NetBSD/sys/ufs/lfs/lfs_vnops.c

2403 lines
61 KiB
C

/* $NetBSD: lfs_vnops.c,v 1.340 2021/10/20 03:08:19 thorpej Exp $ */
/*-
* Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Konrad E. Schroder <perseant@hhhh.org>.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1986, 1989, 1991, 1993, 1995
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)lfs_vnops.c 8.13 (Berkeley) 6/10/95
*/
/* from NetBSD: ufs_vnops.c,v 1.232 2016/05/19 18:32:03 riastradh Exp */
/*-
* Copyright (c) 2008 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1982, 1986, 1989, 1993, 1995
* The Regents of the University of California. All rights reserved.
* (c) UNIX System Laboratories, Inc.
* All or some portions of this file are derived from material licensed
* to the University of California by American Telephone and Telegraph
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
* the permission of UNIX System Laboratories, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)ufs_vnops.c 8.28 (Berkeley) 7/31/95
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.340 2021/10/20 03:08:19 thorpej Exp $");
#ifdef _KERNEL_OPT
#include "opt_compat_netbsd.h"
#include "opt_uvm_page_trkown.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/namei.h>
#include <sys/resourcevar.h>
#include <sys/kernel.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/buf.h>
#include <sys/proc.h>
#include <sys/mount.h>
#include <sys/vnode.h>
#include <sys/pool.h>
#include <sys/signalvar.h>
#include <sys/kauth.h>
#include <sys/syslog.h>
#include <miscfs/fifofs/fifo.h>
#include <miscfs/genfs/genfs.h>
#include <miscfs/specfs/specdev.h>
#include <ufs/lfs/ulfs_inode.h>
#include <ufs/lfs/ulfsmount.h>
#include <ufs/lfs/ulfs_bswap.h>
#include <ufs/lfs/ulfs_extern.h>
#include <uvm/uvm_extern.h>
#include <ufs/lfs/lfs.h>
#include <ufs/lfs/lfs_accessors.h>
#include <ufs/lfs/lfs_kernel.h>
#include <ufs/lfs/lfs_extern.h>
extern kcondvar_t lfs_writerd_cv;
int lfs_ignore_lazy_sync = 1;
static int lfs_openextattr(void *v);
static int lfs_closeextattr(void *v);
static int lfs_getextattr(void *v);
static int lfs_setextattr(void *v);
static int lfs_listextattr(void *v);
static int lfs_deleteextattr(void *v);
static int lfs_makeinode(struct vattr *vap, struct vnode *,
const struct ulfs_lookup_results *,
struct vnode **, struct componentname *);
/* Global vfs data structures for lfs. */
int (**lfs_vnodeop_p)(void *);
const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
{ &vop_default_desc, vn_default_error },
{ &vop_parsepath_desc, genfs_parsepath }, /* parsepath */
{ &vop_lookup_desc, ulfs_lookup }, /* lookup */
{ &vop_create_desc, lfs_create }, /* create */
{ &vop_whiteout_desc, ulfs_whiteout }, /* whiteout */
{ &vop_mknod_desc, lfs_mknod }, /* mknod */
{ &vop_open_desc, ulfs_open }, /* open */
{ &vop_close_desc, lfs_close }, /* close */
{ &vop_access_desc, ulfs_access }, /* access */
{ &vop_accessx_desc, genfs_accessx }, /* accessx */
{ &vop_getattr_desc, lfs_getattr }, /* getattr */
{ &vop_setattr_desc, lfs_setattr }, /* setattr */
{ &vop_read_desc, lfs_read }, /* read */
{ &vop_write_desc, lfs_write }, /* write */
{ &vop_fallocate_desc, genfs_eopnotsupp }, /* fallocate */
{ &vop_fdiscard_desc, genfs_eopnotsupp }, /* fdiscard */
{ &vop_ioctl_desc, genfs_enoioctl }, /* ioctl */
{ &vop_fcntl_desc, lfs_fcntl }, /* fcntl */
{ &vop_poll_desc, genfs_poll }, /* poll */
{ &vop_kqfilter_desc, genfs_kqfilter }, /* kqfilter */
{ &vop_revoke_desc, genfs_revoke }, /* revoke */
{ &vop_mmap_desc, lfs_mmap }, /* mmap */
{ &vop_fsync_desc, lfs_fsync }, /* fsync */
{ &vop_seek_desc, genfs_seek }, /* seek */
{ &vop_remove_desc, lfs_remove }, /* remove */
{ &vop_link_desc, lfs_link }, /* link */
{ &vop_rename_desc, lfs_rename }, /* rename */
{ &vop_mkdir_desc, lfs_mkdir }, /* mkdir */
{ &vop_rmdir_desc, lfs_rmdir }, /* rmdir */
{ &vop_symlink_desc, lfs_symlink }, /* symlink */
{ &vop_readdir_desc, ulfs_readdir }, /* readdir */
{ &vop_readlink_desc, ulfs_readlink }, /* readlink */
{ &vop_abortop_desc, genfs_abortop }, /* abortop */
{ &vop_inactive_desc, lfs_inactive }, /* inactive */
{ &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
{ &vop_lock_desc, genfs_lock }, /* lock */
{ &vop_unlock_desc, genfs_unlock }, /* unlock */
{ &vop_bmap_desc, ulfs_bmap }, /* bmap */
{ &vop_strategy_desc, lfs_strategy }, /* strategy */
{ &vop_print_desc, ulfs_print }, /* print */
{ &vop_islocked_desc, genfs_islocked }, /* islocked */
{ &vop_pathconf_desc, ulfs_pathconf }, /* pathconf */
{ &vop_advlock_desc, ulfs_advlock }, /* advlock */
{ &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
{ &vop_getpages_desc, lfs_getpages }, /* getpages */
{ &vop_putpages_desc, lfs_putpages }, /* putpages */
{ &vop_openextattr_desc, lfs_openextattr }, /* openextattr */
{ &vop_closeextattr_desc, lfs_closeextattr }, /* closeextattr */
{ &vop_getextattr_desc, lfs_getextattr }, /* getextattr */
{ &vop_setextattr_desc, lfs_setextattr }, /* setextattr */
{ &vop_listextattr_desc, lfs_listextattr }, /* listextattr */
{ &vop_deleteextattr_desc, lfs_deleteextattr }, /* deleteextattr */
{ NULL, NULL }
};
const struct vnodeopv_desc lfs_vnodeop_opv_desc =
{ &lfs_vnodeop_p, lfs_vnodeop_entries };
int (**lfs_specop_p)(void *);
const struct vnodeopv_entry_desc lfs_specop_entries[] = {
{ &vop_default_desc, vn_default_error },
GENFS_SPECOP_ENTRIES,
{ &vop_close_desc, lfsspec_close }, /* close */
{ &vop_access_desc, ulfs_access }, /* access */
{ &vop_accessx_desc, genfs_accessx }, /* accessx */
{ &vop_getattr_desc, lfs_getattr }, /* getattr */
{ &vop_setattr_desc, lfs_setattr }, /* setattr */
{ &vop_read_desc, ulfsspec_read }, /* read */
{ &vop_write_desc, ulfsspec_write }, /* write */
{ &vop_fcntl_desc, genfs_fcntl }, /* fcntl */
{ &vop_fsync_desc, spec_fsync }, /* fsync */
{ &vop_inactive_desc, lfs_inactive }, /* inactive */
{ &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
{ &vop_lock_desc, genfs_lock }, /* lock */
{ &vop_unlock_desc, genfs_unlock }, /* unlock */
{ &vop_print_desc, ulfs_print }, /* print */
{ &vop_islocked_desc, genfs_islocked }, /* islocked */
{ &vop_bwrite_desc, vn_bwrite }, /* bwrite */
{ &vop_openextattr_desc, lfs_openextattr }, /* openextattr */
{ &vop_closeextattr_desc, lfs_closeextattr }, /* closeextattr */
{ &vop_getextattr_desc, lfs_getextattr }, /* getextattr */
{ &vop_setextattr_desc, lfs_setextattr }, /* setextattr */
{ &vop_listextattr_desc, lfs_listextattr }, /* listextattr */
{ &vop_deleteextattr_desc, lfs_deleteextattr }, /* deleteextattr */
{ NULL, NULL }
};
const struct vnodeopv_desc lfs_specop_opv_desc =
{ &lfs_specop_p, lfs_specop_entries };
int (**lfs_fifoop_p)(void *);
const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
{ &vop_default_desc, vn_default_error },
GENFS_FIFOOP_ENTRIES,
{ &vop_close_desc, lfsfifo_close }, /* close */
{ &vop_access_desc, ulfs_access }, /* access */
{ &vop_accessx_desc, genfs_accessx }, /* accessx */
{ &vop_getattr_desc, lfs_getattr }, /* getattr */
{ &vop_setattr_desc, lfs_setattr }, /* setattr */
{ &vop_read_desc, ulfsfifo_read }, /* read */
{ &vop_write_desc, ulfsfifo_write }, /* write */
{ &vop_fcntl_desc, genfs_fcntl }, /* fcntl */
{ &vop_fsync_desc, vn_fifo_bypass }, /* fsync */
{ &vop_inactive_desc, lfs_inactive }, /* inactive */
{ &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
{ &vop_lock_desc, genfs_lock }, /* lock */
{ &vop_unlock_desc, genfs_unlock }, /* unlock */
{ &vop_strategy_desc, vn_fifo_bypass }, /* strategy */
{ &vop_print_desc, ulfs_print }, /* print */
{ &vop_islocked_desc, genfs_islocked }, /* islocked */
{ &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
{ &vop_openextattr_desc, lfs_openextattr }, /* openextattr */
{ &vop_closeextattr_desc, lfs_closeextattr }, /* closeextattr */
{ &vop_getextattr_desc, lfs_getextattr }, /* getextattr */
{ &vop_setextattr_desc, lfs_setextattr }, /* setextattr */
{ &vop_listextattr_desc, lfs_listextattr }, /* listextattr */
{ &vop_deleteextattr_desc, lfs_deleteextattr }, /* deleteextattr */
{ NULL, NULL }
};
const struct vnodeopv_desc lfs_fifoop_opv_desc =
{ &lfs_fifoop_p, lfs_fifoop_entries };
#include <ufs/lfs/ulfs_readwrite.c>
/*
* Allocate a new inode.
