = 1; isdup2d(fd); i++) {
ofd = fd;
fd = op_fcntl(ofd, F_DUPFD, i);
op_close(ofd);
}
return fd;
}
int
open(const char *path, int flags, ...)
{
int (*op_open)(const char *, int, ...);
bool isrump;
va_list ap;
enum pathtype pt;
int fd;
DPRINTF(("open -> %s (%s)\n", path, whichpath(path)));
if ((pt = path_isrump(path)) != PATH_HOST) {
if (pt == PATH_RUMP)
path = path_host2rump(path);
op_open = GETSYSCALL(rump, OPEN);
isrump = true;
} else {
op_open = GETSYSCALL(host, OPEN);
isrump = false;
}
va_start(ap, flags);
fd = op_open(path, flags, va_arg(ap, mode_t));
va_end(ap);
if (isrump)
fd = fd_rump2host(fd);
else
fd = fd_dupgood(fd);
DPRINTF(("open <- %d (%s)\n", fd, whichfd(fd)));
return fd;
}
int
chdir(const char *path)
{
int (*op_chdir)(const char *);
enum pathtype pt;
int rv;
if ((pt = path_isrump(path)) != PATH_HOST) {
op_chdir = GETSYSCALL(rump, CHDIR);
if (pt == PATH_RUMP)
path = path_host2rump(path);
} else {
op_chdir = GETSYSCALL(host, CHDIR);
}
rv = op_chdir(path);
if (rv == 0)
pwdinrump = pt != PATH_HOST;
return rv;
}
int
fchdir(int fd)
{
int (*op_fchdir)(int);
bool isrump;
int rv;
if (fd_isrump(fd)) {
op_fchdir = GETSYSCALL(rump, FCHDIR);
isrump = true;
fd = fd_host2rump(fd);
} else {
op_fchdir = GETSYSCALL(host, FCHDIR);
isrump = false;
}
rv = op_fchdir(fd);
if (rv == 0) {
pwdinrump = isrump;
}
return rv;
}
int
__getcwd(char *bufp, size_t len)
{
int (*op___getcwd)(char *, size_t);
size_t prefixgap;
bool iamslash;
int rv;
if (pwdinrump && rumpprefix) {
if (rumpprefix[rumpprefixlen-1] == '/')
iamslash = true;
else
iamslash = false;
if (iamslash)
prefixgap = rumpprefixlen - 1; /* ``//+path'' */
else
prefixgap = rumpprefixlen; /* ``/pfx+/path'' */
if (len <= prefixgap) {
errno = ERANGE;
return -1;
}
op___getcwd = GETSYSCALL(rump, __GETCWD);
rv = op___getcwd(bufp + prefixgap, len - prefixgap);
if (rv == -1)
return rv;
/* augment the "/" part only for a non-root path */
memcpy(bufp, rumpprefix, rumpprefixlen);
/* append / only to non-root cwd */
if (rv != 2)
bufp[prefixgap] = '/';
/* don't append extra slash in the purely-slash case */
if (rv == 2 && !iamslash)
bufp[rumpprefixlen] = '\0';
} else if (pwdinrump) {
/* assume blanket. we can't provide a prefix here */
op___getcwd = GETSYSCALL(rump, __GETCWD);
rv = op___getcwd(bufp, len);
} else {
op___getcwd = GETSYSCALL(host, __GETCWD);
rv = op___getcwd(bufp, len);
}
return rv;
}
int
rename(const char *from, const char *to)
{
int (*op_rename)(const char *, const char *);
enum pathtype ptf, ptt;
if ((ptf = path_isrump(from)) != PATH_HOST) {
if ((ptt = path_isrump(to)) == PATH_HOST) {
errno = EXDEV;
return -1;
}
if (ptf == PATH_RUMP)
from = path_host2rump(from);
if (ptt == PATH_RUMP)
to = path_host2rump(to);
op_rename = GETSYSCALL(rump, RENAME);
} else {
if (path_isrump(to) != PATH_HOST) {
errno = EXDEV;
return -1;
}
op_rename = GETSYSCALL(host, RENAME);
}
return op_rename(from, to);
}
int __socket30(int, int, int);
int
__socket30(int domain, int type, int protocol)
{
int (*op_socket)(int, int, int);
int fd;
bool isrump;
isrump = domain < PF_MAX && rumpsockets[domain];
if (isrump)
op_socket = GETSYSCALL(rump, SOCKET);
else
op_socket = GETSYSCALL(host, SOCKET);
fd = op_socket(domain, type, protocol);
if (isrump)
fd = fd_rump2host(fd);
else
fd = fd_dupgood(fd);
DPRINTF(("socket <- %d\n", fd));
return fd;
}
int
accept(int s, struct sockaddr *addr, socklen_t *addrlen)
{
int (*op_accept)(int, struct sockaddr *, socklen_t *);
int fd;
bool isrump;
isrump = fd_isrump(s);
DPRINTF(("accept -> %d", s));
if (isrump) {
op_accept = GETSYSCALL(rump, ACCEPT);
s = fd_host2rump(s);
} else {
op_accept = GETSYSCALL(host, ACCEPT);
}
fd = op_accept(s, addr, addrlen);
if (fd != -1 && isrump)
fd = fd_rump2host(fd);
else
fd = fd_dupgood(fd);
DPRINTF((" <- %d\n", fd));
return fd;
}
/*
* ioctl and fcntl are varargs calls and need special treatment
*/
int
ioctl(int fd, unsigned long cmd, ...)
