NetBSD/sys/dev/usb/umidi.c

2017 lines
52 KiB
C

/* $NetBSD: umidi.c,v 1.68 2015/01/02 20:42:44 mrg Exp $ */
/*
* Copyright (c) 2001, 2012, 2014 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Takuya SHIOZAKI (tshiozak@NetBSD.org), (full-size transfers, extended
* hw_if) Chapman Flack (chap@NetBSD.org), and Matthew R. Green
* (mrg@eterna.com.au).
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: umidi.c,v 1.68 2015/01/02 20:42:44 mrg Exp $");
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/device.h>
#include <sys/ioctl.h>
#include <sys/conf.h>
#include <sys/file.h>
#include <sys/select.h>
#include <sys/proc.h>
#include <sys/vnode.h>
#include <sys/poll.h>
#include <sys/intr.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdi_util.h>
#include <dev/auconv.h>
#include <dev/usb/usbdevs.h>
#include <dev/usb/umidi_quirks.h>
#include <dev/midi_if.h>
/* Jack Descriptor */
#define UMIDI_MS_HEADER 0x01
#define UMIDI_IN_JACK 0x02
#define UMIDI_OUT_JACK 0x03
/* Jack Type */
#define UMIDI_EMBEDDED 0x01
#define UMIDI_EXTERNAL 0x02
/* generic, for iteration */
typedef struct {
uByte bLength;
uByte bDescriptorType;
uByte bDescriptorSubtype;
} UPACKED umidi_cs_descriptor_t;
typedef struct {
uByte bLength;
uByte bDescriptorType;
uByte bDescriptorSubtype;
uWord bcdMSC;
uWord wTotalLength;
} UPACKED umidi_cs_interface_descriptor_t;
#define UMIDI_CS_INTERFACE_DESCRIPTOR_SIZE 7
typedef struct {
uByte bLength;
uByte bDescriptorType;
uByte bDescriptorSubtype;
uByte bNumEmbMIDIJack;
} UPACKED umidi_cs_endpoint_descriptor_t;
#define UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE 4
typedef struct {
uByte bLength;
uByte bDescriptorType;
uByte bDescriptorSubtype;
uByte bJackType;
uByte bJackID;
} UPACKED umidi_jack_descriptor_t;
#define UMIDI_JACK_DESCRIPTOR_SIZE 5
#define TO_D(p) ((usb_descriptor_t *)(p))
#define NEXT_D(desc) TO_D((char *)(desc)+(desc)->bLength)
#define TO_IFD(desc) ((usb_interface_descriptor_t *)(desc))
#define TO_CSIFD(desc) ((umidi_cs_interface_descriptor_t *)(desc))
#define TO_EPD(desc) ((usb_endpoint_descriptor_t *)(desc))
#define TO_CSEPD(desc) ((umidi_cs_endpoint_descriptor_t *)(desc))
#define UMIDI_PACKET_SIZE 4
/*
* hierarchie
*
* <-- parent child -->
*
* umidi(sc) -> endpoint -> jack <- (dynamically assignable) - mididev
* ^ | ^ |
* +-----+ +-----+
*/
/* midi device */
struct umidi_mididev {
struct umidi_softc *sc;
device_t mdev;
/* */
struct umidi_jack *in_jack;
struct umidi_jack *out_jack;
char *label;
size_t label_len;
/* */
int opened;
int closing;
int flags;
};
/* Jack Information */
struct umidi_jack {
struct umidi_endpoint *endpoint;
/* */
int cable_number;
void *arg;
int bound;
int opened;
unsigned char *midiman_ppkt;
union {
struct {
void (*intr)(void *);
} out;
struct {
void (*intr)(void *, int);
} in;
} u;
};
#define UMIDI_MAX_EPJACKS 16
typedef unsigned char (*umidi_packet_bufp)[UMIDI_PACKET_SIZE];
/* endpoint data */
struct umidi_endpoint {
struct umidi_softc *sc;
/* */
int addr;
usbd_pipe_handle pipe;
usbd_xfer_handle xfer;
umidi_packet_bufp buffer;
umidi_packet_bufp next_slot;
u_int32_t buffer_size;
int num_scheduled;
int num_open;
int num_jacks;
int soliciting;
void *solicit_cookie;
int armed;
struct umidi_jack *jacks[UMIDI_MAX_EPJACKS];
u_int16_t this_schedule; /* see UMIDI_MAX_EPJACKS */
u_int16_t next_schedule;
};
/* software context */
struct umidi_softc {
device_t sc_dev;
usbd_device_handle sc_udev;
usbd_interface_handle sc_iface;
const struct umidi_quirk *sc_quirk;
int sc_dying;
int sc_out_num_jacks;
struct umidi_jack *sc_out_jacks;
int sc_in_num_jacks;
struct umidi_jack *sc_in_jacks;
struct umidi_jack *sc_jacks;
int sc_num_mididevs;
struct umidi_mididev *sc_mididevs;
