NetBSD/sys/dev/isa/nsclpcsio_isa.c

545 lines
14 KiB
C

/* $NetBSD: nsclpcsio_isa.c,v 1.16 2007/02/18 23:34:55 xtraeme Exp $ */
/*
* Copyright (c) 2002
* Matthias Drochner. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: nsclpcsio_isa.c,v 1.16 2007/02/18 23:34:55 xtraeme Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/mutex.h>
#include <sys/gpio.h>
#include <machine/bus.h>
#include <dev/isa/isareg.h>
#include <dev/isa/isavar.h>
#include "gpio.h"
#if NGPIO > 0
#include <dev/gpio/gpiovar.h>
#endif
#include <dev/sysmon/sysmonvar.h>
static int nsclpcsio_isa_match(struct device *, struct cfdata *, void *);
static void nsclpcsio_isa_attach(struct device *, struct device *, void *);
#define GPIO_NPINS 29
#define SIO_GPIO_CONF_OUTPUTEN (1 << 0)
#define SIO_GPIO_CONF_PUSHPULL (1 << 1)
#define SIO_GPIO_CONF_PULLUP (1 << 2)
struct nsclpcsio_softc {
struct device sc_dev;
bus_space_tag_t sc_iot, sc_gpio_iot, sc_tms_iot;
bus_space_handle_t sc_ioh, sc_gpio_ioh, sc_tms_ioh;
struct envsys_tre_data sc_data[3];
struct envsys_basic_info sc_info[3];
struct sysmon_envsys sc_sysmon;
kmutex_t sc_lock;
#if NGPIO > 0
/* GPIO */
struct gpio_chipset_tag sc_gpio_gc;
struct gpio_pin sc_gpio_pins[GPIO_NPINS];
#endif
};
#define GPIO_READ(sc, reg) \
bus_space_read_1((sc)->sc_gpio_iot, \
(sc)->sc_gpio_ioh, (reg))
#define GPIO_WRITE(sc, reg, val) \
bus_space_write_1((sc)->sc_gpio_iot, \
(sc)->sc_gpio_ioh, (reg), (val))
CFATTACH_DECL(nsclpcsio_isa, sizeof(struct nsclpcsio_softc),
nsclpcsio_isa_match, nsclpcsio_isa_attach, NULL, NULL);
static const struct envsys_range tms_ranges[] = {
{ 0, 2, ENVSYS_STEMP },
};
static u_int8_t nsread(bus_space_tag_t, bus_space_handle_t, int);
static void nswrite(bus_space_tag_t, bus_space_handle_t, int, u_int8_t);
static int nscheck(bus_space_tag_t, int);
static void tms_update(struct nsclpcsio_softc *, int);
static int tms_gtredata(struct sysmon_envsys *, struct envsys_tre_data *);
static int tms_streinfo(struct sysmon_envsys *, struct envsys_basic_info *);
#if NGPIO > 0
static void nsclpcsio_gpio_init(struct nsclpcsio_softc *);
static void nsclpcsio_gpio_pin_select(struct nsclpcsio_softc *, int);
static void nsclpcsio_gpio_pin_write(void *, int, int);
static int nsclpcsio_gpio_pin_read(void *, int);
static void nsclpcsio_gpio_pin_ctl(void *, int, int);
#endif
static u_int8_t
nsread(iot, ioh, idx)
bus_space_tag_t iot;
bus_space_handle_t ioh;
int idx;
{
bus_space_write_1(iot, ioh, 0, idx);
return (bus_space_read_1(iot, ioh, 1));
}
static void
nswrite(iot, ioh, idx, data)
bus_space_tag_t iot;
bus_space_handle_t ioh;
int idx;
u_int8_t data;
{
bus_space_write_1(iot, ioh, 0, idx);
bus_space_write_1(iot, ioh, 1, data);
}
static int
nscheck(iot, base)
bus_space_tag_t iot;
int base;
{
bus_space_handle_t ioh;
int rv = 0;
if (bus_space_map(iot, base, 2, 0, &ioh))
return (0);
/* XXX this is for PC87366 only for now */
if (nsread(iot, ioh, 0x20) == 0xe9)
rv = 1;
bus_space_unmap(iot, ioh, 2);
return (rv);
}
static int
nsclpcsio_isa_match(struct device *parent,
struct cfdata *match, void *aux)
{
struct isa_attach_args *ia = aux;
int iobase;
if (ISA_DIRECT_CONFIG(ia))
return (0);
if (ia->ia_nio > 0 && ia->ia_io[0].ir_addr != ISA_UNKNOWN_PORT) {
/* XXX check for legal iobase ??? */