{
int (*op_ioctl)(int, unsigned long cmd, ...);
va_list ap;
int rv;
DPRINTF(("ioctl -> %d\n", fd));
if (fd_isrump(fd)) {
fd = fd_host2rump(fd);
op_ioctl = GETSYSCALL(rump, IOCTL);
} else {
op_ioctl = GETSYSCALL(host, IOCTL);
}
va_start(ap, cmd);
rv = op_ioctl(fd, cmd, va_arg(ap, void *));
va_end(ap);
return rv;
}
int
fcntl(int fd, int cmd, ...)
{
int (*op_fcntl)(int, int, ...);
va_list ap;
int rv, minfd, i, maxdup2;
DPRINTF(("fcntl -> %d (cmd %d)\n", fd, cmd));
switch (cmd) {
case F_DUPFD:
va_start(ap, cmd);
minfd = va_arg(ap, int);
va_end(ap);
return dodup(fd, minfd);
case F_CLOSEM:
/*
* So, if fd < HIJACKOFF, we want to do a host closem.
*/
if (fd < HIJACK_FDOFF) {
int closemfd = fd;
if (rumpclient__closenotify(&closemfd,
RUMPCLIENT_CLOSE_FCLOSEM) == -1)
return -1;
op_fcntl = GETSYSCALL(host, FCNTL);
rv = op_fcntl(closemfd, cmd);
if (rv)
return rv;
}
/*
* Additionally, we want to do a rump closem, but only
* for the file descriptors not dup2'd.
*/
for (i = 0, maxdup2 = 0; i <= DUP2HIGH; i++) {
if (dup2vec[i] & DUP2BIT) {
int val;
val = dup2vec[i] & DUP2FDMASK;
maxdup2 = MAX(val, maxdup2);
}
}
if (fd >= HIJACK_FDOFF)
fd -= HIJACK_FDOFF;
else
fd = 0;
fd = MAX(maxdup2+1, fd);
/* hmm, maybe we should close rump fd's not within dup2mask? */
return rump_sys_fcntl(fd, F_CLOSEM);
case F_MAXFD:
/*
* For maxfd, if there's a rump kernel fd, return
* it hostified. Otherwise, return host's MAXFD
* return value.
*/
if ((rv = rump_sys_fcntl(fd, F_MAXFD)) != -1) {
/*
* This might go a little wrong in case
* of dup2 to [012], but I'm not sure if
* there's a justification for tracking
* that info. Consider e.g.
* dup2(rumpfd, 2) followed by rump_sys_open()
* returning 1. We should return 1+HIJACKOFF,
* not 2+HIJACKOFF. However, if [01] is not
* open, the correct return value is 2.