int sc_out_num_endpoints;
struct umidi_endpoint *sc_out_ep;
int sc_in_num_endpoints;
struct umidi_endpoint *sc_in_ep;
struct umidi_endpoint *sc_endpoints;
size_t sc_endpoints_len;
int cblnums_global;
kmutex_t sc_lock;
kcondvar_t sc_cv;
kcondvar_t sc_detach_cv;
int sc_refcnt;
};
#ifdef UMIDI_DEBUG
#define DPRINTF(x) if (umididebug) printf x
#define DPRINTFN(n,x) if (umididebug >= (n)) printf x
#include <sys/time.h>
static struct timeval umidi_tv;
int umididebug = 0;
#else
#define DPRINTF(x)
#define DPRINTFN(n,x)
#endif
#define UMIDI_ENDPOINT_SIZE(sc) (sizeof(*(sc)->sc_out_ep) * \
(sc->sc_out_num_endpoints + \
sc->sc_in_num_endpoints))
static int umidi_open(void *, int,
void (*)(void *, int), void (*)(void *), void *);
static void umidi_close(void *);
static int umidi_channelmsg(void *, int, int, u_char *, int);
static int umidi_commonmsg(void *, int, u_char *, int);
static int umidi_sysex(void *, u_char *, int);
static int umidi_rtmsg(void *, int);
static void umidi_getinfo(void *, struct midi_info *);
static void umidi_get_locks(void *, kmutex_t **, kmutex_t **);
static usbd_status alloc_pipe(struct umidi_endpoint *);
static void free_pipe(struct umidi_endpoint *);
static usbd_status alloc_all_endpoints(struct umidi_softc *);
static void free_all_endpoints(struct umidi_softc *);
static usbd_status alloc_all_jacks(struct umidi_softc *);
static void free_all_jacks(struct umidi_softc *);
static usbd_status bind_jacks_to_mididev(struct umidi_softc *,
struct umidi_jack *,
struct umidi_jack *,
struct umidi_mididev *);
static void unbind_jacks_from_mididev(struct umidi_mididev *);
static void unbind_all_jacks(struct umidi_softc *);
static usbd_status assign_all_jacks_automatically(struct umidi_softc *);
static usbd_status open_out_jack(struct umidi_jack *, void *,
void (*)(void *));
static usbd_status open_in_jack(struct umidi_jack *, void *,
void (*)(void *, int));
static void close_out_jack(struct umidi_jack *);
static void close_in_jack(struct umidi_jack *);
static usbd_status attach_mididev(struct umidi_softc *, struct umidi_mididev *);
static usbd_status detach_mididev(struct umidi_mididev *, int);
static void deactivate_mididev(struct umidi_mididev *);
static usbd_status alloc_all_mididevs(struct umidi_softc *, int);
static void free_all_mididevs(struct umidi_softc *);
static usbd_status attach_all_mididevs(struct umidi_softc *);
static usbd_status detach_all_mididevs(struct umidi_softc *, int);
static void deactivate_all_mididevs(struct umidi_softc *);
static void describe_mididev(struct umidi_mididev *);
#ifdef UMIDI_DEBUG
static void dump_sc(struct umidi_softc *);
static void dump_ep(struct umidi_endpoint *);
static void dump_jack(struct umidi_jack *);
#endif
static usbd_status start_input_transfer(struct umidi_endpoint *);
static usbd_status start_output_transfer(struct umidi_endpoint *);
static int out_jack_output(struct umidi_jack *, u_char *, int, int);
static void in_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
static void out_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
static void out_solicit(void *); /* struct umidi_endpoint* for softintr */
static void out_solicit_locked(void *); /* pre-locked version */
const struct midi_hw_if umidi_hw_if = {
.open = umidi_open,
.close = umidi_close,
.output = umidi_rtmsg,
.getinfo = umidi_getinfo,
.get_locks = umidi_get_locks,
};
struct midi_hw_if_ext umidi_hw_if_ext = {
.channel = umidi_channelmsg,
.common = umidi_commonmsg,
.sysex = umidi_sysex,
};
struct midi_hw_if_ext umidi_hw_if_mm = {
.channel = umidi_channelmsg,
.common = umidi_commonmsg,
.sysex = umidi_sysex,
.compress = 1,
};
int umidi_match(device_t, cfdata_t, void *);