*/
static int
lfs_makeinode(struct vattr *vap, struct vnode *dvp,
const struct ulfs_lookup_results *ulr,
struct vnode **vpp, struct componentname *cnp)
{
struct inode *ip;
struct vnode *tvp;
int error;
error = vcache_new(dvp->v_mount, dvp, vap, cnp->cn_cred, NULL, &tvp);
if (error)
return error;
error = vn_lock(tvp, LK_EXCLUSIVE);
if (error) {
vrele(tvp);
return error;
}
MARK_VNODE(tvp);
*vpp = tvp;
ip = VTOI(tvp);
ip->i_state |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
ip->i_nlink = 1;
DIP_ASSIGN(ip, nlink, 1);
/* Authorize setting SGID if needed. */
if (ip->i_mode & ISGID) {
error = kauth_authorize_vnode(cnp->cn_cred,
KAUTH_VNODE_WRITE_SECURITY,
tvp, NULL, genfs_can_chmod(tvp, cnp->cn_cred, ip->i_uid,
ip->i_gid, MAKEIMODE(vap->va_type, vap->va_mode)));
if (error) {
ip->i_mode &= ~ISGID;
DIP_ASSIGN(ip, mode, ip->i_mode);
}
}
if (cnp->cn_flags & ISWHITEOUT) {
ip->i_flags |= UF_OPAQUE;
DIP_ASSIGN(ip, flags, ip->i_flags);
}
/*
* Make sure inode goes to disk before directory entry.
*/
if ((error = lfs_update(tvp, NULL, NULL, UPDATE_DIROP)) != 0)
goto bad;
error = ulfs_direnter(dvp, ulr, tvp,
cnp, ip->i_number, LFS_IFTODT(ip->i_mode), NULL);
if (error)
goto bad;
*vpp = tvp;
cache_enter(dvp, *vpp, cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_flags);
KASSERT(VOP_ISLOCKED(*vpp) == LK_EXCLUSIVE);
return (0);
bad:
/*
* Write error occurred trying to update the inode
* or the directory so must deallocate the inode.
*/
ip->i_nlink = 0;
DIP_ASSIGN(ip, nlink, 0);
ip->i_state |= IN_CHANGE;
/* If IN_ADIROP, account for it */
UNMARK_VNODE(tvp);
vput(tvp);
return (error);
}
/*
* Synch an open file.
*/
/* ARGSUSED */
int
lfs_fsync(void *v)
{
struct vop_fsync_args /* {
struct vnode *a_vp;
kauth_cred_t a_cred;
int a_flags;
off_t offlo;
off_t offhi;
} */ *ap = v;
struct vnode *vp = ap->a_vp;
int wait;
struct inode *ip = VTOI(vp);
struct lfs *fs = ip->i_lfs;
int error = 0;
KASSERT(VOP_ISLOCKED(vp) == LK_EXCLUSIVE);
/* If we're mounted read-only, don't try to sync. */
if (fs->lfs_ronly)
goto out;
/* If a removed vnode is being cleaned, no need to sync here. */
if ((ap->a_flags & FSYNC_RECLAIM) != 0 && ip->i_mode == 0)
goto out;
/*
* Trickle sync simply adds this vnode to the pager list, as if
* the pagedaemon had requested a pageout.
*/
if (ap->a_flags & FSYNC_LAZY) {
if (lfs_ignore_lazy_sync == 0) {
mutex_enter(&lfs_lock);
if (!(ip->i_state & IN_PAGING)) {
ip->i_state |= IN_PAGING;
TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip,
i_lfs_pchain);
}
cv_broadcast(&lfs_writerd_cv);
mutex_exit(&lfs_lock);
}
goto out;
}
/*
* If a vnode is being cleaned, flush it out before we try to
* reuse it. This prevents the cleaner from writing files twice
* in the same partial segment, causing an accounting underflow.
*/
if (ap->a_flags & FSYNC_RECLAIM && ip->i_state & IN_CLEANING) {
lfs_vflush(vp);
}
wait = (ap->a_flags & FSYNC_WAIT);
do {
rw_enter(vp->v_uobj.vmobjlock, RW_WRITER);
error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
round_page(ap->a_offhi),
PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
if (error == EAGAIN) {
mutex_enter(&lfs_lock);
mtsleep(&fs->lfs_availsleep, PCATCH | PUSER,
"lfs_fsync", hz / 100 + 1, &lfs_lock);
mutex_exit(&lfs_lock);
}
} while (error == EAGAIN);
if (error)
goto out;
if ((ap->a_flags & FSYNC_DATAONLY) == 0)
error = lfs_update(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
if (error == 0 && ap->a_flags & FSYNC_CACHE) {
int l = 0;
error = VOP_IOCTL(ip->i_devvp, DIOCCACHESYNC, &l, FWRITE,
curlwp->l_cred);
}
if (wait && !VPISEMPTY(vp))
LFS_SET_UINO(ip, IN_MODIFIED);
out:
KASSERT(VOP_ISLOCKED(vp) == LK_EXCLUSIVE);
return error;
}
/*
* Take IN_ADIROP off, then call ulfs_inactive.
*/
int
lfs_inactive(void *v)
{
struct vop_inactive_v2_args /* {
struct vnode *a_vp;
bool *a_recycle;
} */ *ap = v;
KASSERT(VOP_ISLOCKED(ap->a_vp) == LK_EXCLUSIVE);
UNMARK_VNODE(ap->a_vp);
/*
* The Ifile is only ever inactivated on unmount.
* Streamline this process by not giving it more dirty blocks.
*/
if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) {
mutex_enter(&lfs_lock);
LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD);
mutex_exit(&lfs_lock);
return 0;
}
#ifdef DEBUG
/*
* This might happen on unmount.
* XXX If it happens at any other time, it should be a panic.
*/
if (ap->a_vp->v_uflag & VU_DIROP) {
struct inode *ip = VTOI(ap->a_vp);
printf("lfs_inactive: inactivating VU_DIROP? ino = %llu\n",
(unsigned long long) ip->i_number);
}
#endif /* DIAGNOSTIC */
return ulfs_inactive(v);
}
int
lfs_set_dirop(struct vnode *dvp, struct vnode *vp)
{
struct lfs *fs;
int error;
KASSERT(VOP_ISLOCKED(dvp) == LK_EXCLUSIVE);
KASSERT(vp == NULL || VOP_ISLOCKED(vp) == LK_EXCLUSIVE);
fs = VTOI(dvp)->i_lfs;
ASSERT_NO_SEGLOCK(fs);
/*
* LFS_NRESERVE calculates direct and indirect blocks as well
* as an inode block; an overestimate in most cases.
