NetBSD/sys/arch/sun3/dev/zs.c

880 lines
19 KiB
C

/* $NetBSD: zs.c,v 1.52 1998/01/12 20:32:29 thorpej Exp $ */
/*-
* Copyright (c) 1996 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Gordon W. Ross.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Zilog Z8530 Dual UART driver (machine-dependent part)
*
* Runs two serial lines per chip using slave drivers.
* Plain tty/async lines use the zs_async slave.
* Sun keyboard/mouse uses the zs_kbd/zs_ms slaves.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/device.h>
#include <sys/file.h>
#include <sys/ioctl.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/tty.h>
#include <sys/time.h>
#include <sys/syslog.h>
#include <machine/autoconf.h>
#include <machine/cpu.h>
#include <machine/obio.h>
#include <machine/machdep.h>
#include <machine/mon.h>
#include <machine/z8530var.h>
#include <dev/cons.h>
#include <dev/ic/z8530reg.h>
#include <sun3/dev/zs_cons.h>
#include "kbd.h" /* NKBD */
#include "zsc.h" /* NZSC */
#define NZS NZSC
/* Make life easier for the initialized arrays here. */
#if NZS < 2
#undef NZS
#define NZS 2
#endif
extern void Debugger __P((void));
/*
* Some warts needed by z8530tty.c -
* The default parity REALLY needs to be the same as the PROM uses,
* or you can not see messages done with printf during boot-up...
*/
int zs_def_cflag = (CREAD | CS8 | HUPCL);
int zs_major = 12;
/*
* The Sun3 provides a 4.9152 MHz clock to the ZS chips.
*/
#define PCLK (9600 * 512) /* PCLK pin input clock rate */
/*
* Define interrupt levels.
*/
#define ZSHARD_PRI 6 /* Wired on the CPU board... */
#define ZSSOFT_PRI 3 /* Want tty pri (4) but this is OK. */
#define ZS_DELAY() delay(2)
/* The layout of this is hardware-dependent (padding, order). */
struct zschan {
volatile u_char zc_csr; /* ctrl,status, and indirect access */
u_char zc_xxx0;
volatile u_char zc_data; /* data */
u_char zc_xxx1;
};
struct zsdevice {
/* Yes, they are backwards. */
struct zschan zs_chan_b;
struct zschan zs_chan_a;
};
/* Default OBIO addresses. */
static int zs_physaddr[NZS] = {
OBIO_ZS_KBD_MS,
OBIO_ZS_TTY_AB };
/* Saved PROM mappings */
static struct zsdevice *zsaddr[NZS];
/* Flags from cninit() */
static int zs_hwflags[NZS][2];
/* Default speed for each channel */
static int zs_defspeed[NZS][2] = {
{ 1200, /* keyboard */
1200 }, /* mouse */
{ 9600, /* ttya */
9600 }, /* ttyb */
};
static u_char zs_init_reg[16] = {
0, /* 0: CMD (reset, etc.) */
0, /* 1: No interrupts yet. */
0x18 + ZSHARD_PRI, /* IVECT */
ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
0, /* 6: TXSYNC/SYNCLO */
0, /* 7: RXSYNC/SYNCHI */
0, /* 8: alias for data port */
ZSWR9_MASTER_IE,
0, /*10: Misc. TX/RX control bits */
ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
14, /*12: BAUDLO (default=9600) */
0, /*13: BAUDHI (default=9600) */
ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
ZSWR15_BREAK_IE | ZSWR15_DCD_IE,
};
/* Find PROM mappings (for console support). */
void
zs_init()
{
int i;
for (i = 0; i < NZS; i++) {
zsaddr[i] = (struct zsdevice *)
obio_find_mapping(zs_physaddr[i], sizeof(struct zschan));
}
}
struct zschan *
zs_get_chan_addr(zs_unit, channel)
int zs_unit, channel;
{
struct zsdevice *addr;
struct zschan *zc;
if (zs_unit >= NZS)
return NULL;
addr = zsaddr[zs_unit];
if (addr == NULL)
return NULL;
if (channel == 0) {
zc = &addr->zs_chan_a;
} else {
zc = &addr->zs_chan_b;
}
return (zc);
}
/****************************************************************
* Autoconfig
****************************************************************/
/* Definition of the driver for autoconfig. */
static int zs_match __P((struct device *, struct cfdata *, void *));
static void zs_attach __P((struct device *, struct device *, void *));
static int zs_print __P((void *, const char *name));
struct cfattach zsc_ca = {
sizeof(struct zsc_softc), zs_match, zs_attach
};
extern struct cfdriver zsc_cd;
static int zshard __P((void *));
static int zssoft __P((void *));
static int zs_get_speed __P((struct zs_chanstate *));
/*
* Is the zs chip present?
