NetBSD/sys/compat/linux/common/linux_sched.c

705 lines
17 KiB
C

/* $NetBSD: linux_sched.c,v 1.79 2021/09/07 11:43:04 riastradh Exp $ */
/*-
* Copyright (c) 1999, 2019 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
* NASA Ames Research Center; by Matthias Scheler.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Linux compatibility module. Try to deal with scheduler related syscalls.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: linux_sched.c,v 1.79 2021/09/07 11:43:04 riastradh Exp $");
#include <sys/param.h>
#include <sys/mount.h>
#include <sys/proc.h>
#include <sys/systm.h>
#include <sys/sysctl.h>
#include <sys/syscallargs.h>
#include <sys/wait.h>
#include <sys/kauth.h>
#include <sys/ptrace.h>
#include <sys/atomic.h>
#include <sys/cpu.h>
#include <compat/linux/common/linux_types.h>
#include <compat/linux/common/linux_signal.h>
#include <compat/linux/common/linux_emuldata.h>
#include <compat/linux/common/linux_ipc.h>
#include <compat/linux/common/linux_sem.h>
#include <compat/linux/common/linux_exec.h>
#include <compat/linux/common/linux_machdep.h>
#include <compat/linux/linux_syscallargs.h>
#include <compat/linux/common/linux_sched.h>
static int linux_clone_nptl(struct lwp *, const struct linux_sys_clone_args *,
register_t *);
/* Unlike Linux, dynamically calculate CPU mask size */
#define LINUX_CPU_MASK_SIZE (sizeof(long) * ((ncpu + LONG_BIT - 1) / LONG_BIT))
#if DEBUG_LINUX
#define DPRINTF(x) uprintf x
#else
#define DPRINTF(x)
#endif
static void
linux_child_return(void *arg)
{
struct lwp *l = arg;
struct proc *p = l->l_proc;
struct linux_emuldata *led = l->l_emuldata;
void *ctp = led->led_child_tidptr;
int error;
if (ctp) {
if ((error = copyout(&p->p_pid, ctp, sizeof(p->p_pid))) != 0)
printf("%s: LINUX_CLONE_CHILD_SETTID "
"failed (child_tidptr = %p, tid = %d error =%d)\n",
__func__, ctp, p->p_pid, error);
}
child_return(arg);
}
int
linux_sys_clone(struct lwp *l, const struct linux_sys_clone_args *uap,
register_t *retval)
{
/* {
syscallarg(int) flags;
syscallarg(void *) stack;
syscallarg(void *) parent_tidptr;
syscallarg(void *) tls;
syscallarg(void *) child_tidptr;
} */
struct linux_emuldata *led;
int flags, sig, error;
/*
* We don't support the Linux CLONE_PID or CLONE_PTRACE flags.
*/
if (SCARG(uap, flags) & (LINUX_CLONE_PID|LINUX_CLONE_PTRACE))
return EINVAL;
/*
* Thread group implies shared signals. Shared signals
* imply shared VM. This matches what Linux kernel does.
*/
if (SCARG(uap, flags) & LINUX_CLONE_THREAD
&& (SCARG(uap, flags) & LINUX_CLONE_SIGHAND) == 0)
return EINVAL;
if (SCARG(uap, flags) & LINUX_CLONE_SIGHAND
&& (SCARG(uap, flags) & LINUX_CLONE_VM) == 0)
return EINVAL;
/*
* The thread group flavor is implemented totally differently.
