NetBSD/sys/dev/ic/pl181.c
jmcneill 14e804e4a7 Add driver for ARM PrimeCell MultiMedia Card Interface (PL181). Not tested
with real hardware, only qemu "integratorcp" configuration.
2015-01-27 16:33:26 +00:00

424 lines
11 KiB
C

/* $NetBSD: pl181.c,v 1.1 2015/01/27 16:33:26 jmcneill Exp $ */
/*-
* Copyright (c) 2015 Jared D. McNeill <jmcneill@invisible.ca>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: pl181.c,v 1.1 2015/01/27 16:33:26 jmcneill Exp $");
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/device.h>
#include <sys/intr.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <dev/sdmmc/sdmmcvar.h>
#include <dev/sdmmc/sdmmcchip.h>
#include <dev/sdmmc/sdmmc_ioreg.h>
#include <dev/ic/pl181reg.h>
#include <dev/ic/pl181var.h>
static int plmmc_host_reset(sdmmc_chipset_handle_t);
static uint32_t plmmc_host_ocr(sdmmc_chipset_handle_t);
static int plmmc_host_maxblklen(sdmmc_chipset_handle_t);
static int plmmc_card_detect(sdmmc_chipset_handle_t);
static int plmmc_write_protect(sdmmc_chipset_handle_t);
static int plmmc_bus_power(sdmmc_chipset_handle_t, uint32_t);
static int plmmc_bus_clock(sdmmc_chipset_handle_t, int);
static int plmmc_bus_width(sdmmc_chipset_handle_t, int);
static int plmmc_bus_rod(sdmmc_chipset_handle_t, int);
static void plmmc_exec_command(sdmmc_chipset_handle_t,
struct sdmmc_command *);
static void plmmc_card_enable_intr(sdmmc_chipset_handle_t, int);
static void plmmc_card_intr_ack(sdmmc_chipset_handle_t);
static int plmmc_wait_status(struct plmmc_softc *, uint32_t, int);
static int plmmc_pio_wait(struct plmmc_softc *,
struct sdmmc_command *);
static int plmmc_pio_transfer(struct plmmc_softc *,
struct sdmmc_command *);
static struct sdmmc_chip_functions plmmc_chip_functions = {
.host_reset = plmmc_host_reset,
.host_ocr = plmmc_host_ocr,
.host_maxblklen = plmmc_host_maxblklen,
.card_detect = plmmc_card_detect,
.write_protect = plmmc_write_protect,
.bus_power = plmmc_bus_power,
.bus_clock = plmmc_bus_clock,
.bus_width = plmmc_bus_width,
.bus_rod = plmmc_bus_rod,
.exec_command = plmmc_exec_command,
.card_enable_intr = plmmc_card_enable_intr,
.card_intr_ack = plmmc_card_intr_ack,
};
#define MMCI_WRITE(sc, reg, val) \
bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
#define MMCI_READ(sc, reg) \
bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
void
plmmc_init(struct plmmc_softc *sc)
{
struct sdmmcbus_attach_args saa;
mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_BIO);
cv_init(&sc->sc_intr_cv, "plmmcirq");
#ifdef PLMMC_DEBUG
device_printf(sc->sc_dev, "PeriphID %#x %#x %#x %#x\n",
MMCI_READ(sc, MMCI_PERIPH_ID0_REG),
MMCI_READ(sc, MMCI_PERIPH_ID1_REG),
MMCI_READ(sc, MMCI_PERIPH_ID2_REG),
MMCI_READ(sc, MMCI_PERIPH_ID3_REG));
device_printf(sc->sc_dev, "PCellID %#x %#x %#x %#x\n",
MMCI_READ(sc, MMCI_PCELL_ID0_REG),
MMCI_READ(sc, MMCI_PCELL_ID1_REG),
MMCI_READ(sc, MMCI_PCELL_ID2_REG),
MMCI_READ(sc, MMCI_PCELL_ID3_REG));
#endif
plmmc_bus_clock(sc, 400);
MMCI_WRITE(sc, MMCI_POWER_REG, 0);
delay(10000);
MMCI_WRITE(sc, MMCI_POWER_REG, MMCI_POWER_CTRL_POWERUP);
delay(10000);
MMCI_WRITE(sc, MMCI_POWER_REG, MMCI_POWER_CTRL_POWERON);
plmmc_host_reset(sc);
memset(&saa, 0, sizeof(saa));
saa.saa_busname = "sdmmc";
saa.saa_sct = &plmmc_chip_functions;