*/
return fd_rump2host(fd);
} else {
op_fcntl = GETSYSCALL(host, FCNTL);
return op_fcntl(fd, F_MAXFD);
}
/*NOTREACHED*/
default:
if (fd_isrump(fd)) {
fd = fd_host2rump(fd);
op_fcntl = GETSYSCALL(rump, FCNTL);
} else {
op_fcntl = GETSYSCALL(host, FCNTL);
}
va_start(ap, cmd);
rv = op_fcntl(fd, cmd, va_arg(ap, void *));
va_end(ap);
return rv;
}
/*NOTREACHED*/
}
int
close(int fd)
{
int (*op_close)(int);
int rv;
DPRINTF(("close -> %d\n", fd));
if (fd_isrump(fd)) {
bool undup2 = false;
int ofd;
if (isdup2d(ofd = fd)) {
undup2 = true;
}
fd = fd_host2rump(fd);
if (!undup2 && killdup2alias(fd)) {
return 0;
}
op_close = GETSYSCALL(rump, CLOSE);
rv = op_close(fd);
if (rv == 0 && undup2) {
clrdup2(ofd);
}
} else {
if (rumpclient__closenotify(&fd, RUMPCLIENT_CLOSE_CLOSE) == -1)
return -1;
op_close = GETSYSCALL(host, CLOSE);
rv = op_close(fd);
}
return rv;
}
/*
* write cannot issue a standard debug printf due to recursion
*/
ssize_t
write(int fd, const void *buf, size_t blen)
{
ssize_t (*op_write)(int, const void *, size_t);
if (fd_isrump(fd)) {
fd = fd_host2rump(fd);
op_write = GETSYSCALL(rump, WRITE);
} else {
op_write = GETSYSCALL(host, WRITE);
}
return op_write(fd, buf, blen);
}
/*
* dup2 is special. we allow dup2 of a rump kernel fd to 0-2 since
* many programs do that. dup2 of a rump kernel fd to another value
* not >= fdoff is an error.
*
* Note: cannot rump2host newd, because it is often hardcoded.
*/
int
dup2(int oldd, int newd)
{
int (*host_dup2)(int, int);
int rv;
DPRINTF(("dup2 -> %d (o) -> %d (n)\n", oldd, newd));
if (fd_isrump(oldd)) {
int (*op_close)(int) = GETSYSCALL(host, CLOSE);
/* only allow fd 0-2 for cross-kernel dup */
if (!(newd >= 0 && newd <= 2 && !fd_isrump(newd))) {
errno = EBADF;
return -1;
}
/* regular dup2? */
if (fd_isrump(newd)) {
newd = fd_host2rump(newd);
rv = rump_sys_dup2(oldd, newd);
return fd_rump2host(rv);
}
/*
* dup2 rump => host? just establish an
* entry in the mapping table.
*/
op_close(newd);
setdup2(newd, fd_host2rump(oldd));
rv = 0;
} else {
host_dup2 = syscalls[DUALCALL_DUP2].bs_host;
if (rumpclient__closenotify(&newd, RUMPCLIENT_CLOSE_DUP2) == -1)
return -1;
rv = host_dup2(oldd, newd);
}
return rv;
}
int
dup(int oldd)
{
return dodup(oldd, 0);
}
pid_t
fork()
{
pid_t rv;
DPRINTF(("fork\n"));
rv = rumpclient__dofork(host_fork);
DPRINTF(("fork returns %d\n", rv));
return rv;
}
/* we do not have the luxury of not requiring a stackframe */
__strong_alias(__vfork14,fork);
int
daemon(int nochdir, int noclose)
{
struct rumpclient_fork *rf;
if ((rf = rumpclient_prefork()) == NULL)
return -1;
if (host_daemon(nochdir, noclose) == -1)
return -1;
if (rumpclient_fork_init(rf) == -1)
return -1;
return 0;
}
int
execve(const char *path, char *const argv[], char *const envp[])
{
char buf[128];
char *dup2str;
const char *pwdinrumpstr;
char **newenv;
size_t nelem;
int rv, sverrno;
int bonus = 2, i = 0;
snprintf(buf, sizeof(buf), "RUMPHIJACK__DUP2INFO=%u,%u,%u",
dup2vec[0], dup2vec[1], dup2vec[2]);
dup2str = strdup(buf);
if (dup2str == NULL) {
errno = ENOMEM;
return -1;
}
if (pwdinrump) {
pwdinrumpstr = "RUMPHIJACK__PWDINRUMP=true";
bonus++;
} else {
pwdinrumpstr = NULL;
}
for (nelem = 0; envp && envp[nelem]; nelem++)
continue;
newenv = malloc(sizeof(*newenv) * (nelem+bonus));
if (newenv == NULL) {
free(dup2str);
errno = ENOMEM;
return -1;
}
memcpy(newenv, envp, nelem*sizeof(*newenv));
newenv[nelem+i] = dup2str;
i++;
if (pwdinrumpstr) {
newenv[nelem+i] = __UNCONST(pwdinrumpstr);
i++;
}
newenv[nelem+i] = NULL;
_DIAGASSERT(i < bonus);
rv = rumpclient_exec(path, argv, newenv);
_DIAGASSERT(rv != 0);
sverrno = errno;
free(newenv);
free(dup2str);
errno = sverrno;
return rv;
}
/*
* select is done by calling poll.