*/
if (SCARG(uap, flags) & LINUX_CLONE_THREAD)
return linux_clone_nptl(l, uap, retval);
flags = 0;
if (SCARG(uap, flags) & LINUX_CLONE_VM)
flags |= FORK_SHAREVM;
if (SCARG(uap, flags) & LINUX_CLONE_FS)
flags |= FORK_SHARECWD;
if (SCARG(uap, flags) & LINUX_CLONE_FILES)
flags |= FORK_SHAREFILES;
if (SCARG(uap, flags) & LINUX_CLONE_SIGHAND)
flags |= FORK_SHARESIGS;
if (SCARG(uap, flags) & LINUX_CLONE_VFORK)
flags |= FORK_PPWAIT;
sig = SCARG(uap, flags) & LINUX_CLONE_CSIGNAL;
if (sig < 0 || sig >= LINUX__NSIG)
return EINVAL;
sig = linux_to_native_signo[sig];
if (SCARG(uap, flags) & LINUX_CLONE_CHILD_SETTID) {
led = l->l_emuldata;
led->led_child_tidptr = SCARG(uap, child_tidptr);
}
/*
* Note that Linux does not provide a portable way of specifying
* the stack area; the caller must know if the stack grows up
* or down. So, we pass a stack size of 0, so that the code
* that makes this adjustment is a noop.
*/
if ((error = fork1(l, flags, sig, SCARG(uap, stack), 0,
linux_child_return, NULL, retval)) != 0) {
DPRINTF(("%s: fork1: error %d\n", __func__, error));
return error;
}
return 0;
}
static int
linux_clone_nptl(struct lwp *l, const struct linux_sys_clone_args *uap, register_t *retval)
{
/* {
syscallarg(int) flags;
syscallarg(void *) stack;
syscallarg(void *) parent_tidptr;
syscallarg(void *) tls;
syscallarg(void *) child_tidptr;
} */
struct proc *p;
struct lwp *l2;
struct linux_emuldata *led;
void *parent_tidptr, *tls, *child_tidptr;
vaddr_t uaddr;
lwpid_t lid;
int flags, error;
p = l->l_proc;
flags = SCARG(uap, flags);
parent_tidptr = SCARG(uap, parent_tidptr);
tls = SCARG(uap, tls);
child_tidptr = SCARG(uap, child_tidptr);
uaddr = uvm_uarea_alloc();
if (__predict_false(uaddr == 0)) {
return ENOMEM;
}
error = lwp_create(l, p, uaddr, LWP_DETACHED,
SCARG(uap, stack), 0, child_return, NULL, &l2, l->l_class,
&l->l_sigmask, &l->l_sigstk);
if (__predict_false(error)) {
DPRINTF(("%s: lwp_create error=%d\n", __func__, error));
uvm_uarea_free(uaddr);
return error;
}
lid = l2->l_lid;
/* LINUX_CLONE_CHILD_CLEARTID: clear TID in child's memory on exit() */
if (flags & LINUX_CLONE_CHILD_CLEARTID) {
led = l2->l_emuldata;
led->led_clear_tid = child_tidptr;
}
/* LINUX_CLONE_PARENT_SETTID: store child's TID in parent's memory */
if (flags & LINUX_CLONE_PARENT_SETTID) {
if ((error = copyout(&lid, parent_tidptr, sizeof(lid))) != 0)
printf("%s: LINUX_CLONE_PARENT_SETTID "
"failed (parent_tidptr = %p tid = %d error=%d)\n",
__func__, parent_tidptr, lid, error);
}
/* LINUX_CLONE_CHILD_SETTID: store child's TID in child's memory */
if (flags & LINUX_CLONE_CHILD_SETTID) {
if ((error = copyout(&lid, child_tidptr, sizeof(lid))) != 0)
printf("%s: LINUX_CLONE_CHILD_SETTID "
"failed (child_tidptr = %p, tid = %d error=%d)\n",
__func__, child_tidptr, lid, error);
}
if (flags & LINUX_CLONE_SETTLS) {
error = LINUX_LWP_SETPRIVATE(l2, tls);
if (error) {
DPRINTF(("%s: LINUX_LWP_SETPRIVATE %d\n", __func__,
error));
lwp_exit(l2);
return error;
}
}
/* Set the new LWP running. */
lwp_start(l2, 0);
retval[0] = lid;
retval[1] = 0;
return 0;
}
/*
* linux realtime priority
*
* - SCHED_RR and SCHED_FIFO tasks have priorities [1,99].
*
* - SCHED_OTHER tasks don't have realtime priorities.
