71ba20edbb
as fourth argument of copystr.
1948 lines
49 KiB
C
1948 lines
49 KiB
C
/* $NetBSD: uvm_swap.c,v 1.18 1998/08/30 03:08:43 enami Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1995, 1996, 1997 Matthew R. Green
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
|
|
* from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
|
|
*/
|
|
|
|
#include "fs_nfs.h"
|
|
#include "opt_uvmhist.h"
|
|
#include "opt_compat_netbsd.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/namei.h>
|
|
#include <sys/disklabel.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/file.h>
|
|
#include <sys/extent.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/pool.h>
|
|
#include <sys/syscallargs.h>
|
|
#include <sys/swap.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_conf.h>
|
|
|
|
#include <uvm/uvm.h>
|
|
|
|
#include <miscfs/specfs/specdev.h>
|
|
|
|
/*
|
|
* uvm_swap.c: manage configuration and i/o to swap space.
|
|
*/
|
|
|
|
/*
|
|
* swap space is managed in the following way:
|
|
*
|
|
* each swap partition or file is described by a "swapdev" structure.
|
|
* each "swapdev" structure contains a "swapent" structure which contains
|
|
* information that is passed up to the user (via system calls).
|
|
*
|
|
* each swap partition is assigned a "priority" (int) which controls
|
|
* swap parition usage.
|
|
*
|
|
* the system maintains a global data structure describing all swap
|
|
* partitions/files. there is a sorted LIST of "swappri" structures
|
|
* which describe "swapdev"'s at that priority. this LIST is headed
|
|
* by the "swap_priority" global var. each "swappri" contains a
|
|
* CIRCLEQ of "swapdev" structures at that priority.
|
|
*
|
|
* the system maintains a fixed pool of "swapbuf" structures for use
|
|
* at swap i/o time. a swapbuf includes a "buf" structure and an
|
|
* "aiodone" [we want to avoid malloc()'ing anything at swapout time
|
|
* since memory may be low].
|
|
*
|
|
* locking:
|
|
* - swap_syscall_lock (sleep lock): this lock serializes the swapctl
|
|
* system call and prevents the swap priority list from changing
|
|
* while we are in the middle of a system call (e.g. SWAP_STATS).
|
|
* - swap_data_lock (simple_lock): this lock protects all swap data
|
|
* structures including the priority list, the swapdev structures,
|
|
* and the swapmap extent.
|
|
* - swap_buf_lock (simple_lock): this lock protects the free swapbuf
|
|
* pool.
|
|
*
|
|
* each swap device has the following info:
|
|
* - swap device in use (could be disabled, preventing future use)
|
|
* - swap enabled (allows new allocations on swap)
|
|
* - map info in /dev/drum
|
|
* - vnode pointer
|
|
* for swap files only:
|
|
* - block size
|
|
* - max byte count in buffer
|
|
* - buffer
|
|
* - credentials to use when doing i/o to file
|
|
*
|
|
* userland controls and configures swap with the swapctl(2) system call.
|
|
* the sys_swapctl performs the following operations:
|
|
* [1] SWAP_NSWAP: returns the number of swap devices currently configured
|
|
* [2] SWAP_STATS: given a pointer to an array of swapent structures
|
|
* (passed in via "arg") of a size passed in via "misc" ... we load
|
|
* the current swap config into the array.
|
|
* [3] SWAP_ON: given a pathname in arg (could be device or file) and a
|
|
* priority in "misc", start swapping on it.
|
|
* [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
|
|
* [5] SWAP_CTL: changes the priority of a swap device (new priority in
|
|
* "misc")
|
|
*/
|
|
|
|
/*
|
|
* SWAP_TO_FILES: allows swapping to plain files.
|
|
*/
|
|
|
|
#define SWAP_TO_FILES
|
|
|
|
/*
|
|
* swapdev: describes a single swap partition/file
|
|
*
|
|
* note the following should be true:
|
|
* swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
|
|
* swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
|
|
*/
|
|
struct swapdev {
|
|
struct oswapent swd_ose;
|
|
#define swd_dev swd_ose.ose_dev /* device id */
|
|
#define swd_flags swd_ose.ose_flags /* flags:inuse/enable/fake */
|
|
#define swd_priority swd_ose.ose_priority /* our priority */
|
|
/* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
|
|
char *swd_path; /* saved pathname of device */
|
|
int swd_pathlen; /* length of pathname */
|
|
int swd_npages; /* #pages we can use */
|
|
int swd_npginuse; /* #pages in use */
|
|
int swd_drumoffset; /* page0 offset in drum */
|
|
int swd_drumsize; /* #pages in drum */
|
|
struct extent *swd_ex; /* extent for this swapdev */
|
|
struct vnode *swd_vp; /* backing vnode */
|
|
CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */
|
|
|
|
#ifdef SWAP_TO_FILES
|
|
int swd_bsize; /* blocksize (bytes) */
|
|
int swd_maxactive; /* max active i/o reqs */
|
|
struct buf swd_tab; /* buffer list */
|
|
struct ucred *swd_cred; /* cred for file access */
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
* swap device priority entry; the list is kept sorted on `spi_priority'.
|
|
*/
|
|
struct swappri {
|
|
int spi_priority; /* priority */
|
|
CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
|
|
/* circleq of swapdevs at this priority */
|
|
LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
|
|
};
|
|
|
|
/*
|
|
* swapbuf, swapbuffer plus async i/o info
|
|
*/
|
|
struct swapbuf {
|
|
struct buf sw_buf; /* a buffer structure */
|
|
struct uvm_aiodesc sw_aio; /* aiodesc structure, used if ASYNC */
|
|
SIMPLEQ_ENTRY(swapbuf) sw_sq; /* free list pointer */
|
|
};
|
|
|
|
/*
|
|
* The following two structures are used to keep track of data transfers
|
|
* on swap devices associated with regular files.
|
|
* NOTE: this code is more or less a copy of vnd.c; we use the same
|
|
* structure names here to ease porting..
|
|
*/
|
|
struct vndxfer {
|
|
struct buf *vx_bp; /* Pointer to parent buffer */
|
|
struct swapdev *vx_sdp;
|
|
int vx_error;
|
|
int vx_pending; /* # of pending aux buffers */
|
|
int vx_flags;
|
|
#define VX_BUSY 1
|
|
#define VX_DEAD 2
|
|
};
|
|
|
|
struct vndbuf {
|
|
struct buf vb_buf;
|
|
struct vndxfer *vb_xfer;
|
|
};
|
|
|
|
|
|
/*
|
|
* We keep a of pool vndbuf's and vndxfer structures.
|
|
*/
|
|
struct pool *vndxfer_pool;
|
|
struct pool *vndbuf_pool;
|
|
|
|
#define getvndxfer(vnx) do { \
|
|
int s = splbio(); \
|
|
vnx = (struct vndxfer *) \
|
|
pool_get(vndxfer_pool, PR_MALLOCOK|PR_WAITOK); \
|
|
splx(s); \
|
|
} while (0)
|
|
|
|
#define putvndxfer(vnx) { \
|
|
pool_put(vndxfer_pool, (void *)(vnx)); \
|
|
}
|
|
|
|
#define getvndbuf(vbp) do { \
|
|
int s = splbio(); \
|
|
vbp = (struct vndbuf *) \
|
|
pool_get(vndbuf_pool, PR_MALLOCOK|PR_WAITOK); \
|
|
splx(s); \
|
|
} while (0)
|
|
|
|
#define putvndbuf(vbp) { \
|
|
pool_put(vndbuf_pool, (void *)(vbp)); \
|
|
}
|
|
|
|
|
|
/*
|
|
* local variables
|
|
*/
|
|
static struct extent *swapmap; /* controls the mapping of /dev/drum */
|
|
SIMPLEQ_HEAD(swapbufhead, swapbuf);
|
|
struct pool *swapbuf_pool;
|
|
|
|
/* list of all active swap devices [by priority] */
|
|
LIST_HEAD(swap_priority, swappri);
|
|
static struct swap_priority swap_priority;
|
|
|
|
/* locks */
|
|
lock_data_t swap_syscall_lock;
|
|
static simple_lock_data_t swap_data_lock;
|
|
|
|
/*
|
|
* prototypes
|
|
*/
|
|
static void swapdrum_add __P((struct swapdev *, int));
|
|
static struct swapdev *swapdrum_getsdp __P((int));
|
|
|
|
static struct swapdev *swaplist_find __P((struct vnode *, int));
|
|
static void swaplist_insert __P((struct swapdev *,
|
|
struct swappri *, int));
|
|
static void swaplist_trim __P((void));
|
|
|
|
static int swap_on __P((struct proc *, struct swapdev *));
|
|
#ifdef SWAP_OFF_WORKS
|
|
static int swap_off __P((struct proc *, struct swapdev *));
|
|
#endif
|
|
|
|
#ifdef SWAP_TO_FILES
|
|
static void sw_reg_strategy __P((struct swapdev *, struct buf *, int));
|
|
static void sw_reg_iodone __P((struct buf *));
|
|
static void sw_reg_start __P((struct swapdev *));
|
|
#endif
|
|
|
|
static void uvm_swap_aiodone __P((struct uvm_aiodesc *));
|
|
static void uvm_swap_bufdone __P((struct buf *));
|
|
static int uvm_swap_io __P((struct vm_page **, int, int, int));
|
|
|
|
/*
|
|
* uvm_swap_init: init the swap system data structures and locks
|
|
*
|
|
* => called at boot time from init_main.c after the filesystems
|
|
* are brought up (which happens after uvm_init())
|
|
*/
|
|
void
|
|
uvm_swap_init()
|
|
{
|
|
UVMHIST_FUNC("uvm_swap_init");
|
|
|
|
UVMHIST_CALLED(pdhist);
|
|
/*
|
|
* first, init the swap list, its counter, and its lock.