*/
int
REALSELECT(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
struct timeval *timeout)
{
struct pollfd *pfds;
struct timespec ts, *tsp = NULL;
nfds_t realnfds;
int i, j;
int rv, incr;
DPRINTF(("select\n"));
/*
* Well, first we must scan the fds to figure out how many
* fds there really are. This is because up to and including
* nb5 poll() silently refuses nfds > process_maxopen_fds.
* Seems to be fixed in current, thank the maker.
* god damn cluster...bomb.
*/
for (i = 0, realnfds = 0; i < nfds; i++) {
if (readfds && FD_ISSET(i, readfds)) {
realnfds++;
continue;
}
if (writefds && FD_ISSET(i, writefds)) {
realnfds++;
continue;
}
if (exceptfds && FD_ISSET(i, exceptfds)) {
realnfds++;
continue;
}
}
if (realnfds) {
pfds = calloc(realnfds, sizeof(*pfds));
if (!pfds)
return -1;
} else {
pfds = NULL;
}
for (i = 0, j = 0; i < nfds; i++) {
incr = 0;
if (readfds && FD_ISSET(i, readfds)) {
pfds[j].fd = i;
pfds[j].events |= POLLIN;
incr=1;
}
if (writefds && FD_ISSET(i, writefds)) {
pfds[j].fd = i;
pfds[j].events |= POLLOUT;
incr=1;
}
if (exceptfds && FD_ISSET(i, exceptfds)) {
pfds[j].fd = i;
pfds[j].events |= POLLHUP|POLLERR;
incr=1;
}
if (incr)
j++;
}
assert(j == (int)realnfds);
if (timeout) {
TIMEVAL_TO_TIMESPEC(timeout, &ts);
tsp = &ts;
}
rv = REALPOLLTS(pfds, realnfds, tsp, NULL);
/*
* "If select() returns with an error the descriptor sets
* will be unmodified"
*/
if (rv < 0)
goto out;
/*
* zero out results (can't use FD_ZERO for the
* obvious select-me-not reason). whee.
*
* We do this here since some software ignores the return
* value of select, and hence if the timeout expires, it may
* assume all input descriptors have activity.
*/
for (i = 0; i < nfds; i++) {
if (readfds)
FD_CLR(i, readfds);
if (writefds)
FD_CLR(i, writefds);
if (exceptfds)
FD_CLR(i, exceptfds);
}
if (rv == 0)
goto out;
/*
* We have >0 fds with activity. Harvest the results.
*/
for (i = 0; i < (int)realnfds; i++) {
if (readfds) {
if (pfds[i].revents & POLLIN) {
FD_SET(pfds[i].fd, readfds);
}
}
if (writefds) {
if (pfds[i].revents & POLLOUT) {
FD_SET(pfds[i].fd, writefds);
}
}
if (exceptfds) {
if (pfds[i].revents & (POLLHUP|POLLERR)) {
FD_SET(pfds[i].fd, exceptfds);
}
}
}
out:
free(pfds);
return rv;
}
static void
checkpoll(struct pollfd *fds, nfds_t nfds, int *hostcall, int *rumpcall)
{
nfds_t i;
for (i = 0; i < nfds; i++) {
if (fds[i].fd == -1)
continue;
if (fd_isrump(fds[i].fd))
(*rumpcall)++;
else
(*hostcall)++;
}
}
static void
adjustpoll(struct pollfd *fds, nfds_t nfds, int (*fdadj)(int))
{
nfds_t i;
for (i = 0; i < nfds; i++) {
fds[i].fd = fdadj(fds[i].fd);
}
}
/*
* poll is easy as long as the call comes in the fds only in one
* kernel. otherwise its quite tricky...