void umidi_attach(device_t, device_t, void *);
void umidi_childdet(device_t, device_t);
int umidi_detach(device_t, int);
int umidi_activate(device_t, enum devact);
extern struct cfdriver umidi_cd;
CFATTACH_DECL2_NEW(umidi, sizeof(struct umidi_softc), umidi_match,
umidi_attach, umidi_detach, umidi_activate, NULL, umidi_childdet);
int
umidi_match(device_t parent, cfdata_t match, void *aux)
{
struct usbif_attach_arg *uaa = aux;
DPRINTFN(1,("umidi_match\n"));
if (umidi_search_quirk(uaa->vendor, uaa->product, uaa->ifaceno))
return UMATCH_IFACECLASS_IFACESUBCLASS;
if (uaa->class == UICLASS_AUDIO &&
uaa->subclass == UISUBCLASS_MIDISTREAM)
return UMATCH_IFACECLASS_IFACESUBCLASS;
return UMATCH_NONE;
}
void
umidi_attach(device_t parent, device_t self, void *aux)
{
usbd_status err;
struct umidi_softc *sc = device_private(self);
struct usbif_attach_arg *uaa = aux;
char *devinfop;
DPRINTFN(1,("umidi_attach\n"));
sc->sc_dev = self;
aprint_naive("\n");
aprint_normal("\n");
devinfop = usbd_devinfo_alloc(uaa->device, 0);
aprint_normal_dev(self, "%s\n", devinfop);
usbd_devinfo_free(devinfop);
sc->sc_iface = uaa->iface;
sc->sc_udev = uaa->device;
sc->sc_quirk =
umidi_search_quirk(uaa->vendor, uaa->product, uaa->ifaceno);
aprint_normal_dev(self, "");
umidi_print_quirk(sc->sc_quirk);
mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_USB);
cv_init(&sc->sc_cv, "umidopcl");
cv_init(&sc->sc_detach_cv, "umidetcv");
sc->sc_refcnt = 0;
err = alloc_all_endpoints(sc);
if (err != USBD_NORMAL_COMPLETION) {
aprint_error_dev(self,
"alloc_all_endpoints failed. (err=%d)\n", err);
goto out;
}
err = alloc_all_jacks(sc);
if (err != USBD_NORMAL_COMPLETION) {
aprint_error_dev(self, "alloc_all_jacks failed. (err=%d)\n",
err);
goto out_free_endpoints;
}
aprint_normal_dev(self, "out=%d, in=%d\n",
sc->sc_out_num_jacks, sc->sc_in_num_jacks);
err = assign_all_jacks_automatically(sc);
if (err != USBD_NORMAL_COMPLETION) {
aprint_error_dev(self,
"assign_all_jacks_automatically failed. (err=%d)\n", err);
goto out_free_jacks;
}
err = attach_all_mididevs(sc);
if (err != USBD_NORMAL_COMPLETION) {
aprint_error_dev(self,
"attach_all_mididevs failed. (err=%d)\n", err);
goto out_free_jacks;
}
#ifdef UMIDI_DEBUG
dump_sc(sc);
#endif
usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH,
sc->sc_udev, sc->sc_dev);
return;
out_free_jacks:
unbind_all_jacks(sc);
free_all_jacks(sc);
out_free_endpoints:
free_all_endpoints(sc);
out:
aprint_error_dev(self, "disabled.\n");
sc->sc_dying = 1;
KERNEL_UNLOCK_ONE(curlwp);
return;
}
void
umidi_childdet(device_t self, device_t child)
{
int i;
struct umidi_softc *sc = device_private(self);
KASSERT(sc->sc_mididevs != NULL);
for (i = 0; i < sc->sc_num_mididevs; i++) {
if (sc->sc_mididevs[i].mdev == child)
break;
}
KASSERT(i < sc->sc_num_mididevs);
sc->sc_mididevs[i].mdev = NULL;
}
int
umidi_activate(device_t self, enum devact act)
{
struct umidi_softc *sc = device_private(self);
switch (act) {
case DVACT_DEACTIVATE:
DPRINTFN(1,("umidi_activate (deactivate)\n"));
sc->sc_dying = 1;
deactivate_all_mididevs(sc);
return 0;
default:
DPRINTFN(1,("umidi_activate (%d)\n", act));
return EOPNOTSUPP;
}
}
int
umidi_detach(device_t self, int flags)
{
struct umidi_softc *sc = device_private(self);
DPRINTFN(1,("umidi_detach\n"));
mutex_enter(&sc->sc_lock);
sc->sc_dying = 1;
if (--sc->sc_refcnt >= 0)
usb_detach_wait(sc->sc_dev, &sc->sc_detach_cv, &sc->sc_lock);
mutex_exit(&sc->sc_lock);
detach_all_mididevs(sc, flags);
free_all_mididevs(sc);
free_all_jacks(sc);
free_all_endpoints(sc);
usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
sc->sc_dev);
mutex_destroy(&sc->sc_lock);
cv_destroy(&sc->sc_detach_cv);
cv_destroy(&sc->sc_cv);