|
|
* then get a handle on the vnode for /dev/drum by using
|
|
* the its dev_t number ("swapdev", from MD conf.c).
|
|
*/
|
|
|
|
LIST_INIT(&swap_priority);
|
|
uvmexp.nswapdev = 0;
|
|
lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
|
|
simple_lock_init(&swap_data_lock);
|
|
|
|
if (bdevvp(swapdev, &swapdev_vp))
|
|
panic("uvm_swap_init: can't get vnode for swap device");
|
|
|
|
/*
|
|
* create swap block resource map to map /dev/drum. the range
|
|
* from 1 to INT_MAX allows 2 gigablocks of swap space. note
|
|
* that block 0 is reserved (used to indicate an allocation
|
|
* failure, or no allocation).
|
|
*/
|
|
swapmap = extent_create("swapmap", 1, INT_MAX,
|
|
M_VMSWAP, 0, 0, EX_NOWAIT);
|
|
if (swapmap == 0)
|
|
panic("uvm_swap_init: extent_create failed");
|
|
|
|
/*
|
|
* allocate our private pool of "swapbuf" structures (includes
|
|
* a "buf" structure). ["nswbuf" comes from param.c and can
|
|
* be adjusted by MD code before we get here].
|
|
*/
|
|
|
|
swapbuf_pool =
|
|
pool_create(sizeof(struct swapbuf), 0, 0, 0, "swp buf", 0,
|
|
NULL, NULL, 0);
|
|
if (swapbuf_pool == NULL)
|
|
panic("swapinit: pool_create failed");
|
|
/* XXX - set a maximum on swapbuf_pool? */
|
|
|
|
vndxfer_pool =
|
|
pool_create(sizeof(struct vndxfer), 0, 0, 0, "swp vnx", 0,
|
|
NULL, NULL, 0);
|
|
if (vndxfer_pool == NULL)
|
|
panic("swapinit: pool_create failed");
|
|
|
|
vndbuf_pool =
|
|
pool_create(sizeof(struct vndbuf), 0, 0, 0, "swp vnd", 0,
|
|
NULL, NULL, 0);
|
|
if (vndbuf_pool == NULL)
|
|
panic("swapinit: pool_create failed");
|
|
/*
|
|
* done!
|
|
*/
|
|
UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
|
|
}
|
|
|
|
/*
|
|
* swaplist functions: functions that operate on the list of swap
|
|
* devices on the system.
|
|
*/
|
|
|
|
/*
|
|
* swaplist_insert: insert swap device "sdp" into the global list
|
|
*
|
|
* => caller must hold both swap_syscall_lock and swap_data_lock
|
|
* => caller must provide a newly malloc'd swappri structure (we will
|
|
* FREE it if we don't need it... this it to prevent malloc blocking
|
|
* here while adding swap)
|
|
*/
|
|
static void
|
|
swaplist_insert(sdp, newspp, priority)
|
|
struct swapdev *sdp;
|
|
struct swappri *newspp;
|
|
int priority;
|
|
{
|
|
struct swappri *spp, *pspp;
|
|
UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
|
|
|
|
/*
|
|
* find entry at or after which to insert the new device.
|
|
*/
|
|
for (pspp = NULL, spp = swap_priority.lh_first; spp != NULL;
|
|
spp = spp->spi_swappri.le_next) {
|
|
if (priority <= spp->spi_priority)
|
|
break;
|
|
pspp = spp;
|
|
}
|
|
|
|
/*
|
|
* new priority?
|
|
*/
|
|
if (spp == NULL || spp->spi_priority != priority) {
|
|
spp = newspp; /* use newspp! */
|
|
UVMHIST_LOG(pdhist, "created new swappri = %d", priority, 0, 0, 0);
|
|
|
|
spp->spi_priority = priority;
|
|
CIRCLEQ_INIT(&spp->spi_swapdev);
|
|
|
|
if (pspp)
|
|
LIST_INSERT_AFTER(pspp, spp, spi_swappri);
|
|
else
|
|
LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
|
|
} else {
|
|
/* we don't need a new priority structure, free it */
|
|
FREE(newspp, M_VMSWAP);
|
|
}
|
|
|
|
/*
|
|
* priority found (or created). now insert on the priority's
|
|
* circleq list and bump the total number of swapdevs.
|
|
*/
|
|
sdp->swd_priority = priority;
|
|
CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
|
|
uvmexp.nswapdev++;
|
|
|
|
/*
|
|
* done!
|
|
*/
|
|
}
|
|
|
|
/*
|
|
* swaplist_find: find and optionally remove a swap device from the
|
|
* global list.
|
|
*
|
|
* => caller must hold both swap_syscall_lock and swap_data_lock
|
|
* => we return the swapdev we found (and removed)
|
|
*/
|
|
static struct swapdev *
|
|
swaplist_find(vp, remove)
|
|
struct vnode *vp;
|
|
boolean_t remove;
|
|
{
|
|
struct swapdev *sdp;
|
|
struct swappri *spp;
|
|
|
|
/*
|
|
* search the lists for the requested vp
|
|
*/
|
|
for (spp = swap_priority.lh_first; spp != NULL;
|
|
spp = spp->spi_swappri.le_next) {
|
|
for (sdp = spp->spi_swapdev.cqh_first;
|
|
sdp != (void *)&spp->spi_swapdev;
|
|
sdp = sdp->swd_next.cqe_next)
|
|
if (sdp->swd_vp == vp) {
|
|
if (remove) {
|
|
CIRCLEQ_REMOVE(&spp->spi_swapdev,
|
|
sdp, swd_next);
|
|
uvmexp.nswapdev--;
|
|
}
|
|
return(sdp);
|
|
}
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
|
|
/*
|
|
* swaplist_trim: scan priority list for empty priority entries and kill
|
|
* them.
|
|
*
|
|
* => caller must hold both swap_syscall_lock and swap_data_lock
|
|
*/
|
|
static void
|
|
swaplist_trim()
|
|
{
|
|
struct swappri *spp, *nextspp;
|
|
|
|
for (spp = swap_priority.lh_first; spp != NULL; spp = nextspp) {
|
|
nextspp = spp->spi_swappri.le_next;
|
|
if (spp->spi_swapdev.cqh_first != (void *)&spp->spi_swapdev)
|
|
continue;
|
|
LIST_REMOVE(spp, spi_swappri);
|
|
free((caddr_t)spp, M_VMSWAP);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* swapdrum_add: add a "swapdev"'s blocks into /dev/drum's area.
|
|
*
|
|
* => caller must hold swap_syscall_lock
|
|
* => swap_data_lock should be unlocked (we may sleep)
|
|
*/
|
|
static void
|
|
swapdrum_add(sdp, npages)
|
|
struct swapdev *sdp;
|
|
int npages;
|
|
{
|
|
u_long result;
|
|
|
|
if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
|
|
EX_WAITOK, &result))
|
|
panic("swapdrum_add");
|
|
|
|
sdp->swd_drumoffset = result;
|
|
sdp->swd_drumsize = npages;
|
|
}
|
|
|
|
/*
|
|
* swapdrum_getsdp: given a page offset in /dev/drum, convert it back
|
|
* to the "swapdev" that maps that section of the drum.