if (nscheck(ia->ia_iot, ia->ia_io[0].ir_addr)) {
iobase = ia->ia_io[0].ir_addr;
goto found;
}
return (0);
}
/* PC87366 has two possible locations depending on wiring */
if (nscheck(ia->ia_iot, 0x2e)) {
iobase = 0x2e;
goto found;
}
if (nscheck(ia->ia_iot, 0x4e)) {
iobase = 0x4e;
goto found;
}
return (0);
found:
ia->ia_nio = 1;
ia->ia_io[0].ir_addr = iobase;
ia->ia_io[0].ir_size = 2;
ia->ia_niomem = 0;
ia->ia_nirq = 0;
ia->ia_ndrq = 0;
return (1);
}
static void
nsclpcsio_isa_attach(struct device *parent, struct device *self,
void *aux)
{
struct nsclpcsio_softc *sc = (void *)self;
struct isa_attach_args *ia = aux;
#if NGPIO > 0
struct gpiobus_attach_args gba;
#endif
bus_space_tag_t iot;
bus_space_handle_t ioh;
u_int8_t val;
int tms_iobase, gpio_iobase = 0;
int i;
sc->sc_iot = iot = ia->ia_iot;
if (bus_space_map(ia->ia_iot, ia->ia_io[0].ir_addr, 2, 0, &ioh)) {
printf(": can't map i/o space\n");
return;
}
sc->sc_ioh = ioh;
printf(": NSC PC87366 rev. %d\n", nsread(iot, ioh, 0x27));
mutex_init(&sc->sc_lock, MUTEX_DRIVER, IPL_NONE);
nswrite(iot, ioh, 0x07, 0x07); /* select gpio */
val = nsread(iot, ioh, 0x30); /* control register */
if (!(val & 1)) {
printf("%s: GPIO disabled\n", sc->sc_dev.dv_xname);
} else {
gpio_iobase = (nsread(iot, ioh, 0x60) << 8) |
nsread(iot, ioh, 0x61);
sc->sc_gpio_iot = iot;
if (bus_space_map(iot, gpio_iobase, 0x2c, 0,
&sc->sc_gpio_ioh)) {
printf("%s: can't map GPIO i/o space\n",
sc->sc_dev.dv_xname);
return;
}
printf("%s: GPIO at 0x%x\n", sc->sc_dev.dv_xname, gpio_iobase);
#if NGPIO > 0
nsclpcsio_gpio_init(sc);
#endif
}
nswrite(iot, ioh, 0x07, 0x0e); /* select tms */
val = nsread(iot, ioh, 0x30); /* control register */
if (!(val & 1)) {
printf("%s: TMS disabled\n", sc->sc_dev.dv_xname);
return;
}
tms_iobase = (nsread(iot, ioh, 0x60) << 8) | nsread(iot, ioh, 0x61);
sc->sc_tms_iot = iot;
if (bus_space_map(iot, tms_iobase, 16, 0, &sc->sc_tms_ioh)) {
printf("%s: can't map TMS i/o space\n", sc->sc_dev.dv_xname);
return;
}
printf("%s: TMS at 0x%x\n", sc->sc_dev.dv_xname, tms_iobase);
if (bus_space_read_1(sc->sc_tms_iot, sc->sc_tms_ioh, 0x08) & 1) {
printf("%s: TMS in standby mode\n", sc->sc_dev.dv_xname);
/* Wake up the TMS and enable all temperature sensors. */
bus_space_write_1(sc->sc_tms_iot, sc->sc_tms_ioh, 0x08, 0x00);
bus_space_write_1(sc->sc_tms_iot, sc->sc_tms_ioh, 0x09, 0x00);
bus_space_write_1(sc->sc_tms_iot, sc->sc_tms_ioh, 0x0a, 0x01);
bus_space_write_1(sc->sc_tms_iot, sc->sc_tms_ioh, 0x09, 0x01);
bus_space_write_1(sc->sc_tms_iot, sc->sc_tms_ioh, 0x0a, 0x01);
bus_space_write_1(sc->sc_tms_iot, sc->sc_tms_ioh, 0x09, 0x02);
bus_space_write_1(sc->sc_tms_iot, sc->sc_tms_ioh, 0x0a, 0x01);
if (!(bus_space_read_1(sc->sc_tms_iot, sc->sc_tms_ioh, 0x08)
& 1)) {
printf("%s: TMS awoken\n", sc->sc_dev.dv_xname);
} else {
return;
}
}
/* Initialize sensor meta data */
for (i = 0; i < 3; i++) {
sc->sc_data[i].sensor = sc->sc_info[i].sensor = i;
sc->sc_data[i].units = sc->sc_info[i].units = ENVSYS_STEMP;
}
strcpy(sc->sc_info[0].desc, "TSENS1");
strcpy(sc->sc_info[1].desc, "TSENS2");
strcpy(sc->sc_info[2].desc, "TNSC");
/* Get initial set of sensor values. */
for (i = 0; i < 3; i++)
tms_update(sc, i);
/*
* Hook into the System Monitor.