*/
struct pollarg {
struct pollfd *pfds;
nfds_t nfds;
const struct timespec *ts;
const sigset_t *sigmask;
int pipefd;
int errnum;
};
static void *
hostpoll(void *arg)
{
int (*op_pollts)(struct pollfd *, nfds_t, const struct timespec *,
const sigset_t *);
struct pollarg *parg = arg;
intptr_t rv;
op_pollts = GETSYSCALL(host, POLLTS);
rv = op_pollts(parg->pfds, parg->nfds, parg->ts, parg->sigmask);
if (rv == -1)
parg->errnum = errno;
rump_sys_write(parg->pipefd, &rv, sizeof(rv));
return (void *)(intptr_t)rv;
}
int
REALPOLLTS(struct pollfd *fds, nfds_t nfds, const struct timespec *ts,
const sigset_t *sigmask)
{
int (*op_pollts)(struct pollfd *, nfds_t, const struct timespec *,
const sigset_t *);
int (*host_close)(int);
int hostcall = 0, rumpcall = 0;
pthread_t pt;
nfds_t i;
int rv;
DPRINTF(("poll\n"));
checkpoll(fds, nfds, &hostcall, &rumpcall);
if (hostcall && rumpcall) {
struct pollfd *pfd_host = NULL, *pfd_rump = NULL;
int rpipe[2] = {-1,-1}, hpipe[2] = {-1,-1};
struct pollarg parg;
uintptr_t lrv;
int sverrno = 0, trv;
/*
* ok, this is where it gets tricky. We must support
* this since it's a very common operation in certain
* types of software (telnet, netcat, etc). We allocate
* two vectors and run two poll commands in separate
* threads. Whichever returns first "wins" and the
* other kernel's fds won't show activity.
*/
rv = -1;
/* allocate full vector for O(n) joining after call */
pfd_host = malloc(sizeof(*pfd_host)*(nfds+1));
if (!pfd_host)
goto out;
pfd_rump = malloc(sizeof(*pfd_rump)*(nfds+1));
if (!pfd_rump) {
goto out;
}
/*
* then, open two pipes, one for notifications
* to each kernel.
*
* At least the rump pipe should probably be
* cached, along with the helper threads. This
* should give a microbenchmark improvement (haven't
* experienced a macro-level problem yet, though).
*/
if ((rv = rump_sys_pipe(rpipe)) == -1) {
sverrno = errno;
}
if (rv == 0 && (rv = pipe(hpipe)) == -1) {
sverrno = errno;
}
/* split vectors (or signal errors) */
for (i = 0; i < nfds; i++) {
int fd;
fds[i].revents = 0;
if (fds[i].fd == -1) {
pfd_host[i].fd = -1;
pfd_rump[i].fd = -1;
} else if (fd_isrump(fds[i].fd)) {
pfd_host[i].fd = -1;
fd = fd_host2rump(fds[i].fd);
if (fd == rpipe[0] || fd == rpipe[1]) {
fds[i].revents = POLLNVAL;
if (rv != -1)
rv++;
}
pfd_rump[i].fd = fd;
pfd_rump[i].events = fds[i].events;
} else {
pfd_rump[i].fd = -1;
fd = fds[i].fd;
if (fd == hpipe[0] || fd == hpipe[1]) {
fds[i].revents = POLLNVAL;
if (rv != -1)
rv++;
}
pfd_host[i].fd = fd;
pfd_host[i].events = fds[i].events;
}
pfd_rump[i].revents = pfd_host[i].revents = 0;
}
if (rv) {
goto out;
}
pfd_host[nfds].fd = hpipe[0];
pfd_host[nfds].events = POLLIN;
pfd_rump[nfds].fd = rpipe[0];
pfd_rump[nfds].events = POLLIN;
/*
* then, create a thread to do host part and meanwhile
* do rump kernel part right here
*/
parg.pfds = pfd_host;
parg.nfds = nfds+1;
parg.ts = ts;
parg.sigmask = sigmask;
parg.pipefd = rpipe[1];
pthread_create(&pt, NULL, hostpoll, &parg);
op_pollts = GETSYSCALL(rump, POLLTS);
lrv = op_pollts(pfd_rump, nfds+1, ts, NULL);
sverrno = errno;
write(hpipe[1], &rv, sizeof(rv));
pthread_join(pt, (void *)&trv);
/* check who "won" and merge results */
if (lrv != 0 && pfd_host[nfds].revents & POLLIN) {
rv = trv;
for (i = 0; i < nfds; i++) {
if (pfd_rump[i].fd != -1)
fds[i].revents = pfd_rump[i].revents;