|
|
*
|
|
* => each swapdev takes one big contig chunk of the drum
|
|
* => caller must hold swap_data_lock
|
|
*/
|
|
static struct swapdev *
|
|
swapdrum_getsdp(pgno)
|
|
int pgno;
|
|
{
|
|
struct swapdev *sdp;
|
|
struct swappri *spp;
|
|
|
|
for (spp = swap_priority.lh_first; spp != NULL;
|
|
spp = spp->spi_swappri.le_next)
|
|
for (sdp = spp->spi_swapdev.cqh_first;
|
|
sdp != (void *)&spp->spi_swapdev;
|
|
sdp = sdp->swd_next.cqe_next)
|
|
if (pgno >= sdp->swd_drumoffset &&
|
|
pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
|
|
return sdp;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/*
|
|
* sys_swapctl: main entry point for swapctl(2) system call
|
|
* [with two helper functions: swap_on and swap_off]
|
|
*/
|
|
int
|
|
sys_swapctl(p, v, retval)
|
|
struct proc *p;
|
|
void *v;
|
|
register_t *retval;
|
|
{
|
|
struct sys_swapctl_args /* {
|
|
syscallarg(int) cmd;
|
|
syscallarg(void *) arg;
|
|
syscallarg(int) misc;
|
|
} */ *uap = (struct sys_swapctl_args *)v;
|
|
struct vnode *vp;
|
|
struct nameidata nd;
|
|
struct swappri *spp;
|
|
struct swapdev *sdp;
|
|
struct swapent *sep;
|
|
char userpath[PATH_MAX + 1];
|
|
size_t len;
|
|
int count, error, misc;
|
|
int priority;
|
|
UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
|
|
|
|
misc = SCARG(uap, misc);
|
|
|
|
/*
|
|
* ensure serialized syscall access by grabbing the swap_syscall_lock
|
|
*/
|
|
lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, (void *)0);
|
|
|
|
/*
|
|
* we handle the non-priv NSWAP and STATS request first.
|
|
*
|
|
* SWAP_NSWAP: return number of config'd swap devices
|
|
* [can also be obtained with uvmexp sysctl]
|
|
*/
|
|
if (SCARG(uap, cmd) == SWAP_NSWAP) {
|
|
UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
|
|
0, 0, 0);
|
|
*retval = uvmexp.nswapdev;
|
|
error = 0;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* SWAP_STATS: get stats on current # of configured swap devs
|
|
*
|
|
* note that the swap_priority list can't change as long
|
|
* as we are holding the swap_syscall_lock. we don't want
|
|
* to grab the swap_data_lock because we may fault&sleep during
|
|
* copyout() and we don't want to be holding that lock then!
|
|
*/
|
|
if (SCARG(uap, cmd) == SWAP_STATS
|
|
#if defined(COMPAT_13)
|
|
|| SCARG(uap, cmd) == SWAP_OSTATS
|
|
#endif
|
|
) {
|
|
sep = (struct swapent *)SCARG(uap, arg);
|
|
count = 0;
|
|
|
|
for (spp = swap_priority.lh_first; spp != NULL;
|
|
spp = spp->spi_swappri.le_next) {
|
|
for (sdp = spp->spi_swapdev.cqh_first;
|
|
sdp != (void *)&spp->spi_swapdev && misc-- > 0;
|
|
sdp = sdp->swd_next.cqe_next) {
|
|
/*
|
|
* backwards compatibility for system call.
|
|
* note that we use 'struct oswapent' as an
|
|
* overlay into both 'struct swapdev' and
|
|
* the userland 'struct swapent', as we
|
|
* want to retain backwards compatibility
|
|
* with NetBSD 1.3.
|
|
*/
|
|
sdp->swd_ose.ose_inuse =
|
|
btodb(sdp->swd_npginuse * PAGE_SIZE);
|
|
error = copyout((caddr_t)&sdp->swd_ose,
|
|
(caddr_t)sep, sizeof(struct oswapent));
|
|
|
|
/* now copy out the path if necessary */
|
|
#if defined(COMPAT_13)
|
|
if (error == 0 && SCARG(uap, cmd) == SWAP_STATS)
|
|
#else
|
|
if (error == 0)
|
|
#endif
|
|
error = copyout((caddr_t)sdp->swd_path,
|
|
(caddr_t)&sep->se_path,
|
|
sdp->swd_pathlen);
|
|
|
|
if (error)
|
|
goto out;
|
|
count++;
|
|
#if defined(COMPAT_13)
|
|
if (SCARG(uap, cmd) == SWAP_OSTATS)
|
|
((struct oswapent *)sep)++;
|
|
else
|
|
#endif
|
|
sep++;
|
|
}
|
|
}
|
|
|
|
UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
|
|
|
|
*retval = count;
|
|
error = 0;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* all other requests require superuser privs. verify.
|
|
*/
|
|
if ((error = suser(p->p_ucred, &p->p_acflag)))
|
|
goto out;
|
|
|
|
/*
|
|
* at this point we expect a path name in arg. we will
|
|
* use namei() to gain a vnode reference (vref), and lock
|
|
* the vnode (VOP_LOCK).
|
|
*
|
|
* XXX: a NULL arg means use the root vnode pointer (e.g. for
|
|
* miniroot)
|
|
*/
|
|
if (SCARG(uap, arg) == NULL) {
|
|
vp = rootvp; /* miniroot */
|
|
if (vget(vp, LK_EXCLUSIVE)) {
|
|
error = EBUSY;
|
|
goto out;
|
|
}
|
|
if (SCARG(uap, cmd) == SWAP_ON &&
|
|
copystr("miniroot", userpath, sizeof userpath, &len))
|
|
panic("swapctl: miniroot copy failed");
|
|
} else {
|
|
int space;
|
|
char *where;
|
|
|
|
if (SCARG(uap, cmd) == SWAP_ON) {
|
|
if ((error = copyinstr(SCARG(uap, arg), userpath,
|
|
sizeof userpath, &len)))
|
|
goto out;
|
|
space = UIO_SYSSPACE;
|
|
where = userpath;
|
|
} else {
|
|
space = UIO_USERSPACE;
|
|
where = (char *)SCARG(uap, arg);
|
|
}
|
|
NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, p);
|
|
if ((error = namei(&nd)))
|
|
goto out;
|
|
vp = nd.ni_vp;
|
|
}
|
|
/* note: "vp" is referenced and locked */
|
|
|
|
error = 0; /* assume no error */
|
|
switch(SCARG(uap, cmd)) {
|
|
case SWAP_CTL:
|
|
/*
|
|
* get new priority, remove old entry (if any) and then
|
|
* reinsert it in the correct place. finally, prune out
|
|
* any empty priority structures.
|
|
*/
|
|
priority = SCARG(uap, misc);
|
|
spp = (struct swappri *)
|
|
malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
|
|
simple_lock(&swap_data_lock);
|
|
if ((sdp = swaplist_find(vp, 1)) == NULL) {
|
|
error = ENOENT;
|
|
} else {
|
|
swaplist_insert(sdp, spp, priority);
|
|
swaplist_trim();
|
|
}
|
|
simple_unlock(&swap_data_lock);
|
|
if (error)
|
|
free(spp, M_VMSWAP);
|
|
break;
|
|
|
|
case SWAP_ON:
|
|
/*
|
|
* check for duplicates. if none found, then insert a
|
|
* dummy entry on the list to prevent someone else from
|
|
* trying to enable this device while we are working on
|
|
* it.
|
|
*/
|
|
priority = SCARG(uap, misc);
|
|
simple_lock(&swap_data_lock);
|
|
if ((sdp = swaplist_find(vp, 0)) != NULL) {
|
|
error = EBUSY;
|
|
simple_unlock(&swap_data_lock);
|
|
break;
|
|
}
|
|
sdp = (struct swapdev *)
|
|
malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
|
|
spp = (struct swappri *)
|
|
malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
|
|
memset(sdp, 0, sizeof(*sdp));
|
|
sdp->swd_flags = SWF_FAKE; /* placeholder only */
|
|
sdp->swd_vp = vp;
|
|
sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
|
|
#ifdef SWAP_TO_FILES
|
|
/*
|
|
* XXX Is NFS elaboration necessary?
|
|
*/
|
|
if (vp->v_type == VREG)
|
|
sdp->swd_cred = crdup(p->p_ucred);
|
|
#endif
|
|
swaplist_insert(sdp, spp, priority);
|
|
simple_unlock(&swap_data_lock);
|
|
|
|
sdp->swd_pathlen = len;
|
|
sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
|
|
if ((error = copystr(userpath, sdp->swd_path,
|
|
sdp->swd_pathlen, 0)))
|
|
break;
|
|
/*
|
|
* we've now got a FAKE placeholder in the swap list.
|
|
* now attempt to enable swap on it. if we fail, undo
|
|
* what we've done and kill the fake entry we just inserted.
|
|
* if swap_on is a success, it will clear the SWF_FAKE flag
|
|
*/
|
|
if ((error = swap_on(p, sdp)) != 0) {
|
|
simple_lock(&swap_data_lock);
|
|
(void) swaplist_find(vp, 1); /* kill fake entry */
|
|
swaplist_trim();
|
|
simple_unlock(&swap_data_lock);
|
|
#ifdef SWAP_TO_FILES
|
|
if (vp->v_type == VREG)
|
|
crfree(sdp->swd_cred);
|
|
#endif
|
|
free((caddr_t)sdp, M_VMSWAP);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* got it! now add a second reference to vp so that
|
|
* we keep a reference to the vnode after we return.