*/
if ((error = lfs_reserve(fs, dvp, vp, LFS_NRESERVE(fs))) != 0)
return (error);
restart:
mutex_enter(&lfs_lock);
if (fs->lfs_dirops == 0) {
mutex_exit(&lfs_lock);
lfs_check(dvp, LFS_UNUSED_LBN, 0);
mutex_enter(&lfs_lock);
}
while (fs->lfs_writer) {
error = cv_wait_sig(&fs->lfs_diropscv, &lfs_lock);
if (error == EINTR) {
mutex_exit(&lfs_lock);
goto unreserve;
}
}
if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
cv_broadcast(&lfs_writerd_cv);
mutex_exit(&lfs_lock);
preempt();
goto restart;
}
if (lfs_dirvcount > LFS_MAX_DIROP) {
DLOG((DLOG_DIROP, "lfs_set_dirop: sleeping with dirops=%d, "
"dirvcount=%d\n", fs->lfs_dirops, lfs_dirvcount));
if ((error = mtsleep(&lfs_dirvcount,
PCATCH | PUSER | PNORELOCK, "lfs_maxdirop", 0,
&lfs_lock)) != 0) {
mutex_exit(&lfs_lock);
goto unreserve;
}
mutex_exit(&lfs_lock);
goto restart;
}
++fs->lfs_dirops;
/* fs->lfs_doifile = 1; */ /* XXX why? --ks */
mutex_exit(&lfs_lock);
/* Hold a reference so SET_ENDOP will be happy */
vref(dvp);
if (vp) {
vref(vp);
MARK_VNODE(vp);
}
MARK_VNODE(dvp);
return 0;
unreserve:
lfs_reserve(fs, dvp, vp, -LFS_NRESERVE(fs));
return error;
}
/*
* Opposite of lfs_set_dirop... mostly. For now at least must call
* UNMARK_VNODE(dvp) explicitly first. (XXX: clean that up)
*/
void
lfs_unset_dirop(struct lfs *fs, struct vnode *dvp, const char *str)
{
mutex_enter(&lfs_lock);
--fs->lfs_dirops;
if (!fs->lfs_dirops) {
if (fs->lfs_nadirop) {
panic("lfs_unset_dirop: %s: no dirops but "
" nadirop=%d", str,
fs->lfs_nadirop);
}
wakeup(&fs->lfs_writer);
mutex_exit(&lfs_lock);
lfs_check(dvp, LFS_UNUSED_LBN, 0);
} else {
mutex_exit(&lfs_lock);
}
lfs_reserve(fs, dvp, NULL, -LFS_NRESERVE(fs));
}
void
lfs_mark_vnode(struct vnode *vp)
{
struct inode *ip = VTOI(vp);
struct lfs *fs = ip->i_lfs;
mutex_enter(&lfs_lock);
if (!(ip->i_state & IN_ADIROP)) {
if (!(vp->v_uflag & VU_DIROP)) {
mutex_exit(&lfs_lock);
vref(vp);
mutex_enter(&lfs_lock);
++lfs_dirvcount;
++fs->lfs_dirvcount;
TAILQ_INSERT_TAIL(&fs->lfs_dchainhd, ip, i_lfs_dchain);
vp->v_uflag |= VU_DIROP;
}
++fs->lfs_nadirop;
ip->i_state &= ~IN_CDIROP;
ip->i_state |= IN_ADIROP;
} else
KASSERT(vp->v_uflag & VU_DIROP);
mutex_exit(&lfs_lock);
}
void
lfs_unmark_vnode(struct vnode *vp)
{
struct inode *ip = VTOI(vp);
mutex_enter(&lfs_lock);
if (ip && (ip->i_state & IN_ADIROP)) {
KASSERT(vp->v_uflag & VU_DIROP);
--ip->i_lfs->lfs_nadirop;
ip->i_state &= ~IN_ADIROP;
}
mutex_exit(&lfs_lock);
}
int
lfs_symlink(void *v)
{
struct vop_symlink_v3_args /* {
struct vnode *a_dvp;
struct vnode **a_vpp;
struct componentname *a_cnp;
struct vattr *a_vap;
char *a_target;
} */ *ap = v;
struct lfs *fs;
struct vnode *dvp, **vpp;
struct inode *ip;
struct ulfs_lookup_results *ulr;
ssize_t len; /* XXX should be size_t */
int error;
dvp = ap->a_dvp;
vpp = ap->a_vpp;
KASSERT(VOP_ISLOCKED(dvp) == LK_EXCLUSIVE);
KASSERT(vpp != NULL);
KASSERT(*vpp == NULL);
KASSERT(ap->a_vap->va_type == VLNK);
/* XXX should handle this material another way */
ulr = &VTOI(ap->a_dvp)->i_crap;
ULFS_CHECK_CRAPCOUNTER(VTOI(ap->a_dvp));
fs = VFSTOULFS(dvp->v_mount)->um_lfs;
ASSERT_NO_SEGLOCK(fs);
if (fs->lfs_ronly) {
return EROFS;
}
error = lfs_set_dirop(dvp, NULL);
if (error)
return error;
error = lfs_makeinode(ap->a_vap, dvp, ulr, vpp, ap->a_cnp);
if (error) {
goto out;
}
KASSERT(VOP_ISLOCKED(*vpp) == LK_EXCLUSIVE);
ip = VTOI(*vpp);
/*
* This test is off by one. um_maxsymlinklen contains the
* number of bytes available, and we aren't storing a \0, so
* the test should properly be <=. However, it cannot be
* changed as this would break compatibility with existing fs
* images -- see the way ulfs_readlink() works.
*/
len = strlen(ap->a_target);
if (len < ip->i_lfs->um_maxsymlinklen) {
memcpy((char *)SHORTLINK(ip), ap->a_target, len);
ip->i_size = len;
DIP_ASSIGN(ip, size, len);
uvm_vnp_setsize(*vpp, ip->i_size);
ip->i_state |= IN_CHANGE | IN_UPDATE;
if ((*vpp)->v_mount->mnt_flag & MNT_RELATIME)
ip->i_state |= IN_ACCESS;
} else {
error = ulfs_bufio(UIO_WRITE, *vpp, ap->a_target, len, (off_t)0,
IO_NODELOCKED | IO_JOURNALLOCKED, ap->a_cnp->cn_cred, NULL,
NULL);
}
VOP_UNLOCK(*vpp);
if (error)
vrele(*vpp);
out:
UNMARK_VNODE(dvp);
/* XXX: is it even possible for the symlink to get MARK'd? */
UNMARK_VNODE(*vpp);
if (error) {
*vpp = NULL;
}
lfs_unset_dirop(fs, dvp, "symlink");
vrele(dvp);
return (error);
}
int
lfs_mknod(void *v)
{
struct vop_mknod_v3_args /* {
struct vnode *a_dvp;
struct vnode **a_vpp;
struct componentname *a_cnp;
struct vattr *a_vap;
} */ *ap = v;
struct lfs *fs;
struct vnode *dvp, **vpp;
struct vattr *vap;
struct inode *ip;
int error;
ino_t ino;
struct ulfs_lookup_results *ulr;
dvp = ap->a_dvp;
vpp = ap->a_vpp;
vap = ap->a_vap;
KASSERT(VOP_ISLOCKED(dvp) == LK_EXCLUSIVE);
KASSERT(vpp != NULL);
KASSERT(*vpp == NULL);
/* XXX should handle this material another way */
ulr = &VTOI(dvp)->i_crap;
ULFS_CHECK_CRAPCOUNTER(VTOI(dvp));
fs = VFSTOULFS(dvp->v_mount)->um_lfs;
ASSERT_NO_SEGLOCK(fs);
if (fs->lfs_ronly) {
return EROFS;
}
error = lfs_set_dirop(dvp, NULL);
if (error)
return error;
error = lfs_makeinode(vap, dvp, ulr, vpp, ap->a_cnp);
/* Either way we're done with the dirop at this point */
UNMARK_VNODE(dvp);
UNMARK_VNODE(*vpp);
lfs_unset_dirop(fs, dvp, "mknod");
if (error) {
vrele(dvp);
*vpp = NULL;
return (error);
}
KASSERT(VOP_ISLOCKED(*vpp) == LK_EXCLUSIVE);
ip = VTOI(*vpp);
ino = ip->i_number;
ip->i_state |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
/*
* Call fsync to write the vnode so that we don't have to deal with
* flushing it when it's marked VU_DIROP or reclaiming.
*
* XXX KS - If we can't flush we also can't call vgone(), so must
* return. But, that leaves this vnode in limbo, also not good.
* Can this ever happen (barring hardware failure)?
*/
if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0)) != 0) {
panic("lfs_mknod: couldn't fsync (ino %llu)",
(unsigned long long) ino);
/* return (error); */
}
vrele(dvp);
KASSERT(error == 0);
VOP_UNLOCK(*vpp);
return (0);
}
/*
* Create a regular file
*/
int
lfs_create(void *v)
{
struct vop_create_v3_args /* {
struct vnode *a_dvp;
struct vnode **a_vpp;
struct componentname *a_cnp;
struct vattr *a_vap;
} */ *ap = v;
struct lfs *fs;
struct vnode *dvp, **vpp;
struct vattr *vap;
struct ulfs_lookup_results *ulr;
int error;
dvp = ap->a_dvp;
vpp = ap->a_vpp;
vap = ap->a_vap;
KASSERT(VOP_ISLOCKED(dvp) == LK_EXCLUSIVE);
KASSERT(vpp != NULL);
KASSERT(*vpp == NULL);
/* XXX should handle this material another way */
ulr = &VTOI(dvp)->i_crap;
ULFS_CHECK_CRAPCOUNTER(VTOI(dvp));
fs = VFSTOULFS(dvp->v_mount)->um_lfs;
ASSERT_NO_SEGLOCK(fs);
if (fs->lfs_ronly) {
return EROFS;
}
error = lfs_set_dirop(dvp, NULL);
if (error)
return error;
error = lfs_makeinode(vap, dvp, ulr, vpp, ap->a_cnp);
if (error) {
goto out;
}
KASSERT(VOP_ISLOCKED(*vpp) == LK_EXCLUSIVE);
VOP_UNLOCK(*vpp);
out:
UNMARK_VNODE(dvp);
UNMARK_VNODE(*vpp);
if (error) {
*vpp = NULL;
}
lfs_unset_dirop(fs, dvp, "create");
vrele(dvp);
return (error);
}
int
lfs_mkdir(void *v)
{
struct vop_mkdir_v3_args /* {
struct vnode *a_dvp;
struct vnode **a_vpp;
struct componentname *a_cnp;
struct vattr *a_vap;
} */ *ap = v;
struct lfs *fs;
struct vnode *dvp, *tvp, **vpp;
struct inode *dp, *ip;
struct componentname *cnp;
struct vattr *vap;
struct ulfs_lookup_results *ulr;
struct buf *bp;
LFS_DIRHEADER *dirp;
int dirblksiz;
int error;
dvp = ap->a_dvp;
tvp = NULL;
vpp = ap->a_vpp;
cnp = ap->a_cnp;
vap = ap->a_vap;
KASSERT(VOP_ISLOCKED(dvp) == LK_EXCLUSIVE);
dp = VTOI(dvp);
ip = NULL;
KASSERT(vap->va_type == VDIR);
KASSERT(vpp != NULL);
KASSERT(*vpp == NULL);
/* XXX should handle this material another way */
ulr = &dp->i_crap;
ULFS_CHECK_CRAPCOUNTER(dp);
fs = VFSTOULFS(dvp->v_mount)->um_lfs;
ASSERT_NO_SEGLOCK(fs);
if (fs->lfs_ronly) {
return EROFS;
}
if ((nlink_t)dp->i_nlink >= LINK_MAX) {
return EMLINK;
}
dirblksiz = fs->um_dirblksiz;
/* XXX dholland 20150911 I believe this to be true, but... */
//KASSERT(dirblksiz == LFS_DIRBLKSIZ);
error = lfs_set_dirop(dvp, NULL);
if (error)
return error;
/*
* Must simulate part of lfs_makeinode here to acquire the inode,
* but not have it entered in the parent directory. The entry is
* made later after writing "." and ".." entries.