}
sverrno = parg.errnum;
} else if (trv != 0 && pfd_rump[nfds].revents & POLLIN) {
rv = trv;
for (i = 0; i < nfds; i++) {
if (pfd_host[i].fd != -1)
fds[i].revents = pfd_host[i].revents;
}
} else {
rv = 0;
}
out:
host_close = GETSYSCALL(host, CLOSE);
if (rpipe[0] != -1)
rump_sys_close(rpipe[0]);
if (rpipe[1] != -1)
rump_sys_close(rpipe[1]);
if (hpipe[0] != -1)
host_close(hpipe[0]);
if (hpipe[1] != -1)
host_close(hpipe[1]);
free(pfd_host);
free(pfd_rump);
errno = sverrno;
} else {
if (hostcall) {
op_pollts = GETSYSCALL(host, POLLTS);
} else {
op_pollts = GETSYSCALL(rump, POLLTS);
adjustpoll(fds, nfds, fd_host2rump);
}
rv = op_pollts(fds, nfds, ts, sigmask);
if (rumpcall)
adjustpoll(fds, nfds, fd_rump2host_withdup);
}
return rv;
}
int
poll(struct pollfd *fds, nfds_t nfds, int timeout)
{
struct timespec ts;
struct timespec *tsp = NULL;
if (timeout != INFTIM) {
ts.tv_sec = timeout / 1000;
ts.tv_nsec = (timeout % 1000) * 1000*1000;
tsp = &ts;
}
return REALPOLLTS(fds, nfds, tsp, NULL);
}
int
REALKEVENT(int kq, const struct kevent *changelist, size_t nchanges,
struct kevent *eventlist, size_t nevents,
const struct timespec *timeout)
{
int (*op_kevent)(int, const struct kevent *, size_t,
struct kevent *, size_t, const struct timespec *);
const struct kevent *ev;
size_t i;
/*
* Check that we don't attempt to kevent rump kernel fd's.
* That needs similar treatment to select/poll, but is slightly
* trickier since we need to manage to different kq descriptors.
* (TODO, in case you're wondering).
*/
for (i = 0; i < nchanges; i++) {
ev = &changelist[i];
if (ev->filter == EVFILT_READ || ev->filter == EVFILT_WRITE ||
ev->filter == EVFILT_VNODE) {
if (fd_isrump((int)ev->ident)) {
errno = ENOTSUP;
return -1;
}
}
}
op_kevent = GETSYSCALL(host, KEVENT);
return op_kevent(kq, changelist, nchanges, eventlist, nevents, timeout);
}
/*
* mmapping from a rump kernel is not supported, so disallow it.
*/
void *
mmap(void *addr, size_t len, int prot, int flags, int fd, off_t offset)
{
if (flags & MAP_FILE && fd_isrump(fd)) {
errno = ENOSYS;
return MAP_FAILED;
}
return host_mmap(addr, len, prot, flags, fd, offset);
}
/*
* Rest are std type calls.
*/
FDCALL(int, bind, DUALCALL_BIND, \
(int fd, const struct sockaddr *name, socklen_t namelen), \
(int, const struct sockaddr *, socklen_t), \
(fd, name, namelen))
FDCALL(int, connect, DUALCALL_CONNECT, \
(int fd, const struct sockaddr *name, socklen_t namelen), \
(int, const struct sockaddr *, socklen_t), \
(fd, name, namelen))
FDCALL(int, getpeername, DUALCALL_GETPEERNAME, \
(int fd, struct sockaddr *name, socklen_t *namelen), \
(int, struct sockaddr *, socklen_t *), \
(fd, name, namelen))
FDCALL(int, getsockname, DUALCALL_GETSOCKNAME, \
(int fd, struct sockaddr *name, socklen_t *namelen), \
(int, struct sockaddr *, socklen_t *), \
(fd, name, namelen))
FDCALL(int, listen, DUALCALL_LISTEN, \
(int fd, int backlog), \
(int, int), \
(fd, backlog))
FDCALL(ssize_t, recvfrom, DUALCALL_RECVFROM, \
(int fd, void *buf, size_t len, int flags, \
struct sockaddr *from, socklen_t *fromlen), \
(int, void *, size_t, int, struct sockaddr *, socklen_t *), \
(fd, buf, len, flags, from, fromlen))
FDCALL(ssize_t, sendto, DUALCALL_SENDTO, \
(int fd, const void *buf, size_t len, int flags, \
const struct sockaddr *to, socklen_t tolen), \