|
|
*/
|
|
vref(vp);
|
|
break;
|
|
|
|
case SWAP_OFF:
|
|
UVMHIST_LOG(pdhist, "someone is using SWAP_OFF...??", 0,0,0,0);
|
|
#ifdef SWAP_OFF_WORKS
|
|
/*
|
|
* find the entry of interest and ensure it is enabled.
|
|
*/
|
|
simple_lock(&swap_data_lock);
|
|
if ((sdp = swaplist_find(vp, 0)) == NULL) {
|
|
simple_unlock(&swap_data_lock);
|
|
error = ENXIO;
|
|
break;
|
|
}
|
|
/*
|
|
* If a device isn't in use or enabled, we
|
|
* can't stop swapping from it (again).
|
|
*/
|
|
if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
|
|
simple_unlock(&swap_data_lock);
|
|
error = EBUSY;
|
|
break;
|
|
}
|
|
/* XXXCDC: should we call with list locked or unlocked? */
|
|
if ((error = swap_off(p, sdp)) != 0)
|
|
break;
|
|
/* XXXCDC: might need relock here */
|
|
|
|
/*
|
|
* now we can kill the entry.
|
|
*/
|
|
if ((sdp = swaplist_find(vp, 1)) == NULL) {
|
|
error = ENXIO;
|
|
break;
|
|
}
|
|
simple_unlock(&swap_data_lock);
|
|
free((caddr_t)sdp, M_VMSWAP);
|
|
#else
|
|
error = EINVAL;
|
|
#endif
|
|
break;
|
|
|
|
default:
|
|
UVMHIST_LOG(pdhist, "unhandled command: %#x",
|
|
SCARG(uap, cmd), 0, 0, 0);
|
|
error = EINVAL;
|
|
}
|
|
|
|
/*
|
|
* done! use vput to drop our reference and unlock
|
|
*/
|
|
vput(vp);
|
|
out:
|
|
lockmgr(&swap_syscall_lock, LK_RELEASE, (void *)0);
|
|
|
|
UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* swap_on: attempt to enable a swapdev for swapping. note that the
|
|
* swapdev is already on the global list, but disabled (marked
|
|
* SWF_FAKE).
|
|
*
|
|
* => we avoid the start of the disk (to protect disk labels)
|
|
* => we also avoid the miniroot, if we are swapping to root.
|
|
* => caller should leave swap_data_lock unlocked, we may lock it
|
|
* if needed.
|
|
*/
|
|
static int
|
|
swap_on(p, sdp)
|
|
struct proc *p;
|
|
struct swapdev *sdp;
|
|
{
|
|
static int count = 0; /* static */
|
|
struct vnode *vp;
|
|
int error, npages, nblocks, size;
|
|
long addr;
|
|
#ifdef SWAP_TO_FILES
|
|
struct vattr va;
|
|
#endif
|
|
#ifdef NFS
|
|
extern int (**nfsv2_vnodeop_p) __P((void *));
|
|
#endif /* NFS */
|
|
dev_t dev;
|
|
char *name;
|
|
UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
|
|
|
|
/*
|
|
* we want to enable swapping on sdp. the swd_vp contains
|
|
* the vnode we want (locked and ref'd), and the swd_dev
|
|
* contains the dev_t of the file, if it a block device.
|
|
*/
|
|
|
|
vp = sdp->swd_vp;
|
|
dev = sdp->swd_dev;
|
|
|
|
/*
|
|
* open the swap file (mostly useful for block device files to
|
|
* let device driver know what is up).
|
|
*
|
|
* we skip the open/close for root on swap because the root
|
|
* has already been opened when root was mounted (mountroot).
|
|
*/
|
|
if (vp != rootvp) {
|
|
if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p)))
|
|
return (error);
|
|
}
|
|
|
|
/* XXX this only works for block devices */
|
|
UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
|
|
|
|
/*
|
|
* we now need to determine the size of the swap area. for
|
|
* block specials we can call the d_psize function.
|
|
* for normal files, we must stat [get attrs].
|
|
*
|
|
* we put the result in nblks.
|
|
* for normal files, we also want the filesystem block size
|
|
* (which we get with statfs).
|
|
*/
|
|
switch (vp->v_type) {
|
|
case VBLK:
|
|
if (bdevsw[major(dev)].d_psize == 0 ||
|
|
(nblocks = (*bdevsw[major(dev)].d_psize)(dev)) == -1) {
|
|
error = ENXIO;
|
|
goto bad;
|
|
}
|
|
break;
|
|
|
|
#ifdef SWAP_TO_FILES
|
|
case VREG:
|
|
if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
|
|
goto bad;
|
|
nblocks = (int)btodb(va.va_size);
|
|
if ((error =
|
|
VFS_STATFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0)
|
|
goto bad;
|
|
|
|
sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
|
|
/*
|
|
* limit the max # of outstanding I/O requests we issue
|
|
* at any one time. take it easy on NFS servers.
|
|
*/
|
|
#ifdef NFS
|
|
if (vp->v_op == nfsv2_vnodeop_p)
|
|
sdp->swd_maxactive = 2; /* XXX */
|
|
else
|
|
#endif /* NFS */
|
|
sdp->swd_maxactive = 8; /* XXX */
|
|
break;
|
|
#endif
|
|
|
|
default:
|
|
error = ENXIO;
|
|
goto bad;
|
|
}
|
|
|
|
/*
|
|
* save nblocks in a safe place and convert to pages.
|
|
*/
|
|
|
|
sdp->swd_ose.ose_nblks = nblocks;
|
|
npages = dbtob((u_int64_t)nblocks) / PAGE_SIZE;
|
|
|
|
/*
|
|
* for block special files, we want to make sure that leave
|
|
* the disklabel and bootblocks alone, so we arrange to skip
|
|
* over them (randomly choosing to skip PAGE_SIZE bytes).
|
|
* note that because of this the "size" can be less than the
|
|
* actual number of blocks on the device.
|
|
*/
|
|
if (vp->v_type == VBLK) {
|
|
/* we use pages 1 to (size - 1) [inclusive] */
|
|
size = npages - 1;
|
|
addr = 1;
|
|
} else {
|
|
/* we use pages 0 to (size - 1) [inclusive] */
|
|
size = npages;
|
|
addr = 0;
|
|
}
|
|
|
|
/*
|
|
* make sure we have enough blocks for a reasonable sized swap
|
|
* area. we want at least one page.
|
|
*/
|
|
|
|
if (size < 1) {
|
|
UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
|
|
error = EINVAL;
|
|
goto bad;
|
|
}
|
|
|
|
UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
|
|
|
|
/*
|
|
* now we need to allocate an extent to manage this swap device
|
|
*/
|
|
name = malloc(12, M_VMSWAP, M_WAITOK);
|
|
sprintf(name, "swap0x%04x", count++);
|
|
|
|
/* note that extent_create's 3rd arg is inclusive, thus "- 1" */
|
|
sdp->swd_ex = extent_create(name, 0, npages - 1, M_VMSWAP,
|
|
0, 0, EX_WAITOK);
|
|
/* allocate the `saved' region from the extent so it won't be used */
|
|
if (addr) {
|
|
if (extent_alloc_region(sdp->swd_ex, 0, addr, EX_WAITOK))
|
|
panic("disklabel region");
|
|
sdp->swd_npginuse += addr;
|
|
uvmexp.swpginuse += addr;
|
|
}
|
|
|
|
|
|
/*
|
|
* if the vnode we are swapping to is the root vnode
|
|
* (i.e. we are swapping to the miniroot) then we want
|
|
* to make sure we don't overwrite it. do a statfs to
|
|
* find its size and skip over it.
|
|
*/
|
|
if (vp == rootvp) {
|
|
struct mount *mp;
|
|
struct statfs *sp;
|
|
int rootblocks, rootpages;
|
|
|
|
mp = rootvnode->v_mount;
|
|
sp = &mp->mnt_stat;
|
|
rootblocks = sp->f_blocks * btodb(sp->f_bsize);
|
|
rootpages = round_page(dbtob(rootblocks)) / PAGE_SIZE;
|
|
if (rootpages > npages)
|
|
panic("swap_on: miniroot larger than swap?");
|
|
|
|
if (extent_alloc_region(sdp->swd_ex, addr,
|
|
rootpages, EX_WAITOK))
|
|
panic("swap_on: unable to preserve miniroot");
|
|
|
|
sdp->swd_npginuse += (rootpages - addr);
|
|
uvmexp.swpginuse += (rootpages - addr);
|
|
|
|
printf("Preserved %d pages of miniroot ", rootpages);
|
|
printf("leaving %d pages of swap\n", size - rootpages);
|
|
}
|
|
|
|
/*
|
|
* now add the new swapdev to the drum and enable.