*/
sc->sc_sysmon.sme_ranges = tms_ranges;
sc->sc_sysmon.sme_sensor_info = sc->sc_info;
sc->sc_sysmon.sme_sensor_data = sc->sc_data;
sc->sc_sysmon.sme_cookie = sc;
sc->sc_sysmon.sme_gtredata = tms_gtredata;
sc->sc_sysmon.sme_streinfo = tms_streinfo;
sc->sc_sysmon.sme_nsensors = 3;
sc->sc_sysmon.sme_envsys_version = 1000;
if (sysmon_envsys_register(&sc->sc_sysmon))
printf("%s: unable to register with sysmon\n",
sc->sc_dev.dv_xname);
#if NGPIO > 0
/* attach GPIO framework */
if (gpio_iobase != 0) {
gba.gba_gc = &sc->sc_gpio_gc;
gba.gba_pins = sc->sc_gpio_pins;
gba.gba_npins = GPIO_NPINS;
config_found_ia(&sc->sc_dev, "gpiobus", &gba, NULL);
}
#endif
return;
}
static void
tms_update(sc, chan)
struct nsclpcsio_softc *sc;
int chan;
{
bus_space_tag_t iot = sc->sc_tms_iot;
bus_space_handle_t ioh = sc->sc_tms_ioh;
u_int8_t status;
int8_t temp, ctemp; /* signed!! */
mutex_enter(&sc->sc_lock);
nswrite(iot, ioh, 0x07, 0x0e); /* select tms */
bus_space_write_1(iot, ioh, 0x09, chan); /* select */
status = bus_space_read_1(iot, ioh, 0x0a); /* config/status */
if (status & 0x01) {
/* enabled */
sc->sc_info[chan].validflags = ENVSYS_FVALID;
}else {
sc->sc_info[chan].validflags = 0;
mutex_exit(&sc->sc_lock);
return;
}
/*
* If the channel is enabled, it is considered valid.
* An "open circuit" might be temporary.
*/
sc->sc_data[chan].validflags = ENVSYS_FVALID;
if (status & 0x40) {
/*
* open circuit
* XXX should have a warning for it
*/
sc->sc_data[chan].warnflags = ENVSYS_WARN_OK; /* XXX */
mutex_exit(&sc->sc_lock);
return;
}
/* get current temperature in signed degree celsius */
temp = bus_space_read_1(iot, ioh, 0x0b);
sc->sc_data[chan].cur.data_us = (int)temp * 1000000 + 273150000;
sc->sc_data[chan].validflags |= ENVSYS_FCURVALID;
if (status & 0x0e) { /* any temperature warning? */
/*
* XXX the chip documentation is a bit fuzzy - it doesn't state
* that the hardware OTS output depends on the "overtemp"
* warning bit.
* It seems the output gets cleared if the warning bit is reset.
* This sucks.
* The hardware might do something useful with output pins, eg
* throttling the CPU, so we must do the comparision in
* software, and only reset the bits if the reason is gone.