return 0;
}
/*
* midi_if stuffs
*/
int
umidi_open(void *addr,
int flags,
void (*iintr)(void *, int),
void (*ointr)(void *),
void *arg)
{
struct umidi_mididev *mididev = addr;
struct umidi_softc *sc = mididev->sc;
usbd_status err;
KASSERT(mutex_owned(&sc->sc_lock));
DPRINTF(("umidi_open: sc=%p\n", sc));
if (mididev->opened)
return EBUSY;
if (sc->sc_dying)
return EIO;
mididev->opened = 1;
mididev->flags = flags;
if ((mididev->flags & FWRITE) && mididev->out_jack) {
err = open_out_jack(mididev->out_jack, arg, ointr);
if (err != USBD_NORMAL_COMPLETION)
goto bad;
}
if ((mididev->flags & FREAD) && mididev->in_jack) {
err = open_in_jack(mididev->in_jack, arg, iintr);
KASSERT(mididev->opened);
if (err != USBD_NORMAL_COMPLETION &&
err != USBD_IN_PROGRESS) {
if (mididev->out_jack)
close_out_jack(mididev->out_jack);
goto bad;
}
}
return 0;
bad:
mididev->opened = 0;
DPRINTF(("umidi_open: usbd_status %d\n", err));
KASSERT(mutex_owned(&sc->sc_lock));
return USBD_IN_USE == err ? EBUSY : EIO;
}
void
umidi_close(void *addr)
{
struct umidi_mididev *mididev = addr;
struct umidi_softc *sc = mididev->sc;
KASSERT(mutex_owned(&sc->sc_lock));
if (mididev->closing)
return;
mididev->closing = 1;
sc->sc_refcnt++;
if ((mididev->flags & FWRITE) && mididev->out_jack)
close_out_jack(mididev->out_jack);
if ((mididev->flags & FREAD) && mididev->in_jack)
close_in_jack(mididev->in_jack);
if (--sc->sc_refcnt < 0)
usb_detach_broadcast(sc->sc_dev, &sc->sc_detach_cv);
mididev->opened = 0;
mididev->closing = 0;
}
int
umidi_channelmsg(void *addr, int status, int channel, u_char *msg,
int len)
{
struct umidi_mididev *mididev = addr;
KASSERT(mutex_owned(&mididev->sc->sc_lock));
if (!mididev->out_jack || !mididev->opened || mididev->closing)
return EIO;
return out_jack_output(mididev->out_jack, msg, len, (status>>4)&0xf);
}
int
umidi_commonmsg(void *addr, int status, u_char *msg, int len)
{
struct umidi_mididev *mididev = addr;
int cin;
KASSERT(mutex_owned(&mididev->sc->sc_lock));
if (!mididev->out_jack || !mididev->opened || mididev->closing)
return EIO;
switch ( len ) {
case 1: cin = 5; break;
case 2: cin = 2; break;
case 3: cin = 3; break;
default: return EIO; /* or gcc warns of cin uninitialized */
}
return out_jack_output(mididev->out_jack, msg, len, cin);
}
int
umidi_sysex(void *addr, u_char *msg, int len)
{
struct umidi_mididev *mididev = addr;
int cin;
KASSERT(mutex_owned(&mididev->sc->sc_lock));
if (!mididev->out_jack || !mididev->opened || mididev->closing)
return EIO;
switch ( len ) {
case 1: cin = 5; break;
case 2: cin = 6; break;
case 3: cin = (msg[2] == 0xf7) ? 7 : 4; break;
default: return EIO; /* or gcc warns of cin uninitialized */
}
return out_jack_output(mididev->out_jack, msg, len, cin);
}
int
umidi_rtmsg(void *addr, int d)
{
struct umidi_mididev *mididev = addr;
u_char msg = d;
KASSERT(mutex_owned(&mididev->sc->sc_lock));
if (!mididev->out_jack || !mididev->opened || mididev->closing)
return EIO;
return out_jack_output(mididev->out_jack, &msg, 1, 0xf);
}
void
umidi_getinfo(void *addr, struct midi_info *mi)
{
struct umidi_mididev *mididev = addr;
struct umidi_softc *sc = mididev->sc;
int mm = UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE);
KASSERT(mutex_owned(&sc->sc_lock));
mi->name = mididev->label;
mi->props = MIDI_PROP_OUT_INTR;
if (mididev->in_jack)
mi->props |= MIDI_PROP_CAN_INPUT;
midi_register_hw_if_ext(mm? &umidi_hw_if_mm : &umidi_hw_if_ext);
}
static void
umidi_get_locks(void *addr, kmutex_t **thread, kmutex_t **intr)
{
struct umidi_mididev *mididev = addr;
struct umidi_softc *sc = mididev->sc;
*intr = NULL;
*thread = &sc->sc_lock;
}
/*
* each endpoint stuffs
*/
/* alloc/free pipe */
static usbd_status