|
|
*/
|
|
simple_lock(&swap_data_lock);
|
|
swapdrum_add(sdp, npages);
|
|
sdp->swd_npages = npages;
|
|
sdp->swd_flags &= ~SWF_FAKE; /* going live */
|
|
sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
|
|
simple_unlock(&swap_data_lock);
|
|
uvmexp.swpages += npages;
|
|
|
|
/*
|
|
* add anon's to reflect the swap space we added
|
|
*/
|
|
uvm_anon_add(size);
|
|
|
|
#if 0
|
|
/*
|
|
* At this point we could arrange to reserve memory for the
|
|
* swap buffer pools.
|
|
*
|
|
* I don't think this is necessary, since swapping starts well
|
|
* ahead of serious memory deprivation and the memory resource
|
|
* pools hold on to actively used memory. This should ensure
|
|
* we always have some resources to continue operation.
|
|
*/
|
|
|
|
int s = splbio();
|
|
int n = 8 * sdp->swd_maxactive;
|
|
|
|
(void)pool_prime(swapbuf_pool, n, 0);
|
|
|
|
if (vp->v_type == VREG) {
|
|
/* Allocate additional vnx and vnd buffers */
|
|
/*
|
|
* Allocation Policy:
|
|
* (8 * swd_maxactive) vnx headers per swap dev
|
|
* (16 * swd_maxactive) vnd buffers per swap dev
|
|
*/
|
|
|
|
n = 8 * sdp->swd_maxactive;
|
|
(void)pool_prime(vndxfer_pool, n, 0);
|
|
|
|
n = 16 * sdp->swd_maxactive;
|
|
(void)pool_prime(vndbuf_pool, n, 0);
|
|
}
|
|
splx(s);
|
|
#endif
|
|
|
|
return (0);
|
|
|
|
bad:
|
|
/*
|
|
* failure: close device if necessary and return error.
|
|
*/
|
|
if (vp != rootvp)
|
|
(void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
|
|
return (error);
|
|
}
|
|
|
|
#ifdef SWAP_OFF_WORKS
|
|
/*
|
|
* swap_off: stop swapping on swapdev
|
|
*
|
|
* XXXCDC: what conditions go here?
|
|
*/
|
|
static int
|
|
swap_off(p, sdp)
|
|
struct proc *p;
|
|
struct swapdev *sdp;
|
|
{
|
|
char *name;
|
|
UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
|
|
|
|
/* turn off the enable flag */
|
|
sdp->swd_flags &= ~SWF_ENABLE;
|
|
|
|
UVMHIST_LOG(pdhist, " dev=%x", sdp->swd_dev);
|
|
|
|
/*
|
|
* XXX write me
|
|
*
|
|
* the idea is to find out which processes are using this swap
|
|
* device, and page them all in.
|
|
*
|
|
* eventually, we should try to move them out to other swap areas
|
|
* if available.
|
|
*
|
|
* The alternative is to create a redirection map for this swap
|
|
* device. This should work by moving all the pages of data from
|
|
* the ex-swap device to another one, and making an entry in the
|
|
* redirection map for it. locking is going to be important for
|
|
* this!
|
|
*
|
|
* XXXCDC: also need to shrink anon pool
|
|
*/
|
|
|
|
/* until the above code is written, we must ENODEV */
|
|
return ENODEV;
|
|
|
|
extent_free(swapmap, sdp->swd_mapoffset, sdp->swd_mapsize, EX_WAITOK);
|
|
name = sdp->swd_ex->ex_name;
|
|
extent_destroy(sdp->swd_ex);
|
|
free(name, M_VMSWAP);
|
|
free((caddr_t)sdp->swd_ex, M_VMSWAP);
|
|
if (sdp->swp_vp != rootvp)
|
|
(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p);
|
|
if (sdp->swd_vp)
|
|
vrele(sdp->swd_vp);
|
|
free((caddr_t)sdp, M_VMSWAP);
|
|
return (0);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* /dev/drum interface and i/o functions
|
|
*/
|
|
|
|
/*
|
|
* swread: the read function for the drum (just a call to physio)
|
|
*/
|
|
/*ARGSUSED*/
|
|
int
|
|
swread(dev, uio, ioflag)
|
|
dev_t dev;
|
|
struct uio *uio;
|
|
int ioflag;
|
|
{
|
|
UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
|
|
|
|
UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
|
|
return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
|
|
}
|
|
|
|
/*
|
|
* swwrite: the write function for the drum (just a call to physio)
|
|
*/
|
|
/*ARGSUSED*/
|
|
int
|
|
swwrite(dev, uio, ioflag)
|
|
dev_t dev;
|
|
struct uio *uio;
|
|
int ioflag;
|
|
{
|
|
UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
|
|
|
|
UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
|
|
return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
|
|
}
|
|
|
|
/*
|
|
* swstrategy: perform I/O on the drum
|
|
*
|
|
* => we must map the i/o request from the drum to the correct swapdev.
|
|
*/
|
|
void
|
|
swstrategy(bp)
|
|
struct buf *bp;
|
|
{
|
|
struct swapdev *sdp;
|
|
struct vnode *vp;
|
|
int pageno;
|
|
int bn;
|
|
UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
|
|
|
|
/*
|
|
* convert block number to swapdev. note that swapdev can't
|
|
* be yanked out from under us because we are holding resources
|
|
* in it (i.e. the blocks we are doing I/O on).
|
|
*/
|
|
pageno = dbtob(bp->b_blkno) / PAGE_SIZE;
|
|
simple_lock(&swap_data_lock);
|
|
sdp = swapdrum_getsdp(pageno);
|
|
simple_unlock(&swap_data_lock);
|
|
if (sdp == NULL) {
|
|
bp->b_error = EINVAL;
|
|
bp->b_flags |= B_ERROR;
|
|
biodone(bp);
|
|
UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* convert drum page number to block number on this swapdev.
|
|
*/
|
|
|
|
pageno = pageno - sdp->swd_drumoffset; /* page # on swapdev */
|
|
bn = btodb(pageno * PAGE_SIZE); /* convert to diskblock */
|
|
|
|
UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld\n",
|
|
((bp->b_flags & B_READ) == 0) ? "write" : "read",
|
|
sdp->swd_drumoffset, bn, bp->b_bcount);
|
|
|
|
|
|
/*
|
|
* for block devices we finish up here.
|
|
* for regular files we have to do more work which we deligate
|
|
* to sw_reg_strategy().
|
|
*/
|
|
|
|
switch (sdp->swd_vp->v_type) {
|
|
default:
|
|
panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
|
|
case VBLK:
|
|
|
|
/*
|
|
* must convert "bp" from an I/O on /dev/drum to an I/O
|
|
* on the swapdev (sdp).
|
|
*/
|
|
bp->b_blkno = bn; /* swapdev block number */
|
|
vp = sdp->swd_vp; /* swapdev vnode pointer */
|
|
bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
|
|
VHOLD(vp); /* "hold" swapdev vp for i/o */
|
|
|
|
/*
|
|
* if we are doing a write, we have to redirect the i/o on
|
|
* drum's v_numoutput counter to the swapdevs.
|
|
*/
|
|
if ((bp->b_flags & B_READ) == 0) {
|
|
int s = splbio();
|
|
vwakeup(bp); /* kills one 'v_numoutput' on drum */
|
|
vp->v_numoutput++; /* put it on swapdev */
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* dissassocate buffer with /dev/drum vnode
|
|
* [could be null if buf was from physio]
|
|
*/
|
|
if (bp->b_vp != NULLVP)
|
|
brelvp(bp);
|
|
|
|
/*
|
|
* finally plug in swapdev vnode and start I/O
|
|
*/
|
|
bp->b_vp = vp;
|
|
VOP_STRATEGY(bp);
|
|
return;
|
|
#ifdef SWAP_TO_FILES
|
|
case VREG:
|
|
/*
|
|
* deligate to sw_reg_strategy function.
|
|
*/
|
|
sw_reg_strategy(sdp, bp, bn);
|
|
return;
|
|
#endif
|
|
}
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
#ifdef SWAP_TO_FILES
|
|
/*
|
|
* sw_reg_strategy: handle swap i/o to regular files
|
|
*/
|
|
static void
|
|
sw_reg_strategy(sdp, bp, bn)
|
|
struct swapdev *sdp;
|
|
struct buf *bp;
|
|
int bn;
|
|
{
|
|
struct vnode *vp;
|
|
struct vndxfer *vnx;
|
|
daddr_t nbn, byteoff;
|
|
caddr_t addr;
|
|
int s, off, nra, error, sz, resid;
|
|
UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
|
|
|
|
/*
|
|
* allocate a vndxfer head for this transfer and point it to
|
|
* our buffer.