*/
error = vcache_new(dvp->v_mount, dvp, vap, cnp->cn_cred, NULL,
ap->a_vpp);
if (error)
goto out;
error = vn_lock(*ap->a_vpp, LK_EXCLUSIVE);
if (error) {
vrele(*ap->a_vpp);
*ap->a_vpp = NULL;
goto out;
}
tvp = *ap->a_vpp;
MARK_VNODE(tvp);
ip = VTOI(tvp);
ip->i_state |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
ip->i_nlink = 2;
DIP_ASSIGN(ip, nlink, 2);
if (cnp->cn_flags & ISWHITEOUT) {
ip->i_flags |= UF_OPAQUE;
DIP_ASSIGN(ip, flags, ip->i_flags);
}
/*
* Bump link count in parent directory to reflect work done below.
*/
dp->i_nlink++;
DIP_ASSIGN(dp, nlink, dp->i_nlink);
dp->i_state |= IN_CHANGE;
if ((error = lfs_update(dvp, NULL, NULL, UPDATE_DIROP)) != 0)
goto bad;
/*
* Initialize directory with "." and "..". This used to use a
* static template but that adds moving parts for very little
* benefit.
*/
if ((error = lfs_balloc(tvp, (off_t)0, dirblksiz, cnp->cn_cred,
B_CLRBUF, &bp)) != 0)
goto bad;
ip->i_size = dirblksiz;
DIP_ASSIGN(ip, size, dirblksiz);
ip->i_state |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
uvm_vnp_setsize(tvp, ip->i_size);
dirp = bp->b_data;
/* . */
lfs_dir_setino(fs, dirp, ip->i_number);
lfs_dir_setreclen(fs, dirp, LFS_DIRECTSIZ(fs, 1));
lfs_dir_settype(fs, dirp, LFS_DT_DIR);
lfs_dir_setnamlen(fs, dirp, 1);
lfs_copydirname(fs, lfs_dir_nameptr(fs, dirp), ".", 1,
LFS_DIRECTSIZ(fs, 1));
dirp = LFS_NEXTDIR(fs, dirp);
/* .. */
lfs_dir_setino(fs, dirp, dp->i_number);
lfs_dir_setreclen(fs, dirp, dirblksiz - LFS_DIRECTSIZ(fs, 1));
lfs_dir_settype(fs, dirp, LFS_DT_DIR);
lfs_dir_setnamlen(fs, dirp, 2);
lfs_copydirname(fs, lfs_dir_nameptr(fs, dirp), "..", 2,
dirblksiz - LFS_DIRECTSIZ(fs, 1));
/*
* Directory set up; now install its entry in the parent directory.
*/
if ((error = VOP_BWRITE(bp->b_vp, bp)) != 0)
goto bad;
if ((error = lfs_update(tvp, NULL, NULL, UPDATE_DIROP)) != 0) {
goto bad;
}
error = ulfs_direnter(dvp, ulr, tvp,
cnp, ip->i_number, LFS_IFTODT(ip->i_mode), bp);
bad:
if (error == 0) {
VOP_UNLOCK(tvp);
} else {
dp->i_nlink--;
DIP_ASSIGN(dp, nlink, dp->i_nlink);
dp->i_state |= IN_CHANGE;
/*
* No need to do an explicit lfs_truncate here, vrele will
* do this for us because we set the link count to 0.
*/
ip->i_nlink = 0;
DIP_ASSIGN(ip, nlink, 0);
ip->i_state |= IN_CHANGE;
/* If IN_ADIROP, account for it */
UNMARK_VNODE(tvp);
vput(tvp);
}
out:
UNMARK_VNODE(dvp);
UNMARK_VNODE(*vpp);
if (error) {
*vpp = NULL;
}
lfs_unset_dirop(fs, dvp, "mkdir");
vrele(dvp);
return (error);
}
int
lfs_remove(void *v)
{
struct vop_remove_v3_args /* {
struct vnode *a_dvp;
struct vnode *a_vp;
struct componentname *a_cnp;
nlink_t ctx_vp_new_nlink;
} */ *ap = v;
struct vnode *dvp, *vp;
struct inode *ip;
int error;
dvp = ap->a_dvp;
vp = ap->a_vp;
KASSERT(VOP_ISLOCKED(dvp) == LK_EXCLUSIVE);
KASSERT(VOP_ISLOCKED(vp) == LK_EXCLUSIVE);
ip = VTOI(vp);
if ((error = lfs_set_dirop(dvp, vp)) != 0) {
if (dvp == vp)
vrele(vp);
else
vput(vp);
return error;
}
error = ulfs_remove(ap);
if (ip->i_nlink == 0)
lfs_orphan(ip->i_lfs, ip->i_number);
UNMARK_VNODE(dvp);
if (ap->a_vp) {
UNMARK_VNODE(ap->a_vp);
}
lfs_unset_dirop(ip->i_lfs, dvp, "remove");
vrele(dvp);
if (ap->a_vp) {
vrele(ap->a_vp);
}
return (error);
}
int
lfs_rmdir(void *v)
{
struct vop_rmdir_v2_args /* {
struct vnodeop_desc *a_desc;
struct vnode *a_dvp;
struct vnode *a_vp;
struct componentname *a_cnp;
} */ *ap = v;
struct vnode *vp;
struct inode *ip;
int error;
vp = ap->a_vp;
KASSERT(VOP_ISLOCKED(ap->a_dvp) == LK_EXCLUSIVE);
KASSERT(VOP_ISLOCKED(vp) == LK_EXCLUSIVE);
ip = VTOI(vp);
if ((error = lfs_set_dirop(ap->a_dvp, ap->a_vp)) != 0) {
if (ap->a_dvp == vp)
vrele(vp);
else
vput(vp);
return error;
}
error = ulfs_rmdir(ap);
if (ip->i_nlink == 0)
lfs_orphan(ip->i_lfs, ip->i_number);
UNMARK_VNODE(ap->a_dvp);
if (ap->a_vp) {
UNMARK_VNODE(ap->a_vp);
}
lfs_unset_dirop(ip->i_lfs, ap->a_dvp, "rmdir");
vrele(ap->a_dvp);
if (ap->a_vp) {
vrele(ap->a_vp);
}
return (error);
}
int
lfs_link(void *v)
{
struct vop_link_v2_args /* {
struct vnode *a_dvp;
struct vnode *a_vp;
struct componentname *a_cnp;
} */ *ap = v;
struct lfs *fs;
struct vnode *dvp;
int error;
dvp = ap->a_dvp;
KASSERT(VOP_ISLOCKED(dvp) == LK_EXCLUSIVE);
fs = VFSTOULFS(dvp->v_mount)->um_lfs;
ASSERT_NO_SEGLOCK(fs);
if (fs->lfs_ronly) {
return EROFS;
}
error = lfs_set_dirop(dvp, NULL);
if (error) {
return error;
}
error = ulfs_link(ap);
UNMARK_VNODE(dvp);
lfs_unset_dirop(fs, dvp, "link");
vrele(dvp);
return (error);
}
/* XXX hack to avoid calling ITIMES in getattr */
int
lfs_getattr(void *v)
{
struct vop_getattr_args /* {
struct vnode *a_vp;
struct vattr *a_vap;
kauth_cred_t a_cred;
} */ *ap = v;
struct vnode *vp = ap->a_vp;
struct inode *ip;
struct vattr *vap = ap->a_vap;
struct lfs *fs;
KASSERT(VOP_ISLOCKED(vp));
ip = VTOI(vp);
fs = ip->i_lfs;
/*
* Copy from inode table
*/
vap->va_fsid = ip->i_dev;
vap->va_fileid = ip->i_number;
vap->va_mode = ip->i_mode & ~LFS_IFMT;
vap->va_nlink = ip->i_nlink;
vap->va_uid = ip->i_uid;
vap->va_gid = ip->i_gid;
switch (vp->v_type) {
case VBLK:
case VCHR:
vap->va_rdev = (dev_t)lfs_dino_getrdev(fs, ip->i_din);
break;
default:
vap->va_rdev = NODEV;
break;
}
vap->va_size = vp->v_size;
vap->va_atime.tv_sec = lfs_dino_getatime(fs, ip->i_din);
vap->va_atime.tv_nsec = lfs_dino_getatimensec(fs, ip->i_din);
vap->va_mtime.tv_sec = lfs_dino_getmtime(fs, ip->i_din);
vap->va_mtime.tv_nsec = lfs_dino_getmtimensec(fs, ip->i_din);
vap->va_ctime.tv_sec = lfs_dino_getctime(fs, ip->i_din);
vap->va_ctime.tv_nsec = lfs_dino_getctimensec(fs, ip->i_din);
vap->va_flags = ip->i_flags;
vap->va_gen = ip->i_gen;
/* this doesn't belong here */
if (vp->v_type == VBLK)
vap->va_blocksize = BLKDEV_IOSIZE;
else if (vp->v_type == VCHR)
vap->va_blocksize = MAXBSIZE;
else
vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
vap->va_bytes = lfs_fsbtob(fs, ip->i_lfs_effnblks);
vap->va_type = vp->v_type;
vap->va_filerev = ip->i_modrev;
return (0);
}
/*
* Check to make sure the inode blocks won't choke the buffer
* cache, then call ulfs_setattr as usual.