saa.saa_sch = sc;
saa.saa_clkmin = 400;
saa.saa_clkmax = sc->sc_clock_freq / 1000;
saa.saa_caps = 0;
sc->sc_sdmmc_dev = config_found(sc->sc_dev, &saa, NULL);
}
int
plmmc_intr(void *priv)
{
struct plmmc_softc *sc = priv;
uint32_t status;
mutex_enter(&sc->sc_intr_lock);
status = MMCI_READ(sc, MMCI_STATUS_REG);
#ifdef PLMMC_DEBUG
printf("%s: MMCI_STATUS_REG = %#x\n", __func__, status);
#endif
if (!status) {
mutex_exit(&sc->sc_intr_lock);
return 0;
}
sc->sc_intr_status |= status;
cv_broadcast(&sc->sc_intr_cv);
mutex_exit(&sc->sc_intr_lock);
return 1;
}
static int
plmmc_wait_status(struct plmmc_softc *sc, uint32_t mask, int timeout)
{
int retry, error;
KASSERT(mutex_owned(&sc->sc_intr_lock));
if (sc->sc_intr_status & mask)
return 0;
retry = timeout / hz;
if (sc->sc_ih == NULL)
retry *= 1000;
while (retry > 0) {
if (sc->sc_ih == NULL) {
sc->sc_intr_status |= MMCI_READ(sc, MMCI_STATUS_REG);
if (sc->sc_intr_status & mask)
return 0;
delay(10000);
} else {
error = cv_timedwait(&sc->sc_intr_cv,
&sc->sc_intr_lock, hz);
if (error && error != EWOULDBLOCK) {
device_printf(sc->sc_dev,
"cv_timedwait returned %d\n", error);
return error;
}
if (sc->sc_intr_status & mask)
return 0;
}
--retry;
}
device_printf(sc->sc_dev, "%s timeout, MMCI_STATUS_REG = %#x\n",
__func__, MMCI_READ(sc, MMCI_STATUS_REG));
return ETIMEDOUT;
}
static int
plmmc_pio_wait(struct plmmc_softc *sc, struct sdmmc_command *cmd)
{
uint32_t bit = (cmd->c_flags & SCF_CMD_READ) ?
MMCI_INT_RX_DATA_AVAIL : MMCI_INT_TX_FIFO_EMPTY;
MMCI_WRITE(sc, MMCI_CLEAR_REG, bit);
const int error = plmmc_wait_status(sc,
bit | MMCI_INT_DATA_END | MMCI_INT_DATA_BLOCK_END, hz*2);
sc->sc_intr_status &= ~bit;
return error;
}
static int
plmmc_pio_transfer(struct plmmc_softc *sc, struct sdmmc_command *cmd)
{
uint32_t *datap = (uint32_t *)cmd->c_data;
int i;
cmd->c_resid = cmd->c_datalen;
for (i = 0; i < (cmd->c_datalen >> 2); i++) {
if (plmmc_pio_wait(sc, cmd))
return ETIMEDOUT;
if (cmd->c_flags & SCF_CMD_READ) {
datap[i] = MMCI_READ(sc, MMCI_FIFO_REG);
} else {
MMCI_WRITE(sc, MMCI_FIFO_REG, datap[i]);
}
cmd->c_resid -= 4;
}
return 0;
}
static int
plmmc_host_reset(sdmmc_chipset_handle_t sch)
{
struct plmmc_softc *sc = sch;
MMCI_WRITE(sc, MMCI_MASK0_REG, 0);
MMCI_WRITE(sc, MMCI_MASK1_REG, 0);
MMCI_WRITE(sc, MMCI_CLEAR_REG, 0xffffffff);
return 0;
}
static uint32_t
plmmc_host_ocr(sdmmc_chipset_handle_t sch)
{
return MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V;
}
static int
plmmc_host_maxblklen(sdmmc_chipset_handle_t sch)
{
return 2048;
}
static int
plmmc_card_detect(sdmmc_chipset_handle_t sch)
{
return 1;
}
static int
plmmc_write_protect(sdmmc_chipset_handle_t sch)
{
return 0;
}
static int
plmmc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
{
return 0;
}
static int
plmmc_bus_clock(sdmmc_chipset_handle_t sch, int freq)
{
struct plmmc_softc *sc = sch;
u_int pll_freq, clk_div;
uint32_t clock;
clock = MMCI_CLOCK_PWRSAVE;
if (freq) {
pll_freq = sc->sc_clock_freq / 1000;
clk_div = (howmany(pll_freq, freq) >> 1) - 1;
clock |= __SHIFTIN(clk_div, MMCI_CLOCK_CLKDIV);
clock |= MMCI_CLOCK_ENABLE;
}
MMCI_WRITE(sc, MMCI_CLOCK_REG, clock);
return 0;
}
static int
plmmc_bus_width(sdmmc_chipset_handle_t sch, int width)
{
return 0;
}
static int