|
|
*/
|
|
getvndxfer(vnx);
|
|
vnx->vx_flags = VX_BUSY;
|
|
vnx->vx_error = 0;
|
|
vnx->vx_pending = 0;
|
|
vnx->vx_bp = bp;
|
|
vnx->vx_sdp = sdp;
|
|
|
|
/*
|
|
* setup for main loop where we read filesystem blocks into
|
|
* our buffer.
|
|
*/
|
|
error = 0;
|
|
bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
|
|
addr = bp->b_data; /* current position in buffer */
|
|
byteoff = dbtob(bn);
|
|
|
|
for (resid = bp->b_resid; resid; resid -= sz) {
|
|
struct vndbuf *nbp;
|
|
|
|
/*
|
|
* translate byteoffset into block number. return values:
|
|
* vp = vnode of underlying device
|
|
* nbn = new block number (on underlying vnode dev)
|
|
* nra = num blocks we can read-ahead (excludes requested
|
|
* block)
|
|
*/
|
|
nra = 0;
|
|
error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
|
|
&vp, &nbn, &nra);
|
|
|
|
if (error == 0 && (long)nbn == -1)
|
|
error = EIO; /* failure */
|
|
|
|
/*
|
|
* punt if there was an error or a hole in the file.
|
|
* we must wait for any i/o ops we have already started
|
|
* to finish before returning.
|
|
*
|
|
* XXX we could deal with holes here but it would be
|
|
* a hassle (in the write case).
|
|
*/
|
|
if (error) {
|
|
s = splbio();
|
|
vnx->vx_error = error; /* pass error up */
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* compute the size ("sz") of this transfer (in bytes).
|
|
* XXXCDC: ignores read-ahead for non-zero offset
|
|
*/
|
|
if ((off = (byteoff % sdp->swd_bsize)) != 0)
|
|
sz = sdp->swd_bsize - off;
|
|
else
|
|
sz = (1 + nra) * sdp->swd_bsize;
|
|
|
|
if (resid < sz)
|
|
sz = resid;
|
|
|
|
UVMHIST_LOG(pdhist, "sw_reg_strategy: vp %p/%p offset 0x%x/0x%x",
|
|
sdp->swd_vp, vp, byteoff, nbn);
|
|
|
|
/*
|
|
* now get a buf structure. note that the vb_buf is
|
|
* at the front of the nbp structure so that you can
|
|
* cast pointers between the two structure easily.
|
|
*/
|
|
getvndbuf(nbp);
|
|
nbp->vb_buf.b_flags = bp->b_flags | B_CALL;
|
|
nbp->vb_buf.b_bcount = sz;
|
|
#if 0
|
|
nbp->vb_buf.b_bufsize = bp->b_bufsize; /* XXXCDC: really? */
|
|
#endif
|
|
nbp->vb_buf.b_bufsize = sz;
|
|
nbp->vb_buf.b_error = 0;
|
|
nbp->vb_buf.b_data = addr;
|
|
nbp->vb_buf.b_blkno = nbn + btodb(off);
|
|
nbp->vb_buf.b_proc = bp->b_proc;
|
|
nbp->vb_buf.b_iodone = sw_reg_iodone;
|
|
nbp->vb_buf.b_vp = NULLVP;
|
|
nbp->vb_buf.b_vnbufs.le_next = NOLIST;
|
|
nbp->vb_buf.b_rcred = sdp->swd_cred;
|
|
nbp->vb_buf.b_wcred = sdp->swd_cred;
|
|
|
|
/*
|
|
* set b_dirtyoff/end and b_validoff/end. this is
|
|
* required by the NFS client code (otherwise it will
|
|
* just discard our I/O request).
|
|
*/
|
|
if (bp->b_dirtyend == 0) {
|
|
nbp->vb_buf.b_dirtyoff = 0;
|
|
nbp->vb_buf.b_dirtyend = sz;
|
|
} else {
|
|
nbp->vb_buf.b_dirtyoff =
|
|
max(0, bp->b_dirtyoff - (bp->b_bcount-resid));
|
|
nbp->vb_buf.b_dirtyend =
|
|
min(sz,
|
|
max(0, bp->b_dirtyend - (bp->b_bcount-resid)));
|
|
}
|
|
if (bp->b_validend == 0) {
|
|
nbp->vb_buf.b_validoff = 0;
|
|
nbp->vb_buf.b_validend = sz;
|
|
} else {
|
|
nbp->vb_buf.b_validoff =
|
|
max(0, bp->b_validoff - (bp->b_bcount-resid));
|
|
nbp->vb_buf.b_validend =
|
|
min(sz,
|
|
max(0, bp->b_validend - (bp->b_bcount-resid)));
|
|
}
|
|
|
|
nbp->vb_xfer = vnx; /* patch it back in to vnx */
|
|
|
|
/*
|
|
* Just sort by block number
|
|
*/
|
|
nbp->vb_buf.b_cylinder = nbp->vb_buf.b_blkno;
|
|
s = splbio();
|
|
if (vnx->vx_error != 0) {
|
|
putvndbuf(nbp);
|
|
goto out;
|
|
}
|
|
vnx->vx_pending++;
|
|
|
|
/* assoc new buffer with underlying vnode */
|
|
bgetvp(vp, &nbp->vb_buf);
|
|
|
|
/* sort it in and start I/O if we are not over our limit */
|
|
disksort(&sdp->swd_tab, &nbp->vb_buf);
|
|
sw_reg_start(sdp);
|
|
splx(s);
|
|
|
|
/*
|
|
* advance to the next I/O
|
|
*/
|
|
byteoff += sz;
|
|
addr += sz;
|
|
}
|
|
|
|
s = splbio();
|
|
|
|
out: /* Arrive here at splbio */
|
|
vnx->vx_flags &= ~VX_BUSY;
|
|
if (vnx->vx_pending == 0) {
|
|
if (vnx->vx_error != 0) {
|
|
bp->b_error = vnx->vx_error;
|
|
bp->b_flags |= B_ERROR;
|
|
}
|
|
putvndxfer(vnx);
|
|
biodone(bp);
|
|
}
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* sw_reg_start: start an I/O request on the requested swapdev
|
|
*
|
|
* => reqs are sorted by disksort (above)
|
|
*/
|
|
static void
|
|
sw_reg_start(sdp)
|
|
struct swapdev *sdp;
|
|
{
|
|
struct buf *bp;
|
|
UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
|
|
|
|
/* recursion control */
|
|
if ((sdp->swd_flags & SWF_BUSY) != 0)
|
|
return;
|
|
|
|
sdp->swd_flags |= SWF_BUSY;
|
|
|
|
while (sdp->swd_tab.b_active < sdp->swd_maxactive) {
|
|
bp = sdp->swd_tab.b_actf;
|
|
if (bp == NULL)
|
|
break;
|
|
sdp->swd_tab.b_actf = bp->b_actf;
|
|
sdp->swd_tab.b_active++;
|
|
|
|
UVMHIST_LOG(pdhist,
|
|
"sw_reg_start: bp %p vp %p blkno %p cnt %lx",
|
|
bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
|
|
if ((bp->b_flags & B_READ) == 0)
|
|
bp->b_vp->v_numoutput++;
|
|
VOP_STRATEGY(bp);
|
|
}
|
|
sdp->swd_flags &= ~SWF_BUSY;
|
|
}
|
|
|
|
/*
|
|
* sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
|
|
*
|
|
* => note that we can recover the vndbuf struct by casting the buf ptr
|
|
*/
|
|
static void
|
|
sw_reg_iodone(bp)
|
|
struct buf *bp;
|
|
{
|
|
struct vndbuf *vbp = (struct vndbuf *) bp;
|
|
struct vndxfer *vnx = vbp->vb_xfer;
|
|
struct buf *pbp = vnx->vx_bp; /* parent buffer */
|
|
struct swapdev *sdp = vnx->vx_sdp;
|
|
int s, resid;
|
|
UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
|
|
|
|
UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
|
|
vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
|
|
UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
|
|
vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
|
|
|
|
/*
|
|
* protect vbp at splbio and update.
|
|
*/
|
|
|
|
s = splbio();
|
|
resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
|
|
pbp->b_resid -= resid;
|
|
vnx->vx_pending--;
|
|
|
|
if (vbp->vb_buf.b_error) {
|
|
UVMHIST_LOG(pdhist, " got error=%d !",
|
|
vbp->vb_buf.b_error, 0, 0, 0);
|
|
|
|
/* pass error upward */
|
|
vnx->vx_error = vbp->vb_buf.b_error;
|
|
}
|
|
|
|
/*
|
|
* drop "hold" reference to vnode (if one)
|
|
* XXXCDC: always set to NULLVP, this is useless, right?
|
|
*/
|
|
if (vbp->vb_buf.b_vp != NULLVP)
|
|
brelvp(&vbp->vb_buf);
|
|
|
|
/*
|
|
* kill vbp structure
|
|
*/
|
|
putvndbuf(vbp);
|
|
|
|
/*
|
|
* wrap up this transaction if it has run to completion or, in
|
|
* case of an error, when all auxiliary buffers have returned.