alloc_pipe(struct umidi_endpoint *ep)
{
struct umidi_softc *sc = ep->sc;
usbd_status err;
usb_endpoint_descriptor_t *epd;
epd = usbd_get_endpoint_descriptor(sc->sc_iface, ep->addr);
/*
* For output, an improvement would be to have a buffer bigger than
* wMaxPacketSize by num_jacks-1 additional packet slots; that would
* allow out_solicit to fill the buffer to the full packet size in
* all cases. But to use usbd_alloc_buffer to get a slightly larger
* buffer would not be a good way to do that, because if the addition
* would make the buffer exceed USB_MEM_SMALL then a substantially
* larger block may be wastefully allocated. Some flavor of double
* buffering could serve the same purpose, but would increase the
* code complexity, so for now I will live with the current slight
* penalty of reducing max transfer size by (num_open-num_scheduled)
* packet slots.
*/
ep->buffer_size = UGETW(epd->wMaxPacketSize);
ep->buffer_size -= ep->buffer_size % UMIDI_PACKET_SIZE;
DPRINTF(("%s: alloc_pipe %p, buffer size %u\n",
device_xname(sc->sc_dev), ep, ep->buffer_size));
ep->num_scheduled = 0;
ep->this_schedule = 0;
ep->next_schedule = 0;
ep->soliciting = 0;
ep->armed = 0;
ep->xfer = usbd_alloc_xfer(sc->sc_udev);
if (ep->xfer == NULL) {
err = USBD_NOMEM;
goto quit;
}
ep->buffer = usbd_alloc_buffer(ep->xfer, ep->buffer_size);
if (ep->buffer == NULL) {
usbd_free_xfer(ep->xfer);
err = USBD_NOMEM;
goto quit;
}
ep->next_slot = ep->buffer;
err = usbd_open_pipe(sc->sc_iface, ep->addr, USBD_MPSAFE, &ep->pipe);
if (err)
usbd_free_xfer(ep->xfer);
ep->solicit_cookie = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE, out_solicit, ep);
quit:
return err;
}
static void
free_pipe(struct umidi_endpoint *ep)
{
DPRINTF(("%s: free_pipe %p\n", device_xname(ep->sc->sc_dev), ep));
usbd_abort_pipe(ep->pipe);
usbd_close_pipe(ep->pipe);
usbd_free_xfer(ep->xfer);
softint_disestablish(ep->solicit_cookie);
}
/* alloc/free the array of endpoint structures */
static usbd_status alloc_all_endpoints_fixed_ep(struct umidi_softc *);
static usbd_status alloc_all_endpoints_yamaha(struct umidi_softc *);
static usbd_status alloc_all_endpoints_genuine(struct umidi_softc *);
static usbd_status
alloc_all_endpoints(struct umidi_softc *sc)
{
usbd_status err;
struct umidi_endpoint *ep;
int i;
if (UMQ_ISTYPE(sc, UMQ_TYPE_FIXED_EP)) {
err = alloc_all_endpoints_fixed_ep(sc);
} else if (UMQ_ISTYPE(sc, UMQ_TYPE_YAMAHA)) {
err = alloc_all_endpoints_yamaha(sc);
} else {
err = alloc_all_endpoints_genuine(sc);
}
if (err != USBD_NORMAL_COMPLETION)
return err;
ep = sc->sc_endpoints;
for (i = sc->sc_out_num_endpoints+sc->sc_in_num_endpoints; i > 0; i--) {
err = alloc_pipe(ep++);
if (err != USBD_NORMAL_COMPLETION) {
for (; ep != sc->sc_endpoints; ep--)
free_pipe(ep-1);
kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
break;
}
}
return err;
}
static void
free_all_endpoints(struct umidi_softc *sc)
{
int i;
for (i=0; i<sc->sc_in_num_endpoints+sc->sc_out_num_endpoints; i++)
free_pipe(&sc->sc_endpoints[i]);
if (sc->sc_endpoints != NULL)
kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
}
static usbd_status
alloc_all_endpoints_fixed_ep(struct umidi_softc *sc)
{
usbd_status err;
const struct umq_fixed_ep_desc *fp;
struct umidi_endpoint *ep;
usb_endpoint_descriptor_t *epd;
int i;
fp = umidi_get_quirk_data_from_type(sc->sc_quirk,
UMQ_TYPE_FIXED_EP);
sc->sc_out_num_jacks = 0;
sc->sc_in_num_jacks = 0;
sc->sc_out_num_endpoints = fp->num_out_ep;
sc->sc_in_num_endpoints = fp->num_in_ep;
sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
if (!sc->sc_endpoints)
return USBD_NOMEM;
sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
sc->sc_in_ep =
sc->sc_in_num_endpoints ?
sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
ep = &sc->sc_out_ep[0];
for (i = 0; i < sc->sc_out_num_endpoints; i++) {
epd = usbd_interface2endpoint_descriptor(
sc->sc_iface,
fp->out_ep[i].ep);
if (!epd) {
aprint_error_dev(sc->sc_dev,
"cannot get endpoint descriptor(out:%d)\n",
fp->out_ep[i].ep);
err = USBD_INVAL;
goto error;
}
if (UE_GET_XFERTYPE(epd->bmAttributes)!=UE_BULK ||
UE_GET_DIR(epd->bEndpointAddress)!=UE_DIR_OUT) {
aprint_error_dev(sc->sc_dev, "illegal endpoint(out:%d)\n",
fp->out_ep[i].ep);
err = USBD_INVAL;
goto error;
}
ep->sc = sc;
ep->addr = epd->bEndpointAddress;
ep->num_jacks = fp->out_ep[i].num_jacks;
sc->sc_out_num_jacks += fp->out_ep[i].num_jacks;
ep->num_open = 0;
ep++;
}
ep = &sc->sc_in_ep[0];
for (i = 0; i < sc->sc_in_num_endpoints; i++) {
epd = usbd_interface2endpoint_descriptor(
sc->sc_iface,
fp->in_ep[i].ep);
if (!epd) {
aprint_error_dev(sc->sc_dev,
"cannot get endpoint descriptor(in:%d)\n",
fp->in_ep[i].ep);
err = USBD_INVAL;
goto error;
}
/*
* MIDISPORT_2X4 inputs on an interrupt rather than a bulk
* endpoint. The existing input logic in this driver seems
* to work successfully if we just stop treating an interrupt
* endpoint as illegal (or the in_progress status we get on
* the initial transfer). It does not seem necessary to
* actually use the interrupt flavor of alloc_pipe or make
* other serious rearrangements of logic. I like that.
*/
switch ( UE_GET_XFERTYPE(epd->bmAttributes) ) {
case UE_BULK:
case UE_INTERRUPT:
if (UE_DIR_IN == UE_GET_DIR(epd->bEndpointAddress))
break;
/*FALLTHROUGH*/
default:
aprint_error_dev(sc->sc_dev,
"illegal endpoint(in:%d)\n", fp->in_ep[i].ep);
err = USBD_INVAL;
goto error;
}
ep->sc = sc;
ep->addr = epd->bEndpointAddress;
ep->num_jacks = fp->in_ep[i].num_jacks;
sc->sc_in_num_jacks += fp->in_ep[i].num_jacks;
ep->num_open = 0;
ep++;
}
return USBD_NORMAL_COMPLETION;
error:
kmem_free(sc->sc_endpoints, UMIDI_ENDPOINT_SIZE(sc));
sc->sc_endpoints = NULL;
return err;
}
static usbd_status
alloc_all_endpoints_yamaha(struct umidi_softc *sc)
{
/* This driver currently supports max 1in/1out bulk endpoints */
usb_descriptor_t *desc;
umidi_cs_descriptor_t *udesc;
usb_endpoint_descriptor_t *epd;
int out_addr, in_addr, i;
int dir;
size_t remain, descsize;
sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
out_addr = in_addr = 0;
/* detect endpoints */
desc = TO_D(usbd_get_interface_descriptor(sc->sc_iface));
for (i=(int)TO_IFD(desc)->bNumEndpoints-1; i>=0; i--) {
epd = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
KASSERT(epd != NULL);
if (UE_GET_XFERTYPE(epd->bmAttributes) == UE_BULK) {
dir = UE_GET_DIR(epd->bEndpointAddress);
if (dir==UE_DIR_OUT && !out_addr)
out_addr = epd->bEndpointAddress;
else if (dir==UE_DIR_IN && !in_addr)
in_addr = epd->bEndpointAddress;
}
}
udesc = (umidi_cs_descriptor_t *)NEXT_D(desc);
/* count jacks */
if (!(udesc->bDescriptorType==UDESC_CS_INTERFACE &&
udesc->bDescriptorSubtype==UMIDI_MS_HEADER))
return USBD_INVAL;
remain = (size_t)UGETW(TO_CSIFD(udesc)->wTotalLength) -
(size_t)udesc->bLength;
udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
while (remain >= sizeof(usb_descriptor_t)) {
descsize = udesc->bLength;