(int, const void *, size_t, int, \
const struct sockaddr *, socklen_t), \
(fd, buf, len, flags, to, tolen))
FDCALL(ssize_t, recvmsg, DUALCALL_RECVMSG, \
(int fd, struct msghdr *msg, int flags), \
(int, struct msghdr *, int), \
(fd, msg, flags))
FDCALL(ssize_t, sendmsg, DUALCALL_SENDMSG, \
(int fd, const struct msghdr *msg, int flags), \
(int, const struct msghdr *, int), \
(fd, msg, flags))
FDCALL(int, getsockopt, DUALCALL_GETSOCKOPT, \
(int fd, int level, int optn, void *optval, socklen_t *optlen), \
(int, int, int, void *, socklen_t *), \
(fd, level, optn, optval, optlen))
FDCALL(int, setsockopt, DUALCALL_SETSOCKOPT, \
(int fd, int level, int optn, \
const void *optval, socklen_t optlen), \
(int, int, int, const void *, socklen_t), \
(fd, level, optn, optval, optlen))
FDCALL(int, shutdown, DUALCALL_SHUTDOWN, \
(int fd, int how), \
(int, int), \
(fd, how))
#if _FORTIFY_SOURCE > 0
#define STUB(fun) __ssp_weak_name(fun)
ssize_t _sys_readlink(const char * __restrict, char * __restrict, size_t);
ssize_t
STUB(readlink)(const char * __restrict path, char * __restrict buf,
size_t bufsiz)
{
return _sys_readlink(path, buf, bufsiz);
}
char *_sys_getcwd(char *, size_t);
char *
STUB(getcwd)(char *buf, size_t size)
{
return _sys_getcwd(buf, size);
}
#else
#define STUB(fun) fun
#endif
FDCALL(ssize_t, REALREAD, DUALCALL_READ, \
(int fd, void *buf, size_t buflen), \
(int, void *, size_t), \
(fd, buf, buflen))
FDCALL(ssize_t, readv, DUALCALL_READV, \
(int fd, const struct iovec *iov, int iovcnt), \
(int, const struct iovec *, int), \
(fd, iov, iovcnt))
FDCALL(ssize_t, REALPREAD, DUALCALL_PREAD, \
(int fd, void *buf, size_t nbytes, off_t offset), \
(int, void *, size_t, off_t), \
(fd, buf, nbytes, offset))
FDCALL(ssize_t, preadv, DUALCALL_PREADV, \
(int fd, const struct iovec *iov, int iovcnt, off_t offset), \
(int, const struct iovec *, int, off_t), \
(fd, iov, iovcnt, offset))
FDCALL(ssize_t, writev, DUALCALL_WRITEV, \
(int fd, const struct iovec *iov, int iovcnt), \
(int, const struct iovec *, int), \
(fd, iov, iovcnt))
FDCALL(ssize_t, REALPWRITE, DUALCALL_PWRITE, \
(int fd, const void *buf, size_t nbytes, off_t offset), \
(int, const void *, size_t, off_t), \
(fd, buf, nbytes, offset))
FDCALL(ssize_t, pwritev, DUALCALL_PWRITEV, \
(int fd, const struct iovec *iov, int iovcnt, off_t offset), \
(int, const struct iovec *, int, off_t), \
(fd, iov, iovcnt, offset))
FDCALL(int, REALFSTAT, DUALCALL_FSTAT, \
(int fd, struct stat *sb), \
(int, struct stat *), \
(fd, sb))
FDCALL(int, fstatvfs1, DUALCALL_FSTATVFS1, \
(int fd, struct statvfs *buf, int flags), \
(int, struct statvfs *, int), \
(fd, buf, flags))
FDCALL(off_t, lseek, DUALCALL_LSEEK, \
(int fd, off_t offset, int whence), \
(int, off_t, int), \
(fd, offset, whence))
__strong_alias(_lseek,lseek);
FDCALL(int, REALGETDENTS, DUALCALL_GETDENTS, \
(int fd, char *buf, size_t nbytes), \
(int, char *, size_t), \
(fd, buf, nbytes))
FDCALL(int, fchown, DUALCALL_FCHOWN, \
(int fd, uid_t owner, gid_t group), \
(int, uid_t, gid_t), \
(fd, owner, group))
FDCALL(int, fchmod, DUALCALL_FCHMOD, \
(int fd, mode_t mode), \
(int, mode_t), \
(fd, mode))
FDCALL(int, ftruncate, DUALCALL_FTRUNCATE, \
(int fd, off_t length), \
(int, off_t), \
(fd, length))
FDCALL(int, fsync, DUALCALL_FSYNC, \
(int fd), \
(int), \
(fd))
FDCALL(int, fsync_range, DUALCALL_FSYNC_RANGE, \