*/
int
lfs_setattr(void *v)
{
struct vop_setattr_args /* {
struct vnode *a_vp;
struct vattr *a_vap;
kauth_cred_t a_cred;
} */ *ap = v;
struct vnode *vp = ap->a_vp;
KASSERT(VOP_ISLOCKED(vp) == LK_EXCLUSIVE);
lfs_check(vp, LFS_UNUSED_LBN, 0);
return ulfs_setattr(v);
}
/*
* Release the block we hold on lfs_newseg wrapping. Called on file close,
* or explicitly from LFCNWRAPGO. Called with the interlock held.
*/
static int
lfs_wrapgo(struct lfs *fs, struct inode *ip, int waitfor)
{
if (fs->lfs_stoplwp != curlwp)
return EBUSY;
fs->lfs_stoplwp = NULL;
cv_signal(&fs->lfs_stopcv);
KASSERT(fs->lfs_nowrap > 0);
if (fs->lfs_nowrap <= 0) {
return 0;
}
if (--fs->lfs_nowrap == 0) {
log(LOG_NOTICE, "%s: re-enabled log wrap\n",
lfs_sb_getfsmnt(fs));
wakeup(&fs->lfs_wrappass);
lfs_wakeup_cleaner(fs);
}
if (waitfor) {
cv_wait_sig(&fs->lfs_nextsegsleep, &lfs_lock);
}
return 0;
}
/*
* Close called.
*
* Update the times on the inode.
*/
/* ARGSUSED */
int
lfs_close(void *v)
{
struct vop_close_args /* {
struct vnode *a_vp;
int a_fflag;
kauth_cred_t a_cred;
} */ *ap = v;
struct vnode *vp = ap->a_vp;
struct inode *ip;
struct lfs *fs;
KASSERT(VOP_ISLOCKED(vp) == LK_EXCLUSIVE);
ip = VTOI(vp);
fs = ip->i_lfs;
if ((ip->i_number == ULFS_ROOTINO || ip->i_number == LFS_IFILE_INUM) &&
fs->lfs_stoplwp == curlwp) {
mutex_enter(&lfs_lock);
log(LOG_NOTICE, "lfs_close: releasing log wrap control\n");
lfs_wrapgo(fs, ip, 0);
mutex_exit(&lfs_lock);
}
if (vp == ip->i_lfs->lfs_ivnode &&
vp->v_mount->mnt_iflag & IMNT_UNMOUNT)
return 0;
if (vrefcnt(vp) > 1 && vp != ip->i_lfs->lfs_ivnode) {
LFS_ITIMES(ip, NULL, NULL, NULL);
}
return (0);
}
/*
* Close wrapper for special devices.
*
* Update the times on the inode then do device close.
*/
int
lfsspec_close(void *v)
{
struct vop_close_args /* {
struct vnode *a_vp;
int a_fflag;
kauth_cred_t a_cred;
} */ *ap = v;
struct vnode *vp;
struct inode *ip;
vp = ap->a_vp;
KASSERT(VOP_ISLOCKED(vp) == LK_EXCLUSIVE);
ip = VTOI(vp);
if (vrefcnt(vp) > 1) {
LFS_ITIMES(ip, NULL, NULL, NULL);
}
return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
}
/*
* Close wrapper for fifo's.
*
* Update the times on the inode then do device close.
*/
int
lfsfifo_close(void *v)
{
struct vop_close_args /* {
struct vnode *a_vp;
int a_fflag;
kauth_cred_ a_cred;
} */ *ap = v;
struct vnode *vp;
struct inode *ip;
vp = ap->a_vp;
KASSERT(VOP_ISLOCKED(vp) == LK_EXCLUSIVE);
ip = VTOI(vp);
if (vrefcnt(ap->a_vp) > 1) {
LFS_ITIMES(ip, NULL, NULL, NULL);
}
return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
}
/*
* Reclaim an inode so that it can be used for other purposes.
*/
int
lfs_reclaim(void *v)
{
struct vop_reclaim_v2_args /* {
struct vnode *a_vp;
} */ *ap = v;
struct vnode *vp = ap->a_vp;
struct inode *ip;
struct lfs *fs;
int error;
VOP_UNLOCK(vp);
ip = VTOI(vp);
fs = ip->i_lfs;
/*
* The inode must be freed and updated before being removed
* from its hash chain. Other threads trying to gain a hold
* or lock on the inode will be stalled.
*/
if (ip->i_nlink <= 0 && (vp->v_mount->mnt_flag & MNT_RDONLY) == 0)
lfs_vfree(vp, ip->i_number, ip->i_omode);
mutex_enter(&lfs_lock);
LFS_CLR_UINO(ip, IN_ALLMOD);
mutex_exit(&lfs_lock);
if ((error = ulfs_reclaim(vp)))
return (error);
/*
* Take us off the paging and/or dirop queues if we were on them.
* We shouldn't be on them.
*/
mutex_enter(&lfs_lock);
if (ip->i_state & IN_PAGING) {
log(LOG_WARNING, "%s: reclaimed vnode is IN_PAGING\n",
lfs_sb_getfsmnt(fs));
ip->i_state &= ~IN_PAGING;
TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
}
if (vp->v_uflag & VU_DIROP)
panic("reclaimed vnode is VU_DIROP");
mutex_exit(&lfs_lock);
pool_put(&lfs_dinode_pool, ip->i_din);
lfs_deregister_all(vp);
pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
ip->inode_ext.lfs = NULL;
genfs_node_destroy(vp);
pool_put(&lfs_inode_pool, vp->v_data);
vp->v_data = NULL;
return (0);
}
/*
* Read a block from a storage device.
*
* Calculate the logical to physical mapping if not done already,
* then call the device strategy routine.
*
* In order to avoid reading blocks that are in the process of being
* written by the cleaner---and hence are not mutexed by the normal
* buffer cache / page cache mechanisms---check for collisions before
* reading.
*
* We inline ulfs_strategy to make sure that the VOP_BMAP occurs *before*
* the active cleaner test.
*
* XXX This code assumes that lfs_markv makes synchronous checkpoints.
*/
int
lfs_strategy(void *v)
{
struct vop_strategy_args /* {
struct vnode *a_vp;
struct buf *a_bp;
} */ *ap = v;
struct buf *bp;
struct lfs *fs;
struct vnode *vp;
struct inode *ip;
daddr_t tbn;
#define MAXLOOP 25
int i, sn, error, slept, loopcount;
bp = ap->a_bp;
vp = ap->a_vp;
ip = VTOI(vp);
fs = ip->i_lfs;
/* lfs uses its strategy routine only for read */
KASSERT(bp->b_flags & B_READ);
if (vp->v_type == VBLK || vp->v_type == VCHR)
panic("lfs_strategy: spec");
KASSERT(bp->b_bcount != 0);
if (bp->b_blkno == bp->b_lblkno) {
error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
NULL);
if (error) {
bp->b_error = error;
bp->b_resid = bp->b_bcount;
biodone(bp);
return (error);
}
if ((long)bp->b_blkno == -1) /* no valid data */
clrbuf(bp);
}
if ((long)bp->b_blkno < 0) { /* block is not on disk */
bp->b_resid = bp->b_bcount;
biodone(bp);
return (0);
}
slept = 1;
loopcount = 0;
mutex_enter(&lfs_lock);
while (slept && fs->lfs_seglock) {
mutex_exit(&lfs_lock);
/*
* Look through list of intervals.
* There will only be intervals to look through
* if the cleaner holds the seglock.
* Since the cleaner is synchronous, we can trust
* the list of intervals to be current.
*/
tbn = LFS_DBTOFSB(fs, bp->b_blkno);
sn = lfs_dtosn(fs, tbn);
slept = 0;
for (i = 0; i < fs->lfs_cleanind; i++) {
if (sn == lfs_dtosn(fs, fs->lfs_cleanint[i]) &&
tbn >= fs->lfs_cleanint[i]) {
DLOG((DLOG_CLEAN,
"lfs_strategy: ino %llu lbn %" PRId64
" ind %d sn %d fsb %" PRIx64
" given sn %d fsb %" PRIx64 "\n",
(unsigned long long) ip->i_number,
bp->b_lblkno, i,
lfs_dtosn(fs, fs->lfs_cleanint[i]),
fs->lfs_cleanint[i], sn, tbn));
DLOG((DLOG_CLEAN,
"lfs_strategy: sleeping on ino %llu lbn %"
PRId64 "\n",
(unsigned long long) ip->i_number,
bp->b_lblkno));
mutex_enter(&lfs_lock);
if (LFS_SEGLOCK_HELD(fs) && fs->lfs_iocount) {
/*
* Cleaner can't wait for itself.