*/
static int
zs_match(parent, cf, aux)
struct device *parent;
struct cfdata *cf;
void *aux;
{
struct confargs *ca = aux;
int unit = cf->cf_unit;
void *va;
/*
* This driver only supports its wired-in mappings,
* because the console support depends on those.
*/
if (ca->ca_paddr != zs_physaddr[unit])
return (0);
/* Make sure zs_init() found mappings. */
va = zsaddr[unit];
if (va == NULL)
return (0);
/* This returns -1 on a fault (bus error). */
if (peek_byte(va) == -1)
return (0);
/* Default interrupt priority (always splbio==2) */
if (ca->ca_intpri == -1)
ca->ca_intpri = ZSHARD_PRI;
return (1);
}
/*
* Attach a found zs.
*
* Match slave number to zs unit number, so that misconfiguration will
* not set up the keyboard as ttya, etc.
*/
static void
zs_attach(parent, self, aux)
struct device *parent;
struct device *self;
void *aux;
{
struct zsc_softc *zsc = (void *) self;
struct confargs *ca = aux;
struct zsc_attach_args zsc_args;
volatile struct zschan *zc;
struct zs_chanstate *cs;
int s, zs_unit, channel;
static int didintr;
zs_unit = zsc->zsc_dev.dv_unit;
printf(": (softpri %d)\n", ZSSOFT_PRI);
/* Use the mapping setup by the Sun PROM. */
if (zsaddr[zs_unit] == NULL)
panic("zs_attach: zs%d not mapped\n", zs_unit);
/*
* Initialize software state for each channel.
*/
for (channel = 0; channel < 2; channel++) {
zsc_args.channel = channel;
zsc_args.hwflags = zs_hwflags[zs_unit][channel];
cs = &zsc->zsc_cs_store[channel];
zsc->zsc_cs[channel] = cs;
cs->cs_channel = channel;
cs->cs_private = NULL;
cs->cs_ops = &zsops_null;
cs->cs_brg_clk = PCLK / 16;
zc = zs_get_chan_addr(zs_unit, channel);
cs->cs_reg_csr = &zc->zc_csr;
cs->cs_reg_data = &zc->zc_data;
bcopy(zs_init_reg, cs->cs_creg, 16);
bcopy(zs_init_reg, cs->cs_preg, 16);
/* XXX: Get these from the EEPROM instead? */
/* XXX: See the mvme167 code. Better. */
if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE)
cs->cs_defspeed = zs_get_speed(cs);
else
cs->cs_defspeed = zs_defspeed[zs_unit][channel];
cs->cs_defcflag = zs_def_cflag;
/* Make these correspond to cs_defcflag (-crtscts) */
cs->cs_rr0_dcd = ZSRR0_DCD;
cs->cs_rr0_cts = 0;
cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
cs->cs_wr5_rts = 0;
/*
* Clear the master interrupt enable.
* The INTENA is common to both channels,
* so just do it on the A channel.
*/
if (channel == 0) {
zs_write_reg(cs, 9, 0);
}
/*
* Look for a child driver for this channel.
* The child attach will setup the hardware.
*/
if (!config_found(self, (void *)&zsc_args, zs_print)) {
/* No sub-driver. Just reset it. */
u_char reset = (channel == 0) ?
ZSWR9_A_RESET : ZSWR9_B_RESET;
s = splhigh();
zs_write_reg(cs, 9, reset);
splx(s);
}
}
/*
* Now safe to install interrupt handlers. Note the arguments
* to the interrupt handlers aren't used. Note, we only do this
* once since both SCCs interrupt at the same level and vector.