* in particular, sched_param::sched_priority is always 0.
*/
#define LINUX_SCHED_RTPRIO_MIN 1
#define LINUX_SCHED_RTPRIO_MAX 99
static int
sched_linux2native(int linux_policy, struct linux_sched_param *linux_params,
int *native_policy, struct sched_param *native_params)
{
switch (linux_policy) {
case LINUX_SCHED_OTHER:
if (native_policy != NULL) {
*native_policy = SCHED_OTHER;
}
break;
case LINUX_SCHED_FIFO:
if (native_policy != NULL) {
*native_policy = SCHED_FIFO;
}
break;
case LINUX_SCHED_RR:
if (native_policy != NULL) {
*native_policy = SCHED_RR;
}
break;
default:
return EINVAL;
}
if (linux_params != NULL) {
int prio = linux_params->sched_priority;
KASSERT(native_params != NULL);
if (linux_policy == LINUX_SCHED_OTHER) {
if (prio != 0) {
return EINVAL;
}
native_params->sched_priority = PRI_NONE; /* XXX */
} else {
if (prio < LINUX_SCHED_RTPRIO_MIN ||
prio > LINUX_SCHED_RTPRIO_MAX) {
return EINVAL;
}
native_params->sched_priority =
(prio - LINUX_SCHED_RTPRIO_MIN)
* (SCHED_PRI_MAX - SCHED_PRI_MIN)
/ (LINUX_SCHED_RTPRIO_MAX - LINUX_SCHED_RTPRIO_MIN)
+ SCHED_PRI_MIN;
}
}
return 0;
}
static int
sched_native2linux(int native_policy, struct sched_param *native_params,
int *linux_policy, struct linux_sched_param *linux_params)
{
switch (native_policy) {
case SCHED_OTHER:
if (linux_policy != NULL) {
*linux_policy = LINUX_SCHED_OTHER;
}
break;
case SCHED_FIFO:
if (linux_policy != NULL) {
*linux_policy = LINUX_SCHED_FIFO;
}
break;
case SCHED_RR:
if (linux_policy != NULL) {
*linux_policy = LINUX_SCHED_RR;
}
break;
default:
panic("%s: unknown policy %d\n", __func__, native_policy);
}
if (native_params != NULL) {
int prio = native_params->sched_priority;
KASSERT(prio >= SCHED_PRI_MIN);
KASSERT(prio <= SCHED_PRI_MAX);
KASSERT(linux_params != NULL);
memset(linux_params, 0, sizeof(*linux_params));
DPRINTF(("%s: native: policy %d, priority %d\n",
__func__, native_policy, prio));
if (native_policy == SCHED_OTHER) {
linux_params->sched_priority = 0;
} else {
linux_params->sched_priority =
(prio - SCHED_PRI_MIN)
* (LINUX_SCHED_RTPRIO_MAX - LINUX_SCHED_RTPRIO_MIN)
/ (SCHED_PRI_MAX - SCHED_PRI_MIN)
+ LINUX_SCHED_RTPRIO_MIN;
}
DPRINTF(("%s: linux: policy %d, priority %d\n",
__func__, -1, linux_params->sched_priority));
}
return 0;
}
int
linux_sys_sched_setparam(struct lwp *l, const struct linux_sys_sched_setparam_args *uap, register_t *retval)
{
/* {
syscallarg(linux_pid_t) pid;
syscallarg(const struct linux_sched_param *) sp;
} */
int error, policy;
struct linux_sched_param lp;
struct sched_param sp;
if (SCARG(uap, pid) < 0 || SCARG(uap, sp) == NULL) {
error = EINVAL;
goto out;
}
error = copyin(SCARG(uap, sp), &lp, sizeof(lp));
if (error)
goto out;
/* We need the current policy in Linux terms. */
error = do_sched_getparam(SCARG(uap, pid), 0, &policy, NULL);
if (error)
goto out;
error = sched_native2linux(policy, NULL, &policy, NULL);
if (error)
goto out;
error = sched_linux2native(policy, &lp, &policy, &sp);
if (error)
goto out;
error = do_sched_setparam(SCARG(uap, pid), 0, policy, &sp);
if (error)
goto out;
out:
return error;
}
int
linux_sys_sched_getparam(struct lwp *l, const struct linux_sys_sched_getparam_args *uap, register_t *retval)
{
/* {
syscallarg(linux_pid_t) pid;
syscallarg(struct linux_sched_param *) sp;
} */
struct linux_sched_param lp;
struct sched_param sp;
int error, policy;
if (SCARG(uap, pid) < 0 || SCARG(uap, sp) == NULL) {