* Instead, wait for the blocks
* to be written to disk.
* XXX we need pribio in the test
* XXX here.
*/
mtsleep(&fs->lfs_iocount,
(PRIBIO + 1) | PNORELOCK,
"clean2", hz/10 + 1,
&lfs_lock);
slept = 1;
++loopcount;
break;
} else if (fs->lfs_seglock) {
mtsleep(&fs->lfs_seglock,
(PRIBIO + 1) | PNORELOCK,
"clean1", 0,
&lfs_lock);
slept = 1;
break;
}
mutex_exit(&lfs_lock);
}
}
mutex_enter(&lfs_lock);
if (loopcount > MAXLOOP) {
printf("lfs_strategy: breaking out of clean2 loop\n");
break;
}
}
mutex_exit(&lfs_lock);
vp = ip->i_devvp;
return VOP_STRATEGY(vp, bp);
}
/*
* Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
* Technically this is a checkpoint (the on-disk state is valid)
* even though we are leaving out all the file data.
*/
int
lfs_flush_dirops(struct lfs *fs)
{
struct inode *ip, *marker;
struct vnode *vp;
extern int lfs_dostats; /* XXX this does not belong here */
struct segment *sp;
SEGSUM *ssp;
int flags = 0;
int error = 0;
ASSERT_MAYBE_SEGLOCK(fs);
KASSERT(fs->lfs_nadirop == 0); /* stable during lfs_writer */
KASSERT(fs->lfs_dirops == 0); /* stable during lfs_writer */
if (fs->lfs_ronly)
return EROFS;
mutex_enter(&lfs_lock);
if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL) {
mutex_exit(&lfs_lock);
return 0;
} else
mutex_exit(&lfs_lock);
if (lfs_dostats)
++lfs_stats.flush_invoked;
marker = pool_get(&lfs_inode_pool, PR_WAITOK);
memset(marker, 0, sizeof(*marker));
marker->inode_ext.lfs = pool_get(&lfs_inoext_pool, PR_WAITOK);
memset(marker->inode_ext.lfs, 0, sizeof(*marker->inode_ext.lfs));
marker->i_state = IN_MARKER;
lfs_imtime(fs);
lfs_seglock(fs, flags);
sp = fs->lfs_sp;
/*
* lfs_writevnodes, optimized to get dirops out of the way.
* Only write dirops, and don't flush files' pages, only
* blocks from the directories.
*
* We don't need to vref these files because they are
* dirops and so hold an extra reference until the
* segunlock clears them of that status.
*
* We don't need to check for IN_ADIROP because we know that
* no dirops are active.
*
*/
mutex_enter(&lfs_lock);
KASSERT(fs->lfs_writer);
TAILQ_INSERT_HEAD(&fs->lfs_dchainhd, marker, i_lfs_dchain);
while ((ip = TAILQ_NEXT(marker, i_lfs_dchain)) != NULL) {
TAILQ_REMOVE(&fs->lfs_dchainhd, marker, i_lfs_dchain);
TAILQ_INSERT_AFTER(&fs->lfs_dchainhd, ip, marker,
i_lfs_dchain);
if (ip->i_state & IN_MARKER)
continue;
vp = ITOV(ip);
/*
* Prevent the vnode from going away if it's just been
* put out in the segment and lfs_unmark_dirop is about
* to release it. While it is on the list it is always
* referenced, so it cannot be reclaimed until we
* release it.
*/
vref(vp);
/*
* Since we hold lfs_writer, the node can't be in an
* active dirop. Since it's on the list and we hold a
* reference to it, it can't be reclaimed now.
*/
KASSERT((ip->i_state & IN_ADIROP) == 0);
KASSERT(vp->v_uflag & VU_DIROP);
/*
* After we release lfs_lock, if we were in the middle
* of writing a segment, lfs_unmark_dirop may end up
* clearing VU_DIROP, and we have no way to stop it.
* That should be OK -- we'll just have less to do
* here.
*/
mutex_exit(&lfs_lock);
/*
* All writes to directories come from dirops; all
* writes to files' direct blocks go through the page
* cache, which we're not touching. Reads to files
* and/or directories will not be affected by writing
* directory blocks inodes and file inodes. So we don't
* really need to lock.
*/
if (vp->v_type != VREG &&
((ip->i_state & IN_ALLMOD) || !VPISEMPTY(vp))) {
error = lfs_writefile(fs, sp, vp);
if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
!(ip->i_state & IN_ALLMOD)) {
mutex_enter(&lfs_lock);
LFS_SET_UINO(ip, IN_MODIFIED);
mutex_exit(&lfs_lock);
}
if (error && (sp->seg_flags & SEGM_SINGLE)) {
vrele(vp);
mutex_enter(&lfs_lock);
error = EAGAIN;
break;
}
}
KASSERT(ip->i_number != LFS_IFILE_INUM);
error = lfs_writeinode(fs, sp, ip);
if (error && (sp->seg_flags & SEGM_SINGLE)) {
vrele(vp);
mutex_enter(&lfs_lock);
error = EAGAIN;
break;
}
/*
* We might need to update these inodes again,
* for example, if they have data blocks to write.
* Make sure that after this flush, they are still
* marked IN_MODIFIED so that we don't forget to
* write them.
*/
/* XXX only for non-directories? --KS */
mutex_enter(&lfs_lock);
LFS_SET_UINO(ip, IN_MODIFIED);
mutex_exit(&lfs_lock);
vrele(vp);
mutex_enter(&lfs_lock);
}
TAILQ_REMOVE(&fs->lfs_dchainhd, marker, i_lfs_dchain);
mutex_exit(&lfs_lock);
/* We've written all the dirops there are */
ssp = (SEGSUM *)sp->segsum;
lfs_ss_setflags(fs, ssp, lfs_ss_getflags(fs, ssp) & ~(SS_CONT));
lfs_finalize_fs_seguse(fs);
(void) lfs_writeseg(fs, sp);
lfs_segunlock(fs);
pool_put(&lfs_inoext_pool, marker->inode_ext.lfs);
pool_put(&lfs_inode_pool, marker);
return error;
}
/*
* Flush all vnodes for which the pagedaemon has requested pageouts.
* Skip over any files that are marked VU_DIROP (since lfs_flush_dirop()
* has just run, this would be an error). If we have to skip a vnode
* for any reason, just skip it; if we have to wait for the cleaner,
* abort. The writer daemon will call us again later.
*/
int
lfs_flush_pchain(struct lfs *fs)
{
struct inode *ip, *nip;
struct vnode *vp;
extern int lfs_dostats;
struct segment *sp;
int error, error2;
ASSERT_NO_SEGLOCK(fs);
KASSERT(fs->lfs_writer);
if (fs->lfs_ronly)
return EROFS;
mutex_enter(&lfs_lock);
if (TAILQ_FIRST(&fs->lfs_pchainhd) == NULL) {
mutex_exit(&lfs_lock);
return 0;
} else
mutex_exit(&lfs_lock);
/* Get dirops out of the way */
if ((error = lfs_flush_dirops(fs)) != 0)
return error;
if (lfs_dostats)
++lfs_stats.flush_invoked;
/*
* Inline lfs_segwrite/lfs_writevnodes, but just for pageouts.
*/
lfs_imtime(fs);
lfs_seglock(fs, 0);
sp = fs->lfs_sp;
/*
* lfs_writevnodes, optimized to clear pageout requests.
* Only write non-dirop files that are in the pageout queue.
* We're very conservative about what we write; we want to be
* fast and async.
*/
mutex_enter(&lfs_lock);
top:
for (ip = TAILQ_FIRST(&fs->lfs_pchainhd); ip != NULL; ip = nip) {
struct mount *mp = ITOV(ip)->v_mount;
ino_t ino = ip->i_number;
nip = TAILQ_NEXT(ip, i_lfs_pchain);
if (!(ip->i_state & IN_PAGING))
goto top;
mutex_exit(&lfs_lock);
if (vcache_get(mp, &ino, sizeof(ino), &vp) != 0) {
mutex_enter(&lfs_lock);
continue;
};
if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
vrele(vp);
mutex_enter(&lfs_lock);
continue;
}
ip = VTOI(vp);
mutex_enter(&lfs_lock);
if ((vp->v_uflag & VU_DIROP) != 0 || vp->v_type != VREG ||
!(ip->i_state & IN_PAGING)) {
mutex_exit(&lfs_lock);
vput(vp);
mutex_enter(&lfs_lock);
goto top;
}
mutex_exit(&lfs_lock);
error = lfs_writefile(fs, sp, vp);
if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
!(ip->i_state & IN_ALLMOD)) {
mutex_enter(&lfs_lock);
LFS_SET_UINO(ip, IN_MODIFIED);
mutex_exit(&lfs_lock);
}
KASSERT(ip->i_number != LFS_IFILE_INUM);
error2 = lfs_writeinode(fs, sp, ip);
VOP_UNLOCK(vp);
vrele(vp);
if (error == EAGAIN || error2 == EAGAIN) {
lfs_writeseg(fs, sp);
mutex_enter(&lfs_lock);
break;
}
mutex_enter(&lfs_lock);
}
mutex_exit(&lfs_lock);
(void) lfs_writeseg(fs, sp);
lfs_segunlock(fs);
return 0;
}
/*
* Conversion for compat.