|
|
*/
|
|
if (vnx->vx_error != 0) {
|
|
/* pass error upward */
|
|
pbp->b_flags |= B_ERROR;
|
|
pbp->b_error = vnx->vx_error;
|
|
if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
|
|
putvndxfer(vnx);
|
|
biodone(pbp);
|
|
}
|
|
} else if (pbp->b_resid == 0) {
|
|
#ifdef DIAGNOSTIC
|
|
if (vnx->vx_pending != 0)
|
|
panic("sw_reg_iodone: vnx pending: %d",vnx->vx_pending);
|
|
#endif
|
|
|
|
if ((vnx->vx_flags & VX_BUSY) == 0) {
|
|
UVMHIST_LOG(pdhist, " iodone error=%d !",
|
|
pbp, vnx->vx_error, 0, 0);
|
|
putvndxfer(vnx);
|
|
biodone(pbp);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* done! start next swapdev I/O if one is pending
|
|
*/
|
|
sdp->swd_tab.b_active--;
|
|
sw_reg_start(sdp);
|
|
|
|
splx(s);
|
|
}
|
|
#endif /* SWAP_TO_FILES */
|
|
|
|
|
|
/*
|
|
* uvm_swap_alloc: allocate space on swap
|
|
*
|
|
* => allocation is done "round robin" down the priority list, as we
|
|
* allocate in a priority we "rotate" the circle queue.
|
|
* => space can be freed with uvm_swap_free
|
|
* => we return the page slot number in /dev/drum (0 == invalid slot)
|
|
* => we lock swap_data_lock
|
|
* => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
|
|
*/
|
|
int
|
|
uvm_swap_alloc(nslots, lessok)
|
|
int *nslots; /* IN/OUT */
|
|
boolean_t lessok;
|
|
{
|
|
struct swapdev *sdp;
|
|
struct swappri *spp;
|
|
u_long result;
|
|
UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
|
|
|
|
/*
|
|
* no swap devices configured yet? definite failure.
|
|
*/
|
|
if (uvmexp.nswapdev < 1)
|
|
return 0;
|
|
|
|
/*
|
|
* lock data lock, convert slots into blocks, and enter loop
|
|
*/
|
|
simple_lock(&swap_data_lock);
|
|
|
|
ReTry: /* XXXMRG */
|
|
for (spp = swap_priority.lh_first; spp != NULL;
|
|
spp = spp->spi_swappri.le_next) {
|
|
for (sdp = spp->spi_swapdev.cqh_first;
|
|
sdp != (void *)&spp->spi_swapdev;
|
|
sdp = sdp->swd_next.cqe_next) {
|
|
/* if it's not enabled, then we can't swap from it */
|
|
if ((sdp->swd_flags & SWF_ENABLE) == 0)
|
|
continue;
|
|
if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
|
|
continue;
|
|
if (extent_alloc(sdp->swd_ex, *nslots, EX_NOALIGN,
|
|
EX_NOBOUNDARY, EX_MALLOCOK|EX_NOWAIT,
|
|
&result) != 0) {
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* successful allocation! now rotate the circleq.
|
|
*/
|
|
CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
|
|
CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
|
|
sdp->swd_npginuse += *nslots;
|
|
uvmexp.swpginuse += *nslots;
|
|
simple_unlock(&swap_data_lock);
|
|
/* done! return drum slot number */
|
|
UVMHIST_LOG(pdhist,
|
|
"success! returning %d slots starting at %d",
|
|
*nslots, result + sdp->swd_drumoffset, 0, 0);
|
|
#if 0
|
|
{
|
|
struct swapdev *sdp2;
|
|
|
|
sdp2 = swapdrum_getsdp(result + sdp->swd_drumoffset);
|
|
if (sdp2 == NULL) {
|
|
printf("uvm_swap_alloc: nslots=%d, dev=%x, drumoff=%d, result=%ld",
|
|
*nslots, sdp->swd_dev, sdp->swd_drumoffset, result);
|
|
panic("uvm_swap_alloc: allocating unmapped swap block!");
|
|
}
|
|
}
|
|
#endif
|
|
return(result + sdp->swd_drumoffset);
|
|
}
|
|
}
|
|
|
|
/* XXXMRG: BEGIN HACK */
|
|
if (*nslots > 1 && lessok) {
|
|
*nslots = 1;
|
|
goto ReTry; /* XXXMRG: ugh! extent should support this for us */
|
|
}
|
|
/* XXXMRG: END HACK */
|
|
|
|
simple_unlock(&swap_data_lock);
|
|
return 0; /* failed */
|
|
}
|
|
|
|
/*
|
|
* uvm_swap_free: free swap slots
|
|
*
|
|
* => this can be all or part of an allocation made by uvm_swap_alloc
|
|
* => we lock swap_data_lock
|
|
*/
|
|
void
|
|
uvm_swap_free(startslot, nslots)
|
|
int startslot;
|
|
int nslots;
|
|
{
|
|
struct swapdev *sdp;
|
|
UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
|
|
|
|
UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
|
|
startslot, 0, 0);
|
|
/*
|
|
* convert drum slot offset back to sdp, free the blocks
|
|
* in the extent, and return. must hold pri lock to do
|
|
* lookup and access the extent.
|
|
*/
|
|
simple_lock(&swap_data_lock);
|
|
sdp = swapdrum_getsdp(startslot);
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (uvmexp.nswapdev < 1)
|
|
panic("uvm_swap_free: uvmexp.nswapdev < 1\n");
|
|
if (sdp == NULL) {
|
|
printf("uvm_swap_free: startslot %d, nslots %d\n", startslot,
|
|
nslots);
|
|
panic("uvm_swap_free: unmapped address\n");
|
|
}
|
|
#endif
|
|
if (extent_free(sdp->swd_ex, startslot - sdp->swd_drumoffset, nslots,
|
|
EX_MALLOCOK|EX_NOWAIT) != 0)
|
|
printf("warning: resource shortage: %d slots of swap lost\n",
|
|
nslots);
|
|
|
|
sdp->swd_npginuse -= nslots;
|
|
uvmexp.swpginuse -= nslots;
|
|
#ifdef DIAGNOSTIC
|
|
if (sdp->swd_npginuse < 0)
|
|
panic("uvm_swap_free: inuse < 0");
|
|
#endif
|
|
simple_unlock(&swap_data_lock);
|
|
}
|
|
|
|
/*
|
|
* uvm_swap_put: put any number of pages into a contig place on swap
|
|
*
|
|
* => can be sync or async
|
|
* => XXXMRG: consider making it an inline or macro
|
|
*/
|
|
int
|
|
uvm_swap_put(swslot, ppsp, npages, flags)
|
|
int swslot;
|
|
struct vm_page **ppsp;
|
|
int npages;
|
|
int flags;
|
|
{
|
|
int result;
|
|
|
|
#if 0
|
|
flags |= PGO_SYNCIO; /* XXXMRG: tmp, force sync */
|
|
#endif
|
|
|
|
result = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
|
|
((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
|
|
|
|
return (result);
|
|
}
|
|
|
|
/*
|
|
* uvm_swap_get: get a single page from swap
|
|
*
|
|
* => usually a sync op (from fault)
|
|
* => XXXMRG: consider making it an inline or macro
|
|
*/
|
|
int
|
|
uvm_swap_get(page, swslot, flags)
|
|
struct vm_page *page;
|
|
int swslot, flags;
|
|
{
|
|
int result;
|
|
|
|
uvmexp.nswget++;
|
|
#ifdef DIAGNOSTIC
|
|
if ((flags & PGO_SYNCIO) == 0)
|
|
printf("uvm_swap_get: ASYNC get requested?\n");
|
|
#endif
|
|
|
|
result = uvm_swap_io(&page, swslot, 1, B_READ |
|
|
((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
|
|
|
|
return (result);
|
|
}
|
|
|
|
/*
|
|
* uvm_swap_io: do an i/o operation to swap
|
|
*/
|
|
|
|
static int
|
|
uvm_swap_io(pps, startslot, npages, flags)
|
|
struct vm_page **pps;
|
|
int startslot, npages, flags;
|
|
{
|
|
daddr_t startblk;
|
|
struct swapbuf *sbp;
|
|
struct buf *bp;
|
|
vaddr_t kva;
|
|
int result, s, waitf, pflag;
|
|
UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
|
|
|
|
UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
|
|
startslot, npages, flags, 0);
|
|
/*
|
|
* convert starting drum slot to block number
|
|
*/
|
|
startblk = btodb(startslot * PAGE_SIZE);
|
|
|
|
/*
|
|
* first, map the pages into the kernel (XXX: currently required
|
|
* by buffer system). note that we don't let pagermapin alloc
|
|
* an aiodesc structure because we don't want to chance a malloc.