error = EINVAL;
goto out;
}
error = do_sched_getparam(SCARG(uap, pid), 0, &policy, &sp);
if (error)
goto out;
DPRINTF(("%s: native: policy %d, priority %d\n",
__func__, policy, sp.sched_priority));
error = sched_native2linux(policy, &sp, NULL, &lp);
if (error)
goto out;
DPRINTF(("%s: linux: policy %d, priority %d\n",
__func__, policy, lp.sched_priority));
error = copyout(&lp, SCARG(uap, sp), sizeof(lp));
if (error)
goto out;
out:
return error;
}
int
linux_sys_sched_setscheduler(struct lwp *l, const struct linux_sys_sched_setscheduler_args *uap, register_t *retval)
{
/* {
syscallarg(linux_pid_t) pid;
syscallarg(int) policy;
syscallarg(cont struct linux_sched_param *) sp;
} */
int error, policy;
struct linux_sched_param lp;
struct sched_param sp;
if (SCARG(uap, pid) < 0 || SCARG(uap, sp) == NULL) {
error = EINVAL;
goto out;
}
error = copyin(SCARG(uap, sp), &lp, sizeof(lp));
if (error)
goto out;
DPRINTF(("%s: linux: policy %d, priority %d\n",
__func__, SCARG(uap, policy), lp.sched_priority));
error = sched_linux2native(SCARG(uap, policy), &lp, &policy, &sp);
if (error)
goto out;
DPRINTF(("%s: native: policy %d, priority %d\n",
__func__, policy, sp.sched_priority));
error = do_sched_setparam(SCARG(uap, pid), 0, policy, &sp);
if (error)
goto out;
out:
return error;
}
int
linux_sys_sched_getscheduler(struct lwp *l, const struct linux_sys_sched_getscheduler_args *uap, register_t *retval)
{
/* {
syscallarg(linux_pid_t) pid;
} */
int error, policy;
*retval = -1;
error = do_sched_getparam(SCARG(uap, pid), 0, &policy, NULL);
if (error)
goto out;
error = sched_native2linux(policy, NULL, &policy, NULL);
if (error)
goto out;
*retval = policy;
out:
return error;
}
int
linux_sys_sched_yield(struct lwp *l, const void *v, register_t *retval)
{
yield();
return 0;
}
int
linux_sys_sched_get_priority_max(struct lwp *l, const struct linux_sys_sched_get_priority_max_args *uap, register_t *retval)
{
/* {
syscallarg(int) policy;
} */
switch (SCARG(uap, policy)) {
case LINUX_SCHED_OTHER:
*retval = 0;
break;
case LINUX_SCHED_FIFO:
case LINUX_SCHED_RR:
*retval = LINUX_SCHED_RTPRIO_MAX;
break;
default:
return EINVAL;
}
return 0;
}
int
linux_sys_sched_get_priority_min(struct lwp *l, const struct linux_sys_sched_get_priority_min_args *uap, register_t *retval)
{
/* {
syscallarg(int) policy;
} */
switch (SCARG(uap, policy)) {
case LINUX_SCHED_OTHER:
*retval = 0;
break;
case LINUX_SCHED_FIFO:
case LINUX_SCHED_RR:
*retval = LINUX_SCHED_RTPRIO_MIN;
break;
default:
return EINVAL;
}
return 0;
}
int
linux_sys_exit(struct lwp *l, const struct linux_sys_exit_args *uap, register_t *retval)
{
lwp_exit(l);
return 0;
}
#ifndef __m68k__
/* Present on everything but m68k */
int
linux_sys_exit_group(struct lwp *l, const struct linux_sys_exit_group_args *uap, register_t *retval)
{
return sys_exit(l, (const void *)uap, retval);
}
#endif /* !__m68k__ */
int
linux_sys_set_tid_address(struct lwp *l, const struct linux_sys_set_tid_address_args *uap, register_t *retval)
{
/* {
syscallarg(int *) tidptr;
} */
struct linux_emuldata *led;
led = (struct linux_emuldata *)l->l_emuldata;
led->led_clear_tid = SCARG(uap, tid);
*retval = l->l_lid;
return 0;
}
/* ARGUSED1 */
int
linux_sys_gettid(struct lwp *l, const void *v, register_t *retval)
{
*retval = l->l_lid;
return 0;
}
/*
* The affinity syscalls assume that the layout of our cpu kcpuset is
* the same as linux's: a linear bitmask.