if (descsize>remain || descsize==0)
break;
if (udesc->bDescriptorType == UDESC_CS_INTERFACE &&
remain >= UMIDI_JACK_DESCRIPTOR_SIZE) {
if (udesc->bDescriptorSubtype == UMIDI_OUT_JACK)
sc->sc_out_num_jacks++;
else if (udesc->bDescriptorSubtype == UMIDI_IN_JACK)
sc->sc_in_num_jacks++;
}
udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
remain -= descsize;
}
/* validate some parameters */
if (sc->sc_out_num_jacks>UMIDI_MAX_EPJACKS)
sc->sc_out_num_jacks = UMIDI_MAX_EPJACKS;
if (sc->sc_in_num_jacks>UMIDI_MAX_EPJACKS)
sc->sc_in_num_jacks = UMIDI_MAX_EPJACKS;
if (sc->sc_out_num_jacks && out_addr) {
sc->sc_out_num_endpoints = 1;
} else {
sc->sc_out_num_endpoints = 0;
sc->sc_out_num_jacks = 0;
}
if (sc->sc_in_num_jacks && in_addr) {
sc->sc_in_num_endpoints = 1;
} else {
sc->sc_in_num_endpoints = 0;
sc->sc_in_num_jacks = 0;
}
sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
if (!sc->sc_endpoints)
return USBD_NOMEM;
if (sc->sc_out_num_endpoints) {
sc->sc_out_ep = sc->sc_endpoints;
sc->sc_out_ep->sc = sc;
sc->sc_out_ep->addr = out_addr;
sc->sc_out_ep->num_jacks = sc->sc_out_num_jacks;
sc->sc_out_ep->num_open = 0;
} else
sc->sc_out_ep = NULL;
if (sc->sc_in_num_endpoints) {
sc->sc_in_ep = sc->sc_endpoints+sc->sc_out_num_endpoints;
sc->sc_in_ep->sc = sc;
sc->sc_in_ep->addr = in_addr;
sc->sc_in_ep->num_jacks = sc->sc_in_num_jacks;
sc->sc_in_ep->num_open = 0;
} else
sc->sc_in_ep = NULL;
return USBD_NORMAL_COMPLETION;
}
static usbd_status
alloc_all_endpoints_genuine(struct umidi_softc *sc)
{
usb_interface_descriptor_t *interface_desc;
usb_config_descriptor_t *config_desc;
usb_descriptor_t *desc;
int num_ep;
size_t remain, descsize;
struct umidi_endpoint *p, *q, *lowest, *endep, tmpep;
int epaddr;
interface_desc = usbd_get_interface_descriptor(sc->sc_iface);
num_ep = interface_desc->bNumEndpoints;
sc->sc_endpoints_len = sizeof(struct umidi_endpoint) * num_ep;
sc->sc_endpoints = p = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
if (!p)
return USBD_NOMEM;
sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
sc->sc_out_num_endpoints = sc->sc_in_num_endpoints = 0;
epaddr = -1;
/* get the list of endpoints for midi stream */
config_desc = usbd_get_config_descriptor(sc->sc_udev);
desc = (usb_descriptor_t *) config_desc;
remain = (size_t)UGETW(config_desc->wTotalLength);
while (remain>=sizeof(usb_descriptor_t)) {
descsize = desc->bLength;
if (descsize>remain || descsize==0)
break;
if (desc->bDescriptorType==UDESC_ENDPOINT &&
remain>=USB_ENDPOINT_DESCRIPTOR_SIZE &&
UE_GET_XFERTYPE(TO_EPD(desc)->bmAttributes) == UE_BULK) {
epaddr = TO_EPD(desc)->bEndpointAddress;
} else if (desc->bDescriptorType==UDESC_CS_ENDPOINT &&
remain>=UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE &&
epaddr!=-1) {
if (num_ep>0) {
num_ep--;
p->sc = sc;
p->addr = epaddr;
p->num_jacks = TO_CSEPD(desc)->bNumEmbMIDIJack;
if (UE_GET_DIR(epaddr)==UE_DIR_OUT) {
sc->sc_out_num_endpoints++;
sc->sc_out_num_jacks += p->num_jacks;
} else {
sc->sc_in_num_endpoints++;
sc->sc_in_num_jacks += p->num_jacks;
}
p++;
}
} else
epaddr = -1;
desc = NEXT_D(desc);
remain-=descsize;
}
/* sort endpoints */
num_ep = sc->sc_out_num_endpoints + sc->sc_in_num_endpoints;