*/
static void
block_info_from_70(BLOCK_INFO *bi, const BLOCK_INFO_70 *bi70)
{
bi->bi_inode = bi70->bi_inode;
bi->bi_lbn = bi70->bi_lbn;
bi->bi_daddr = bi70->bi_daddr;
bi->bi_segcreate = bi70->bi_segcreate;
bi->bi_version = bi70->bi_version;
bi->bi_bp = bi70->bi_bp;
bi->bi_size = bi70->bi_size;
}
static void
block_info_to_70(BLOCK_INFO_70 *bi70, const BLOCK_INFO *bi)
{
bi70->bi_inode = bi->bi_inode;
bi70->bi_lbn = bi->bi_lbn;
bi70->bi_daddr = bi->bi_daddr;
bi70->bi_segcreate = bi->bi_segcreate;
bi70->bi_version = bi->bi_version;
bi70->bi_bp = bi->bi_bp;
bi70->bi_size = bi->bi_size;
}
/*
* Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
*/
int
lfs_fcntl(void *v)
{
struct vop_fcntl_args /* {
struct vnode *a_vp;
u_int a_command;
void * a_data;
int a_fflag;
kauth_cred_t a_cred;
} */ *ap = v;
struct timeval tv;
struct timeval *tvp;
BLOCK_INFO *blkiov;
BLOCK_INFO_70 *blkiov70;
CLEANERINFO *cip;
SEGUSE *sup;
int blkcnt, i, error;
size_t fh_size;
struct lfs_fcntl_markv blkvp;
struct lfs_fcntl_markv_70 blkvp70;
struct lwp *l;
fsid_t *fsidp;
struct lfs *fs;
struct buf *bp;
fhandle_t *fhp;
daddr_t off;
int oclean;
/* Only respect LFS fcntls on fs root or Ifile */
if (VTOI(ap->a_vp)->i_number != ULFS_ROOTINO &&
VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
return genfs_fcntl(v);
}
/* Avoid locking a draining lock */
if (ap->a_vp->v_mount->mnt_iflag & IMNT_UNMOUNT) {
return ESHUTDOWN;
}
/* LFS control and monitoring fcntls are available only to root */
l = curlwp;
if (((ap->a_command & 0xff00) >> 8) == 'L' &&
(error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_LFS,
KAUTH_REQ_SYSTEM_LFS_FCNTL, NULL, NULL, NULL)) != 0)
return (error);
fs = VTOI(ap->a_vp)->i_lfs;
fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsidx;
error = 0;
switch ((int)ap->a_command) {
case LFCNSEGWAITALL_COMPAT_50:
case LFCNSEGWAITALL_COMPAT:
fsidp = NULL;
/* FALLTHROUGH */
case LFCNSEGWAIT_COMPAT_50:
case LFCNSEGWAIT_COMPAT:
{
struct timeval50 *tvp50
= (struct timeval50 *)ap->a_data;
timeval50_to_timeval(tvp50, &tv);
tvp = &tv;
}
goto segwait_common;
case LFCNSEGWAITALL:
fsidp = NULL;
/* FALLTHROUGH */
case LFCNSEGWAIT:
tvp = (struct timeval *)ap->a_data;
segwait_common:
mutex_enter(&lfs_lock);
++fs->lfs_sleepers;
mutex_exit(&lfs_lock);
error = lfs_segwait(fsidp, tvp);
mutex_enter(&lfs_lock);
if (--fs->lfs_sleepers == 0)
cv_broadcast(&fs->lfs_sleeperscv);
mutex_exit(&lfs_lock);
return error;
case LFCNBMAPV_COMPAT_70:
case LFCNMARKV_COMPAT_70:
blkvp70 = *(struct lfs_fcntl_markv_70 *)ap->a_data;
blkcnt = blkvp70.blkcnt;
if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
return (EINVAL);
blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
blkiov70 = lfs_malloc(fs, sizeof(BLOCK_INFO_70), LFS_NB_BLKIOV);
for (i = 0; i < blkcnt; i++) {
error = copyin(&blkvp70.blkiov[i], blkiov70,
sizeof(*blkiov70));
if (error) {
lfs_free(fs, blkiov70, LFS_NB_BLKIOV);
lfs_free(fs, blkiov, LFS_NB_BLKIOV);
return error;
}
block_info_from_70(&blkiov[i], blkiov70);
}
mutex_enter(&lfs_lock);
++fs->lfs_sleepers;
mutex_exit(&lfs_lock);
if (ap->a_command == LFCNBMAPV)
error = lfs_bmapv(l, fsidp, blkiov, blkcnt);
else /* LFCNMARKV */
error = lfs_markv(l, fsidp, blkiov, blkcnt);
if (error == 0) {
for (i = 0; i < blkcnt; i++) {
block_info_to_70(blkiov70, &blkiov[i]);
error = copyout(blkiov70, &blkvp70.blkiov[i],
sizeof(*blkiov70));
if (error) {
break;
}
}
}
mutex_enter(&lfs_lock);
if (--fs->lfs_sleepers == 0)
cv_broadcast(&fs->lfs_sleeperscv);
mutex_exit(&lfs_lock);
lfs_free(fs, blkiov, LFS_NB_BLKIOV);
return error;
case LFCNBMAPV:
case LFCNMARKV:
blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
blkcnt = blkvp.blkcnt;
if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
return (EINVAL);
blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
if ((error = copyin(blkvp.blkiov, blkiov,
blkcnt * sizeof(BLOCK_INFO))) != 0) {
lfs_free(fs, blkiov, LFS_NB_BLKIOV);
return error;
}
mutex_enter(&lfs_lock);
++fs->lfs_sleepers;
mutex_exit(&lfs_lock);
if (ap->a_command == LFCNBMAPV)
error = lfs_bmapv(l, fsidp, blkiov, blkcnt);
else /* LFCNMARKV */
error = lfs_markv(l, fsidp, blkiov, blkcnt);
if (error == 0)
error = copyout(blkiov, blkvp.blkiov,
blkcnt * sizeof(BLOCK_INFO));
mutex_enter(&lfs_lock);
if (--fs->lfs_sleepers == 0)
cv_broadcast(&fs->lfs_sleeperscv);
mutex_exit(&lfs_lock);
lfs_free(fs, blkiov, LFS_NB_BLKIOV);
return error;
case LFCNRECLAIM:
/*
* Flush dirops and write Ifile, allowing empty segments
* to be immediately reclaimed.
*/
lfs_writer_enter(fs, "pndirop");
off = lfs_sb_getoffset(fs);
lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
lfs_flush_dirops(fs);
LFS_CLEANERINFO(cip, fs, bp);
oclean = lfs_ci_getclean(fs, cip);
LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
fs->lfs_sp->seg_flags |= SEGM_PROT;
lfs_segunlock(fs);
lfs_writer_leave(fs);
#ifdef DEBUG
LFS_CLEANERINFO(cip, fs, bp);
DLOG((DLOG_CLEAN, "lfs_fcntl: reclaim wrote %" PRId64
" blocks, cleaned %" PRId32 " segments (activesb %d)\n",
lfs_sb_getoffset(fs) - off,
lfs_ci_getclean(fs, cip) - oclean,
fs->lfs_activesb));
LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
#else
__USE(oclean);
__USE(off);
#endif
return 0;
case LFCNIFILEFH_COMPAT:
/* Return the filehandle of the Ifile */
if ((error = kauth_authorize_system(l->l_cred,
KAUTH_SYSTEM_FILEHANDLE, 0, NULL, NULL, NULL)) != 0)
return (error);
fhp = (struct fhandle *)ap->a_data;
fhp->fh_fsid = *fsidp;
fh_size = 16; /* former VFS_MAXFIDSIZ */
return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
case LFCNIFILEFH_COMPAT2:
case LFCNIFILEFH:
/* Return the filehandle of the Ifile */
fhp = (struct fhandle *)ap->a_data;
fhp->fh_fsid = *fsidp;
fh_size = sizeof(struct lfs_fhandle) -
offsetof(fhandle_t, fh_fid);
return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
case LFCNREWIND:
/* Move lfs_offset to the lowest-numbered segment */
return lfs_rewind(fs, *(int *)ap->a_data);
case LFCNINVAL:
/* Mark a segment SEGUSE_INVAL */
LFS_SEGENTRY(sup, fs, *(int *)ap->a_data, bp);
if (sup->su_nbytes > 0) {
brelse(bp, 0);
lfs_unset_inval_all(fs);
return EBUSY;
}
sup->su_flags |= SEGUSE_INVAL;
VOP_BWRITE(bp->b_vp, bp);
return 0;
case LFCNRESIZE:
/* Resize the filesystem */
return lfs_resize_fs(fs, *(int *)ap->a_data);
case LFCNWRAPSTOP:
case LFCNWRAPSTOP_COMPAT:
/*
* Hold lfs_newseg at segment 0; if requested, sleep until
* the filesystem wraps around. To support external agents
* (dump, fsck-based regression test) that need to look at
* a snapshot of the filesystem, without necessarily
* requiring that all fs activity stops.