(int fd, int how, off_t start, off_t length), \
(int, int, off_t, off_t), \
(fd, how, start, length))
FDCALL(int, futimes, DUALCALL_FUTIMES, \
(int fd, const struct timeval *tv), \
(int, const struct timeval *), \
(fd, tv))
FDCALL(int, fchflags, DUALCALL_FCHFLAGS, \
(int fd, u_long flags), \
(int, u_long), \
(fd, flags))
/*
* path-based selectors
*/
PATHCALL(int, REALSTAT, DUALCALL_STAT, \
(const char *path, struct stat *sb), \
(const char *, struct stat *), \
(path, sb))
PATHCALL(int, REALLSTAT, DUALCALL_LSTAT, \
(const char *path, struct stat *sb), \
(const char *, struct stat *), \
(path, sb))
PATHCALL(int, chown, DUALCALL_CHOWN, \
(const char *path, uid_t owner, gid_t group), \
(const char *, uid_t, gid_t), \
(path, owner, group))
PATHCALL(int, lchown, DUALCALL_LCHOWN, \
(const char *path, uid_t owner, gid_t group), \
(const char *, uid_t, gid_t), \
(path, owner, group))
PATHCALL(int, chmod, DUALCALL_CHMOD, \
(const char *path, mode_t mode), \
(const char *, mode_t), \
(path, mode))
PATHCALL(int, lchmod, DUALCALL_LCHMOD, \
(const char *path, mode_t mode), \
(const char *, mode_t), \
(path, mode))
PATHCALL(int, statvfs1, DUALCALL_STATVFS1, \
(const char *path, struct statvfs *buf, int flags), \
(const char *, struct statvfs *, int), \
(path, buf, flags))
PATHCALL(int, unlink, DUALCALL_UNLINK, \
(const char *path), \
(const char *), \
(path))
PATHCALL(int, symlink, DUALCALL_SYMLINK, \
(const char *target, const char *path), \
(const char *, const char *), \
(target, path))
PATHCALL(ssize_t, readlink, DUALCALL_READLINK, \
(const char *path, char *buf, size_t bufsiz), \
(const char *, char *, size_t), \
(path, buf, bufsiz))
PATHCALL(int, mkdir, DUALCALL_MKDIR, \
(const char *path, mode_t mode), \
(const char *, mode_t), \
(path, mode))
PATHCALL(int, rmdir, DUALCALL_RMDIR, \
(const char *path), \
(const char *), \
(path))
PATHCALL(int, utimes, DUALCALL_UTIMES, \
(const char *path, const struct timeval *tv), \
(const char *, const struct timeval *), \
(path, tv))
PATHCALL(int, lutimes, DUALCALL_LUTIMES, \
(const char *path, const struct timeval *tv), \
(const char *, const struct timeval *), \
(path, tv))
PATHCALL(int, chflags, DUALCALL_CHFLAGS, \
(const char *path, u_long flags), \
(const char *, u_long), \
(path, flags))
PATHCALL(int, lchflags, DUALCALL_LCHFLAGS, \
(const char *path, u_long flags), \
(const char *, u_long), \
(path, flags))
PATHCALL(int, truncate, DUALCALL_TRUNCATE, \
(const char *path, off_t length), \
(const char *, off_t), \
(path, length))
PATHCALL(int, access, DUALCALL_ACCESS, \
(const char *path, int mode), \
(const char *, int), \
(path, mode))
PATHCALL(int, REALMKNOD, DUALCALL_MKNOD, \
(const char *path, mode_t mode, dev_t dev), \
(const char *, mode_t, dev_t), \
(path, mode, dev))
/*
* Note: with mount the decisive parameter is the mount
* destination directory. This is because we don't really know
* about the "source" directory in a generic call (and besides,
* it might not even exist, cf. nfs).
*/
PATHCALL(int, REALMOUNT, DUALCALL_MOUNT, \
(const char *type, const char *path, int flags, \
void *data, size_t dlen), \
(const char *, const char *, int, void *, size_t), \
(type, path, flags, data, dlen))
PATHCALL(int, unmount, DUALCALL_UNMOUNT, \
(const char *path, int flags), \
(const char *, int), \
(path, flags))