*/
if (!didintr) {
didintr = 1;
isr_add_autovect(zssoft, NULL, ZSSOFT_PRI);
isr_add_autovect(zshard, NULL, ca->ca_intpri);
}
/* XXX; evcnt_attach() ? */
/*
* Set the master interrupt enable and interrupt vector.
* (common to both channels, do it on A)
*/
cs = zsc->zsc_cs[0];
s = splhigh();
/* interrupt vector */
zs_write_reg(cs, 2, zs_init_reg[2]);
/* master interrupt control (enable) */
zs_write_reg(cs, 9, zs_init_reg[9]);
splx(s);
/*
* XXX: L1A hack - We would like to be able to break into
* the debugger during the rest of autoconfiguration, so
* lower interrupts just enough to let zs interrupts in.
* This is done after both zs devices are attached.
*/
if (zs_unit == 1) {
printf("zsc1: enabling zs interrupts\n");
(void)spl5(); /* splzs - 1 */
}
}
static int
zs_print(aux, name)
void *aux;
const char *name;
{
struct zsc_attach_args *args = aux;
if (name != NULL)
printf("%s: ", name);
if (args->channel != -1)
printf(" channel %d", args->channel);
return UNCONF;
}
static volatile int zssoftpending;
/*
* Our ZS chips all share a common, autovectored interrupt,
* so we have to look at all of them on each interrupt.
*/
static int
zshard(arg)
void *arg;
{
register struct zsc_softc *zsc;
register int unit, rval, softreq;
rval = softreq = 0;
for (unit = 0; unit < zsc_cd.cd_ndevs; unit++) {
zsc = zsc_cd.cd_devs[unit];
if (zsc == NULL)
continue;
rval |= zsc_intr_hard(zsc);
softreq |= zsc->zsc_cs[0]->cs_softreq;
softreq |= zsc->zsc_cs[1]->cs_softreq;
}
/* We are at splzs here, so no need to lock. */
if (softreq && (zssoftpending == 0)) {
zssoftpending = ZSSOFT_PRI;
isr_soft_request(ZSSOFT_PRI);
}
return (rval);
}
/*
* Similar scheme as for zshard (look at all of them)
*/
static int
zssoft(arg)
void *arg;
{
register struct zsc_softc *zsc;
register int s, unit;
/* This is not the only ISR on this IPL. */
if (zssoftpending == 0)
return (0);
/*
* The soft intr. bit will be set by zshard only if
* the variable zssoftpending is zero. The order of
* these next two statements prevents our clearing
* the soft intr bit just after zshard has set it.
*/
isr_soft_clear(ZSSOFT_PRI);
zssoftpending = 0;
/* Make sure we call the tty layer at spltty. */
s = spltty();
for (unit = 0; unit < zsc_cd.cd_ndevs; unit++) {
zsc = zsc_cd.cd_devs[unit];
if (zsc == NULL)
continue;
(void) zsc_intr_soft(zsc);
}
splx(s);
return (1);
}
/*
* Compute the current baud rate given a ZS channel.
*/
static int
zs_get_speed(cs)
struct zs_chanstate *cs;
{
int tconst;
tconst = zs_read_reg(cs, 12);
tconst |= zs_read_reg(cs, 13) << 8;
return (TCONST_TO_BPS(cs->cs_brg_clk, tconst));
}
/*
* MD functions for setting the baud rate and control modes.
*/
int
zs_set_speed(cs, bps)
struct zs_chanstate *cs;
int bps; /* bits per second */
{
int tconst, real_bps;
if (bps == 0)
return (0);
#ifdef DIAGNOSTIC
if (cs->cs_brg_clk == 0)
panic("zs_set_speed");
#endif
tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
if (tconst < 0)
return (EINVAL);
/* Convert back to make sure we can do it. */
real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
/* XXX - Allow some tolerance here? */
if (real_bps != bps)
return (EINVAL);
cs->cs_preg[12] = tconst;
cs->cs_preg[13] = tconst >> 8;
/* Caller will stuff the pending registers. */
return (0);
}
int
zs_set_modes(cs, cflag)
struct zs_chanstate *cs;
int cflag; /* bits per second */
{
int s;
/*
* Output hardware flow control on the chip is horrendous:
* if carrier detect drops, the receiver is disabled, and if
* CTS drops, the transmitter is stoped IN MID CHARACTER!