|
|
* we've got our own pool of aiodesc structures (in swapbuf).
|
|
*/
|
|
waitf = (flags & B_ASYNC) ? M_NOWAIT : M_WAITOK;
|
|
kva = uvm_pagermapin(pps, npages, NULL, waitf);
|
|
if (kva == NULL)
|
|
return (VM_PAGER_AGAIN);
|
|
|
|
/*
|
|
* now allocate a swap buffer off of freesbufs
|
|
* [make sure we don't put the pagedaemon to sleep...]
|
|
*/
|
|
s = splbio();
|
|
pflag = ((flags & B_ASYNC) != 0 || curproc == uvm.pagedaemon_proc)
|
|
? 0
|
|
: PR_WAITOK;
|
|
sbp = pool_get(swapbuf_pool, pflag);
|
|
splx(s); /* drop splbio */
|
|
|
|
/*
|
|
* if we failed to get a swapbuf, return "try again"
|
|
*/
|
|
if (sbp == NULL)
|
|
return (VM_PAGER_AGAIN);
|
|
|
|
/*
|
|
* fill in the bp/sbp. we currently route our i/o through
|
|
* /dev/drum's vnode [swapdev_vp].
|
|
*/
|
|
bp = &sbp->sw_buf;
|
|
bp->b_flags = B_BUSY | (flags & (B_READ|B_ASYNC));
|
|
bp->b_proc = &proc0; /* XXX */
|
|
bp->b_rcred = bp->b_wcred = proc0.p_ucred;
|
|
bp->b_vnbufs.le_next = NOLIST;
|
|
bp->b_data = (caddr_t)kva;
|
|
bp->b_blkno = startblk;
|
|
VHOLD(swapdev_vp);
|
|
bp->b_vp = swapdev_vp;
|
|
/* XXXCDC: isn't swapdev_vp always a VCHR? */
|
|
/* XXXMRG: probably -- this is obviously something inherited... */
|
|
if (swapdev_vp->v_type == VBLK)
|
|
bp->b_dev = swapdev_vp->v_rdev;
|
|
bp->b_bcount = npages * PAGE_SIZE;
|
|
|
|
/*
|
|
* for pageouts we must set "dirtyoff" [NFS client code needs it].
|
|
* and we bump v_numoutput (counter of number of active outputs).
|
|
*/
|
|
if ((bp->b_flags & B_READ) == 0) {
|
|
bp->b_dirtyoff = 0;
|
|
bp->b_dirtyend = npages * PAGE_SIZE;
|
|
s = splbio();
|
|
swapdev_vp->v_numoutput++;
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* for async ops we must set up the aiodesc and setup the callback
|
|
* XXX: we expect no async-reads, but we don't prevent it here.
|
|
*/
|
|
if (flags & B_ASYNC) {
|
|
sbp->sw_aio.aiodone = uvm_swap_aiodone;
|
|
sbp->sw_aio.kva = kva;
|
|
sbp->sw_aio.npages = npages;
|
|
sbp->sw_aio.pd_ptr = sbp; /* backpointer */
|
|
bp->b_flags |= B_CALL; /* set callback */
|
|
bp->b_iodone = uvm_swap_bufdone;/* "buf" iodone function */
|
|
UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
|
|
}
|
|
UVMHIST_LOG(pdhist,
|
|
"about to start io: data = 0x%p blkno = 0x%x, bcount = %ld",
|
|
bp->b_data, bp->b_blkno, bp->b_bcount, 0);
|
|
|
|
/*
|
|
* now we start the I/O, and if async, return.
|
|
*/
|
|
VOP_STRATEGY(bp);
|
|
if (flags & B_ASYNC)
|
|
return (VM_PAGER_PEND);
|
|
|
|
/*
|
|
* must be sync i/o. wait for it to finish
|
|
*/
|
|
bp->b_error = biowait(bp);
|
|
result = (bp->b_flags & B_ERROR) ? VM_PAGER_ERROR : VM_PAGER_OK;
|
|
|
|
/*
|
|
* kill the pager mapping
|
|
*/
|
|
uvm_pagermapout(kva, npages);
|
|
|
|
/*
|
|
* now dispose of the swap buffer
|
|
*/
|
|
s = splbio();
|
|
bp->b_flags &= ~(B_BUSY|B_WANTED|B_PHYS|B_PAGET|B_UAREA|B_DIRTY);
|
|
if (bp->b_vp)
|
|
brelvp(bp);
|
|
|
|
pool_put(swapbuf_pool, sbp);
|
|
splx(s);
|
|
|
|
/*
|
|
* finally return.
|
|
*/
|
|
UVMHIST_LOG(pdhist, "<- done (sync) result=%d", result, 0, 0, 0);
|
|
return (result);
|
|
}
|
|
|
|
/*
|
|
* uvm_swap_bufdone: called from the buffer system when the i/o is done
|
|
*/
|
|
static void
|
|
uvm_swap_bufdone(bp)
|
|
struct buf *bp;
|
|
{
|
|
struct swapbuf *sbp = (struct swapbuf *) bp;
|
|
int s = splbio();
|
|
UVMHIST_FUNC("uvm_swap_bufdone"); UVMHIST_CALLED(pdhist);
|
|
|
|
UVMHIST_LOG(pdhist, "cleaning buf %p", buf, 0, 0, 0);
|
|
#ifdef DIAGNOSTIC
|
|
/*
|
|
* sanity check: swapbufs are private, so they shouldn't be wanted
|
|
*/
|
|
if (bp->b_flags & B_WANTED)
|
|
panic("uvm_swap_bufdone: private buf wanted");
|
|
#endif
|
|
|
|
/*
|
|
* drop buffers reference to the vnode and its flags.
|
|
*/
|
|
bp->b_flags &= ~(B_BUSY|B_WANTED|B_PHYS|B_PAGET|B_UAREA|B_DIRTY);
|
|
if (bp->b_vp)
|
|
brelvp(bp);
|
|
|
|
/*
|
|
* now put the aio on the uvm.aio_done list and wake the
|
|
* pagedaemon (which will finish up our job in its context).
|
|
*/
|
|
simple_lock(&uvm.pagedaemon_lock); /* locks uvm.aio_done */
|
|
TAILQ_INSERT_TAIL(&uvm.aio_done, &sbp->sw_aio, aioq);
|
|
simple_unlock(&uvm.pagedaemon_lock);
|
|
|
|
thread_wakeup(&uvm.pagedaemon);
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* uvm_swap_aiodone: aiodone function for anonymous memory
|
|
*
|
|
* => this is called in the context of the pagedaemon (but with the
|
|
* page queues unlocked!)
|
|
* => our "aio" structure must be part of a "swapbuf"
|
|
*/
|
|
static void
|
|
uvm_swap_aiodone(aio)
|
|
struct uvm_aiodesc *aio;
|
|
{
|
|
struct swapbuf *sbp = aio->pd_ptr;
|
|
/* XXXMRG: does this work if PAGE_SIZE is a variable, eg SUN4C&&SUN4 */
|
|
/* XXX it does with GCC */
|
|
struct vm_page *pps[MAXBSIZE/PAGE_SIZE];
|
|
int lcv, s;
|
|
vaddr_t addr;
|
|
UVMHIST_FUNC("uvm_swap_aiodone"); UVMHIST_CALLED(pdhist);
|
|
|
|
UVMHIST_LOG(pdhist, "done with aio %p", aio, 0, 0, 0);
|
|
#ifdef DIAGNOSTIC
|
|
/*
|
|
* sanity check
|
|
*/
|
|
if (aio->npages > (MAXBSIZE/PAGE_SIZE))
|
|
panic("uvm_swap_aiodone: aio too big!");
|
|
#endif
|
|
|
|
/*
|
|
* first, we have to recover the page pointers (pps) by poking in the
|
|
* kernel pmap (XXX: should be saved in the buf structure).
|
|
*/
|
|
for (addr = aio->kva, lcv = 0 ; lcv < aio->npages ;
|
|
addr += PAGE_SIZE, lcv++) {
|
|
pps[lcv] = uvm_pageratop(addr);
|
|
}
|
|
|
|
/*
|
|
* now we can dispose of the kernel mappings of the buffer
|
|
*/
|
|
uvm_pagermapout(aio->kva, aio->npages);
|
|
|
|
/*
|
|
* now we can dispose of the pages by using the dropcluster function
|
|
* [note that we have no "page of interest" so we pass in null]
|
|
*/
|
|
uvm_pager_dropcluster(NULL, NULL, pps, &aio->npages,
|
|
PGO_PDFREECLUST, 0);
|
|
|
|
/*
|
|
* finally, we can dispose of the swapbuf
|
|
*/
|
|
s = splbio();
|
|
pool_put(swapbuf_pool, sbp);
|
|
splx(s);
|
|
|
|
/*
|
|
* done!
|
|
*/
|
|
}
|