*/
if (status & 0x02) { /* low limit */
sc->sc_data[chan].warnflags = ENVSYS_WARN_UNDER;
/* read low limit */
ctemp = bus_space_read_1(iot, ioh, 0x0d);
if (temp <= ctemp) /* still valid, don't reset */
status &= ~0x02;
}
if (status & 0x04) { /* high limit */
sc->sc_data[chan].warnflags = ENVSYS_WARN_OVER;
/* read high limit */
ctemp = bus_space_read_1(iot, ioh, 0x0c);
if (temp >= ctemp) /* still valid, don't reset */
status &= ~0x04;
}
if (status & 0x08) { /* overtemperature */
sc->sc_data[chan].warnflags = ENVSYS_WARN_CRITOVER;
/* read overtemperature limit */
ctemp = bus_space_read_1(iot, ioh, 0x0e);
if (temp >= ctemp) /* still valid, don't reset */
status &= ~0x08;
}
/* clear outdated warnings */
if (status & 0x0e)
bus_space_write_1(iot, ioh, 0x0a, status);
}
mutex_exit(&sc->sc_lock);
return;
}
static int
tms_gtredata(sme, data)
struct sysmon_envsys *sme;
struct envsys_tre_data *data;
{
struct nsclpcsio_softc *sc = sme->sme_cookie;
tms_update(sc, data->sensor);
*data = sc->sc_data[data->sensor];
return (0);
}
static int
tms_streinfo(struct sysmon_envsys *sme,
struct envsys_basic_info *info)
{
#if 0
struct nsclpcsio_softc *sc = sme->sme_cookie;
#endif
/* XXX Not implemented */
info->validflags = 0;
return (0);
}
#if NGPIO > 0
static void
nsclpcsio_gpio_pin_select(struct nsclpcsio_softc *sc, int pin)
{
u_int8_t v;
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
v = ((pin / 8) << 4) | (pin % 8);
nswrite(iot, ioh, 0x07, 0x07); /* select gpio */
nswrite(iot, ioh, 0xf0, v);
return;
}
static void
nsclpcsio_gpio_init(struct nsclpcsio_softc *sc)
{
int i;
for (i = 0; i < GPIO_NPINS; i++) {
sc->sc_gpio_pins[i].pin_num = i;
sc->sc_gpio_pins[i].pin_caps = GPIO_PIN_INPUT |
GPIO_PIN_OUTPUT | GPIO_PIN_OPENDRAIN |
GPIO_PIN_PUSHPULL | GPIO_PIN_TRISTATE |
GPIO_PIN_PULLUP;
/* safe defaults */
sc->sc_gpio_pins[i].pin_flags = GPIO_PIN_TRISTATE;
sc->sc_gpio_pins[i].pin_state = GPIO_PIN_LOW;
nsclpcsio_gpio_pin_ctl(sc, i, sc->sc_gpio_pins[i].pin_flags);
nsclpcsio_gpio_pin_write(sc, i, sc->sc_gpio_pins[i].pin_state);
}
/* create controller tag */
sc->sc_gpio_gc.gp_cookie = sc;
sc->sc_gpio_gc.gp_pin_read = nsclpcsio_gpio_pin_read;
sc->sc_gpio_gc.gp_pin_write = nsclpcsio_gpio_pin_write;
sc->sc_gpio_gc.gp_pin_ctl = nsclpcsio_gpio_pin_ctl;
}
static int
nsclpcsio_gpio_pin_read(void *aux, int pin)
{
struct nsclpcsio_softc *sc = (struct nsclpcsio_softc *)aux;
int port, shift, reg;
u_int8_t v;
reg = 0x00;
port = pin / 8;
shift = pin % 8;
switch (port) {
case 0: reg = 0x00; break;
case 1: reg = 0x04; break;
case 2: reg = 0x08; break;
case 3: reg = 0x0a; break;
}
v = GPIO_READ(sc, reg);
return ((v >> shift) & 0x1);
}
static void
nsclpcsio_gpio_pin_write(void *aux, int pin, int v)
{
struct nsclpcsio_softc *sc = (struct nsclpcsio_softc *)aux;
int port, shift, reg;
u_int8_t d;
port = pin / 8;
shift = pin % 8;
switch (port) {
case 0: reg = 0x00; break;
case 1: reg = 0x04; break;
case 2: reg = 0x08; break;
case 3: reg = 0x0a; break;
default: reg = 0x00; break; /* shouldn't happen */
}
d = GPIO_READ(sc, reg);
if (v == 0)
d &= ~(1 << shift);
else if (v == 1)
d |= (1 << shift);
GPIO_WRITE(sc, reg, d);
return;
}
void
nsclpcsio_gpio_pin_ctl(void *aux, int pin, int flags)
{
struct nsclpcsio_softc *sc = (struct nsclpcsio_softc *)aux;
u_int8_t conf;
mutex_enter(&sc->sc_lock);
nswrite(sc->sc_iot, sc->sc_ioh, 0x07, 0x07); /* select gpio */
nsclpcsio_gpio_pin_select(sc, pin);
conf = nsread(sc->sc_iot, sc->sc_ioh, 0xf1);
conf &= ~(SIO_GPIO_CONF_OUTPUTEN | SIO_GPIO_CONF_PUSHPULL |
SIO_GPIO_CONF_PULLUP);
if ((flags & GPIO_PIN_TRISTATE) == 0)
conf |= SIO_GPIO_CONF_OUTPUTEN;
if (flags & GPIO_PIN_PUSHPULL)
conf |= SIO_GPIO_CONF_PUSHPULL;
if (flags & GPIO_PIN_PULLUP)
conf |= SIO_GPIO_CONF_PULLUP;
nswrite(sc->sc_iot, sc->sc_ioh, 0xf1, conf);
mutex_exit(&sc->sc_lock);
return;
}
#endif /* NGPIO */