* Therefore, NEVER set the HFC bit, and instead use the
* status interrupt to detect CTS changes.
*/
s = splzs();
if ((cflag & (CLOCAL | MDMBUF)) != 0)
cs->cs_rr0_dcd = 0;
else
cs->cs_rr0_dcd = ZSRR0_DCD;
if ((cflag & CRTSCTS) != 0) {
cs->cs_wr5_dtr = ZSWR5_DTR;
cs->cs_wr5_rts = ZSWR5_RTS;
cs->cs_rr0_cts = ZSRR0_CTS;
} else if ((cflag & MDMBUF) != 0) {
cs->cs_wr5_dtr = 0;
cs->cs_wr5_rts = ZSWR5_DTR;
cs->cs_rr0_cts = ZSRR0_DCD;
} else {
cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
cs->cs_wr5_rts = 0;
cs->cs_rr0_cts = 0;
}
splx(s);
/* Caller will stuff the pending registers. */
return (0);
}
/*
* Read or write the chip with suitable delays.
*/
u_char
zs_read_reg(cs, reg)
struct zs_chanstate *cs;
u_char reg;
{
u_char val;
*cs->cs_reg_csr = reg;
ZS_DELAY();
val = *cs->cs_reg_csr;
ZS_DELAY();
return val;
}
void
zs_write_reg(cs, reg, val)
struct zs_chanstate *cs;
u_char reg, val;
{
*cs->cs_reg_csr = reg;
ZS_DELAY();
*cs->cs_reg_csr = val;
ZS_DELAY();
}
u_char zs_read_csr(cs)
struct zs_chanstate *cs;
{
register u_char val;
val = *cs->cs_reg_csr;
ZS_DELAY();
return val;
}
void zs_write_csr(cs, val)
struct zs_chanstate *cs;
u_char val;
{
*cs->cs_reg_csr = val;
ZS_DELAY();
}
u_char zs_read_data(cs)
struct zs_chanstate *cs;
{
register u_char val;
val = *cs->cs_reg_data;
ZS_DELAY();
return val;
}
void zs_write_data(cs, val)
struct zs_chanstate *cs;
u_char val;
{
*cs->cs_reg_data = val;
ZS_DELAY();
}
/****************************************************************
* Console support functions (Sun3 specific!)
* Note: this code is allowed to know about the layout of
* the chip registers, and uses that to keep things simple.
* XXX - I think I like the mvme167 code better. -gwr
****************************************************************/
void *zs_conschan;
/*
* Handle user request to enter kernel debugger.
*/
void
zs_abort(cs)
struct zs_chanstate *cs;
{
register volatile struct zschan *zc = zs_conschan;
int rr0;
/* Wait for end of break to avoid PROM abort. */
/* XXX - Limit the wait? */
do {
rr0 = zc->zc_csr;
ZS_DELAY();
} while (rr0 & ZSRR0_BREAK);
/* This is always available on the Sun3. */
Debugger();
}
/*
* Polled input char.
*/
int
zs_getc(arg)
void *arg;
{
register volatile struct zschan *zc = arg;
register int s, c, rr0;
s = splhigh();
/* Wait for a character to arrive. */
do {
rr0 = zc->zc_csr;
ZS_DELAY();
} while ((rr0 & ZSRR0_RX_READY) == 0);
c = zc->zc_data;
ZS_DELAY();
splx(s);
/*
* This is used by the kd driver to read scan codes,
* so don't translate '\r' ==> '\n' here...
*/
return (c);
}
/*
* Polled output char.
*/
void
zs_putc(arg, c)
void *arg;
int c;
{
register volatile struct zschan *zc = arg;
register int s, rr0;
s = splhigh();
/* Wait for transmitter to become ready. */
do {
rr0 = zc->zc_csr;
ZS_DELAY();
} while ((rr0 & ZSRR0_TX_READY) == 0);
zc->zc_data = c;
ZS_DELAY();
splx(s);
}
/*****************************************************************/
static void zscninit __P((struct consdev *));
static int zscngetc __P((dev_t));
static void zscnputc __P((dev_t, int));
/*
* Console table shared by ttya, ttyb
*/
struct consdev consdev_tty = {
nullcnprobe,
zscninit,
zscngetc,
zscnputc,
nullcnpollc,
};
static void
zscninit(cn)
struct consdev *cn;
{
}
/*
* Polled console input putchar.