*/
if (fs->lfs_stoplwp == curlwp)
return EALREADY;
mutex_enter(&lfs_lock);
while (fs->lfs_stoplwp != NULL)
cv_wait(&fs->lfs_stopcv, &lfs_lock);
fs->lfs_stoplwp = curlwp;
if (fs->lfs_nowrap == 0)
log(LOG_NOTICE, "%s: disabled log wrap\n",
lfs_sb_getfsmnt(fs));
++fs->lfs_nowrap;
if (*(int *)ap->a_data == 1
|| ap->a_command == LFCNWRAPSTOP_COMPAT) {
log(LOG_NOTICE, "LFCNSTOPWRAP waiting for log wrap\n");
error = mtsleep(&fs->lfs_nowrap, PCATCH | PUSER,
"segwrap", 0, &lfs_lock);
log(LOG_NOTICE, "LFCNSTOPWRAP done waiting\n");
if (error) {
lfs_wrapgo(fs, VTOI(ap->a_vp), 0);
}
}
mutex_exit(&lfs_lock);
return 0;
case LFCNWRAPGO:
case LFCNWRAPGO_COMPAT:
/*
* Having done its work, the agent wakes up the writer.
* If the argument is 1, it sleeps until a new segment
* is selected.
*/
mutex_enter(&lfs_lock);
error = lfs_wrapgo(fs, VTOI(ap->a_vp),
ap->a_command == LFCNWRAPGO_COMPAT ? 1 :
*((int *)ap->a_data));
mutex_exit(&lfs_lock);
return error;
case LFCNWRAPPASS:
if ((VTOI(ap->a_vp)->i_lfs_iflags & LFSI_WRAPWAIT))
return EALREADY;
mutex_enter(&lfs_lock);
if (fs->lfs_stoplwp != curlwp) {
mutex_exit(&lfs_lock);
return EALREADY;
}
if (fs->lfs_nowrap == 0) {
mutex_exit(&lfs_lock);
return EBUSY;
}
fs->lfs_wrappass = 1;
wakeup(&fs->lfs_wrappass);
/* Wait for the log to wrap, if asked */
if (*(int *)ap->a_data) {
vref(ap->a_vp);
VTOI(ap->a_vp)->i_lfs_iflags |= LFSI_WRAPWAIT;
log(LOG_NOTICE, "LFCNPASS waiting for log wrap\n");
error = mtsleep(&fs->lfs_nowrap, PCATCH | PUSER,
"segwrap", 0, &lfs_lock);
log(LOG_NOTICE, "LFCNPASS done waiting\n");
VTOI(ap->a_vp)->i_lfs_iflags &= ~LFSI_WRAPWAIT;
vrele(ap->a_vp);
}
mutex_exit(&lfs_lock);
return error;
case LFCNWRAPSTATUS:
mutex_enter(&lfs_lock);
*(int *)ap->a_data = fs->lfs_wrapstatus;
mutex_exit(&lfs_lock);
return 0;
default:
return genfs_fcntl(v);
}
return 0;
}
/*
* Return the last logical file offset that should be written for this file
* if we're doing a write that ends at "size". If writing, we need to know
* about sizes on disk, i.e. fragments if there are any; if reading, we need
* to know about entire blocks.
*/
void
lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
{
struct inode *ip = VTOI(vp);
struct lfs *fs = ip->i_lfs;
daddr_t olbn, nlbn;
olbn = lfs_lblkno(fs, ip->i_size);
nlbn = lfs_lblkno(fs, size);
if (!(flags & GOP_SIZE_MEM) && nlbn < ULFS_NDADDR && olbn <= nlbn) {
*eobp = lfs_fragroundup(fs, size);
} else {
*eobp = lfs_blkroundup(fs, size);
}
}
#ifdef DEBUG
void lfs_dump_vop(void *);
void
lfs_dump_vop(void *v)
{
struct vop_putpages_args /* {
struct vnode *a_vp;
voff_t a_offlo;
voff_t a_offhi;
int a_flags;
} */ *ap = v;
struct inode *ip = VTOI(ap->a_vp);
struct lfs *fs = ip->i_lfs;
#ifdef DDB
vfs_vnode_print(ap->a_vp, 0, printf);
#endif
lfs_dump_dinode(fs, ip->i_din);
}
#endif
int
lfs_mmap(void *v)
{
struct vop_mmap_args /* {
const struct vnodeop_desc *a_desc;
struct vnode *a_vp;
vm_prot_t a_prot;
kauth_cred_t a_cred;
} */ *ap = v;
if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
return EOPNOTSUPP;
return genfs_mmap(v);
}
static int
lfs_openextattr(void *v)
{
struct vop_openextattr_args /* {
struct vnode *a_vp;
kauth_cred_t a_cred;
struct proc *a_p;
} */ *ap = v;
struct vnode *vp = ap->a_vp;
struct inode *ip;
struct ulfsmount *ump;
KASSERT(VOP_ISLOCKED(vp) == LK_EXCLUSIVE);
ip = VTOI(vp);
ump = ip->i_ump;
/* Not supported for ULFS1 file systems. */
if (ump->um_fstype == ULFS1)
return (EOPNOTSUPP);
/* XXX Not implemented for ULFS2 file systems. */
return (EOPNOTSUPP);
}
static int
lfs_closeextattr(void *v)
{
struct vop_closeextattr_args /* {
struct vnode *a_vp;
int a_commit;
kauth_cred_t a_cred;
struct proc *a_p;
} */ *ap = v;
struct vnode *vp = ap->a_vp;
struct inode *ip;
struct ulfsmount *ump;
KASSERT(VOP_ISLOCKED(vp) == LK_EXCLUSIVE);
ip = VTOI(vp);
ump = ip->i_ump;
/* Not supported for ULFS1 file systems. */
if (ump->um_fstype == ULFS1)
return (EOPNOTSUPP);
/* XXX Not implemented for ULFS2 file systems. */
return (EOPNOTSUPP);
}
static int
lfs_getextattr(void *v)
{
struct vop_getextattr_args /* {
struct vnode *a_vp;
int a_attrnamespace;
const char *a_name;
struct uio *a_uio;
size_t *a_size;
kauth_cred_t a_cred;
struct proc *a_p;
} */ *ap = v;
struct vnode *vp = ap->a_vp;
struct inode *ip;
struct ulfsmount *ump;
int error;
KASSERT(VOP_ISLOCKED(vp));
ip = VTOI(vp);
ump = ip->i_ump;
if (ump->um_fstype == ULFS1) {
#ifdef LFS_EXTATTR
error = ulfs_getextattr(ap);
#else
error = EOPNOTSUPP;
#endif
return error;
}
/* XXX Not implemented for ULFS2 file systems. */
return (EOPNOTSUPP);
}
static int
lfs_setextattr(void *v)
{
struct vop_setextattr_args /* {
struct vnode *a_vp;
int a_attrnamespace;
const char *a_name;
struct uio *a_uio;
kauth_cred_t a_cred;
struct proc *a_p;
} */ *ap = v;
struct vnode *vp = ap->a_vp;
struct inode *ip;
struct ulfsmount *ump;
int error;
KASSERT(VOP_ISLOCKED(vp) == LK_EXCLUSIVE);
ip = VTOI(vp);
ump = ip->i_ump;
if (ump->um_fstype == ULFS1) {
#ifdef LFS_EXTATTR
error = ulfs_setextattr(ap);
#else
error = EOPNOTSUPP;
#endif
return error;
}
/* XXX Not implemented for ULFS2 file systems. */
return (EOPNOTSUPP);
}
static int
lfs_listextattr(void *v)
{
struct vop_listextattr_args /* {
struct vnode *a_vp;
int a_attrnamespace;
struct uio *a_uio;
size_t *a_size;
kauth_cred_t a_cred;
struct proc *a_p;
} */ *ap = v;
struct vnode *vp = ap->a_vp;
struct inode *ip;
struct ulfsmount *ump;
int error;
KASSERT(VOP_ISLOCKED(vp));
ip = VTOI(vp);
ump = ip->i_ump;
if (ump->um_fstype == ULFS1) {
#ifdef LFS_EXTATTR
error = ulfs_listextattr(ap);
#else
error = EOPNOTSUPP;
#endif
return error;
}
/* XXX Not implemented for ULFS2 file systems. */
return (EOPNOTSUPP);
}
static int
lfs_deleteextattr(void *v)
{
struct vop_deleteextattr_args /* {
struct vnode *a_vp;
int a_attrnamespace;
kauth_cred_t a_cred;
struct proc *a_p;
} */ *ap = v;
struct vnode *vp = ap->a_vp;
struct inode *ip;
struct ulfsmount *ump;
int error;
KASSERT(VOP_ISLOCKED(vp) == LK_EXCLUSIVE);
ip = VTOI(vp);
ump = ip->i_ump;
if (ump->um_fstype == ULFS1) {
#ifdef LFS_EXTATTR
error = ulfs_deleteextattr(ap);
#else
error = EOPNOTSUPP;
#endif
return error;
}
/* XXX Not implemented for ULFS2 file systems. */
return (EOPNOTSUPP);
}