*/
int
linux_sys_sched_getaffinity(struct lwp *l, const struct linux_sys_sched_getaffinity_args *uap, register_t *retval)
{
/* {
syscallarg(linux_pid_t) pid;
syscallarg(unsigned int) len;
syscallarg(unsigned long *) mask;
} */
struct proc *p;
struct lwp *t;
kcpuset_t *kcset;
size_t size;
cpuid_t i;
int error;
size = LINUX_CPU_MASK_SIZE;
if (SCARG(uap, len) < size)
return EINVAL;
if (SCARG(uap, pid) == 0) {
p = curproc;
mutex_enter(p->p_lock);
t = curlwp;
} else {
t = lwp_find2(-1, SCARG(uap, pid));
if (__predict_false(t == NULL)) {
return ESRCH;
}
p = t->l_proc;
KASSERT(mutex_owned(p->p_lock));
}
/* Check the permission */
if (kauth_authorize_process(l->l_cred,
KAUTH_PROCESS_SCHEDULER_GETAFFINITY, p, NULL, NULL, NULL)) {
mutex_exit(p->p_lock);
return EPERM;
}
kcpuset_create(&kcset, true);
lwp_lock(t);
if (t->l_affinity != NULL)
kcpuset_copy(kcset, t->l_affinity);
else {
/*
* All available CPUs should be masked when affinity has not
* been set.
*/
kcpuset_zero(kcset);
for (i = 0; i < ncpu; i++)
kcpuset_set(kcset, i);
}
lwp_unlock(t);
mutex_exit(p->p_lock);
error = kcpuset_copyout(kcset, (cpuset_t *)SCARG(uap, mask), size);
kcpuset_unuse(kcset, NULL);
*retval = size;
return error;
}
int
linux_sys_sched_setaffinity(struct lwp *l, const struct linux_sys_sched_setaffinity_args *uap, register_t *retval)
{
/* {
syscallarg(linux_pid_t) pid;
syscallarg(unsigned int) len;
syscallarg(unsigned long *) mask;
} */
struct sys__sched_setaffinity_args ssa;
size_t size;
pid_t pid;
lwpid_t lid;
size = LINUX_CPU_MASK_SIZE;
if (SCARG(uap, len) < size)
return EINVAL;
lid = SCARG(uap, pid);
if (lid != 0) {
/* Get the canonical PID for the process. */
mutex_enter(&proc_lock);
struct proc *p = proc_find_lwpid(SCARG(uap, pid));
if (p == NULL) {
mutex_exit(&proc_lock);
return ESRCH;
}
pid = p->p_pid;
mutex_exit(&proc_lock);
} else {
pid = curproc->p_pid;
lid = curlwp->l_lid;
}
SCARG(&ssa, pid) = pid;
SCARG(&ssa, lid) = lid;
SCARG(&ssa, size) = size;
SCARG(&ssa, cpuset) = (cpuset_t *)SCARG(uap, mask);
return sys__sched_setaffinity(l, &ssa, retval);
}