*/
static int
zscngetc(dev)
dev_t dev;
{
return (zs_getc(zs_conschan));
}
/*
* Polled console output putchar.
*/
static void
zscnputc(dev, c)
dev_t dev;
int c;
{
zs_putc(zs_conschan, c);
}
/*****************************************************************/
static void prom_cninit __P((struct consdev *));
static int prom_cngetc __P((dev_t));
static void prom_cnputc __P((dev_t, int));
/*
* The console is set to this one initially,
* which lets us use the PROM until consinit()
* is called to select a real console.
*/
struct consdev consdev_prom = {
nullcnprobe,
prom_cninit,
prom_cngetc,
prom_cnputc,
nullcnpollc,
};
/*
* The console table pointer is statically initialized
* to point to the PROM (output only) table, so that
* early calls to printf will work.
*/
struct consdev *cn_tab = &consdev_prom;
void
nullcnprobe(cn)
struct consdev *cn;
{
}
static void
prom_cninit(cn)
struct consdev *cn;
{
}
/*
* PROM console input putchar.
* (dummy - this is output only)
*/
static int
prom_cngetc(dev)
dev_t dev;
{
return (0);
}
/*
* PROM console output putchar.
*/
static void
prom_cnputc(dev, c)
dev_t dev;
int c;
{
(*romVectorPtr->putChar)(c & 0x7f);
}
/*****************************************************************/
extern struct consdev consdev_kd;
static struct {
int zs_unit, channel;
} zstty_conf[NZS*2] = {
/* XXX: knowledge from the config file here... */
{ 1, 0 }, /* ttya */
{ 1, 1 }, /* ttyb */
{ 0, 0 }, /* ttyc */
{ 0, 1 }, /* ttyd */
};
static char *prom_inSrc_name[] = {
"keyboard/display",
"ttya", "ttyb",
"ttyc", "ttyd" };
/*
* This function replaces sys/dev/cninit.c
* Determine which device is the console using
* the PROM "input source" and "output sink".
*/
void
cninit()
{
MachMonRomVector *v;
struct zschan *zc;
struct consdev *cn;
int channel, zs_unit, zstty_unit;
u_char inSource, outSink;
v = romVectorPtr;
inSource = *v->inSource;
outSink = *v->outSink;
if (inSource != outSink) {
mon_printf("cninit: mismatched PROM output selector\n");
}
switch (inSource) {
default:
mon_printf("cninit: invalid inSource=%d\n", inSource);
sunmon_abort();
inSource = 0;
/* fall through */
case 0: /* keyboard/display */
#if NKBD > 0
zs_unit = 0;
channel = 0;
cn = &consdev_kd;
/* Set cn_dev, cn_pri in kd.c */
break;
#else /* NKBD */
mon_printf("cninit: kdb/display not configured\n");
sunmon_abort();
inSource = 1;
/* fall through */
#endif /* NKBD */
case 1: /* ttya */
case 2: /* ttyb */
case 3: /* ttyc (rewired keyboard connector) */
case 4: /* ttyd (rewired mouse connector) */
zstty_unit = inSource - 1;
zs_unit = zstty_conf[zstty_unit].zs_unit;
channel = zstty_conf[zstty_unit].channel;
cn = &consdev_tty;
cn->cn_dev = makedev(zs_major, zstty_unit);
cn->cn_pri = CN_REMOTE;
break;
}
/* Now that inSource has been validated, print it. */
mon_printf("console is %s\n", prom_inSrc_name[inSource]);
zc = zs_get_chan_addr(zs_unit, channel);
if (zc == NULL) {
mon_printf("cninit: zs not mapped.\n");
return;
}
zs_conschan = zc;
zs_hwflags[zs_unit][channel] = ZS_HWFLAG_CONSOLE;
cn_tab = cn;
(*cn->cn_init)(cn);
#ifdef KGDB
zs_kgdb_init();
#endif
}