plmmc_bus_rod(sdmmc_chipset_handle_t sch, int on)
{
struct plmmc_softc *sc = sch;
uint32_t power;
power = MMCI_READ(sc, MMCI_POWER_REG);
if (on) {
power |= MMCI_POWER_ROD;
} else {
power &= ~MMCI_POWER_ROD;
}
MMCI_WRITE(sc, MMCI_POWER_REG, power);
return 0;
}
static void
plmmc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
{
struct plmmc_softc *sc = sch;
uint32_t cmdval = MMCI_COMMAND_ENABLE;
#ifdef PLMMC_DEBUG
device_printf(sc->sc_dev, "opcode %d flags %#x datalen %d\n",
cmd->c_opcode, cmd->c_flags, cmd->c_datalen);
#endif
mutex_enter(&sc->sc_intr_lock);
MMCI_WRITE(sc, MMCI_COMMAND_REG, 0);
MMCI_WRITE(sc, MMCI_MASK0_REG, 0);
MMCI_WRITE(sc, MMCI_CLEAR_REG, 0xffffffff);
MMCI_WRITE(sc, MMCI_MASK0_REG,
MMCI_INT_CMD_TIMEOUT | MMCI_INT_DATA_TIMEOUT |
MMCI_INT_RX_DATA_AVAIL | MMCI_INT_TX_FIFO_EMPTY |
MMCI_INT_DATA_END | MMCI_INT_DATA_BLOCK_END |
MMCI_INT_CMD_RESP_END | MMCI_INT_CMD_SENT);
sc->sc_intr_status = 0;
if (cmd->c_flags & SCF_RSP_PRESENT)
cmdval |= MMCI_COMMAND_RESPONSE;
if (cmd->c_flags & SCF_RSP_136)
cmdval |= MMCI_COMMAND_LONGRSP;
if (cmd->c_datalen > 0) {
unsigned int nblks = cmd->c_datalen / cmd->c_blklen;
if (nblks == 0 || (cmd->c_datalen % cmd->c_blklen) != 0)
++nblks;
const uint32_t dir = (cmd->c_flags & SCF_CMD_READ) ? 1 : 0;
const uint32_t blksize = ffs(cmd->c_blklen) - 1;
MMCI_WRITE(sc, MMCI_DATA_TIMER_REG, 0xffffffff);
MMCI_WRITE(sc, MMCI_DATA_LENGTH_REG, nblks * cmd->c_blklen);
MMCI_WRITE(sc, MMCI_DATA_CTRL_REG,
__SHIFTIN(dir, MMCI_DATA_CTRL_DIRECTION) |
__SHIFTIN(blksize, MMCI_DATA_CTRL_BLOCKSIZE) |
MMCI_DATA_CTRL_ENABLE);
}
MMCI_WRITE(sc, MMCI_ARGUMENT_REG, cmd->c_arg);
MMCI_WRITE(sc, MMCI_COMMAND_REG, cmdval | cmd->c_opcode);
if (cmd->c_datalen > 0) {
cmd->c_error = plmmc_pio_transfer(sc, cmd);
if (cmd->c_error) {
device_printf(sc->sc_dev,
"error (%d) waiting for xfer\n", cmd->c_error);
goto done;
}
}
if (cmd->c_flags & SCF_RSP_PRESENT) {
cmd->c_error = plmmc_wait_status(sc,
MMCI_INT_CMD_RESP_END|MMCI_INT_CMD_TIMEOUT, hz * 2);
if (cmd->c_error == 0 &&
(sc->sc_intr_status & MMCI_INT_CMD_TIMEOUT)) {
cmd->c_error = ETIMEDOUT;
}
if (cmd->c_error) {
#ifdef PLMMC_DEBUG
device_printf(sc->sc_dev,
"error (%d) waiting for resp\n", cmd->c_error);
#endif
goto done;
}
if (cmd->c_flags & SCF_RSP_136) {
cmd->c_resp[3] = MMCI_READ(sc, MMCI_RESP0_REG);
cmd->c_resp[2] = MMCI_READ(sc, MMCI_RESP1_REG);
cmd->c_resp[1] = MMCI_READ(sc, MMCI_RESP2_REG);
cmd->c_resp[0] = MMCI_READ(sc, MMCI_RESP3_REG);
if (cmd->c_flags & SCF_RSP_CRC) {
cmd->c_resp[0] = (cmd->c_resp[0] >> 8) |
(cmd->c_resp[1] << 24);
cmd->c_resp[1] = (cmd->c_resp[1] >> 8) |
(cmd->c_resp[2] << 24);
cmd->c_resp[2] = (cmd->c_resp[2] >> 8) |
(cmd->c_resp[3] << 24);
cmd->c_resp[3] = (cmd->c_resp[3] >> 8);
}
} else {
cmd->c_resp[0] = MMCI_READ(sc, MMCI_RESP0_REG);
}
}
done:
cmd->c_flags |= SCF_ITSDONE;
MMCI_WRITE(sc, MMCI_COMMAND_REG, 0);
MMCI_WRITE(sc, MMCI_MASK0_REG, 0);
MMCI_WRITE(sc, MMCI_CLEAR_REG, 0xffffffff);
MMCI_WRITE(sc, MMCI_DATA_CNT_REG, 0);
#ifdef PLMMC_DEBUG
device_printf(sc->sc_dev, "MMCI_STATUS_REG = %#x\n",
MMCI_READ(sc, MMCI_STATUS_REG));
#endif
mutex_exit(&sc->sc_intr_lock);
}
static void
plmmc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
{
}
static void
plmmc_card_intr_ack(sdmmc_chipset_handle_t sch)
{
}