p = sc->sc_endpoints;
endep = p + num_ep;
while (p<endep) {
lowest = p;
for (q=p+1; q<endep; q++) {
if ((UE_GET_DIR(lowest->addr)==UE_DIR_IN &&
UE_GET_DIR(q->addr)==UE_DIR_OUT) ||
((UE_GET_DIR(lowest->addr)==
UE_GET_DIR(q->addr)) &&
(UE_GET_ADDR(lowest->addr)>
UE_GET_ADDR(q->addr))))
lowest = q;
}
if (lowest != p) {
memcpy((void *)&tmpep, (void *)p, sizeof(tmpep));
memcpy((void *)p, (void *)lowest, sizeof(tmpep));
memcpy((void *)lowest, (void *)&tmpep, sizeof(tmpep));
}
p->num_open = 0;
p++;
}
sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
sc->sc_in_ep =
sc->sc_in_num_endpoints ?
sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
return USBD_NORMAL_COMPLETION;
}
/*
* jack stuffs
*/
static usbd_status
alloc_all_jacks(struct umidi_softc *sc)
{
int i, j;
struct umidi_endpoint *ep;
struct umidi_jack *jack;
const unsigned char *cn_spec;
if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_PER_EP))
sc->cblnums_global = 0;
else if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_GLOBAL))
sc->cblnums_global = 1;
else {
/*
* I don't think this default is correct, but it preserves
* the prior behavior of the code. That's why I defined two
* complementary quirks. Any device for which the default
* behavior is wrong can be made to work by giving it an
* explicit quirk, and if a pattern ever develops (as I suspect
* it will) that a lot of otherwise standard USB MIDI devices
* need the CN_SEQ_PER_EP "quirk," then this default can be
* changed to 0, and the only devices that will break are those
* listing neither quirk, and they'll easily be fixed by giving
* them the CN_SEQ_GLOBAL quirk.
*/
sc->cblnums_global = 1;
}
if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_FIXED))
cn_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
UMQ_TYPE_CN_FIXED);
else
cn_spec = NULL;
/* allocate/initialize structures */
sc->sc_jacks = kmem_zalloc(sizeof(*sc->sc_out_jacks)*(sc->sc_in_num_jacks+
sc->sc_out_num_jacks), KM_SLEEP);
if (!sc->sc_jacks)
return USBD_NOMEM;
sc->sc_out_jacks =
sc->sc_out_num_jacks ? sc->sc_jacks : NULL;
sc->sc_in_jacks =
sc->sc_in_num_jacks ? sc->sc_jacks+sc->sc_out_num_jacks : NULL;
jack = &sc->sc_out_jacks[0];
for (i = 0; i < sc->sc_out_num_jacks; i++) {
jack->opened = 0;
jack->bound = 0;
jack->arg = NULL;
jack->u.out.intr = NULL;
jack->midiman_ppkt = NULL;
if (sc->cblnums_global)
jack->cable_number = i;
jack++;
}
jack = &sc->sc_in_jacks[0];
for (i = 0; i < sc->sc_in_num_jacks; i++) {
jack->opened = 0;
jack->bound = 0;
jack->arg = NULL;
jack->u.in.intr = NULL;
if (sc->cblnums_global)
jack->cable_number = i;
jack++;
}
/* assign each jacks to each endpoints */
jack = &sc->sc_out_jacks[0];
ep = &sc->sc_out_ep[0];
for (i = 0; i < sc->sc_out_num_endpoints; i++) {
for (j = 0; j < ep->num_jacks; j++) {
jack->endpoint = ep;
if (cn_spec != NULL)
jack->cable_number = *cn_spec++;
else if (!sc->cblnums_global)
jack->cable_number = j;
ep->jacks[jack->cable_number] = jack;
jack++;
}
ep++;
}
jack = &sc->sc_in_jacks[0];
ep = &sc->sc_in_ep[0];
for (i = 0; i < sc->sc_in_num_endpoints; i++) {
for (j = 0; j < ep->num_jacks; j++) {
jack->endpoint = ep;
if (cn_spec != NULL)
jack->cable_number = *cn_spec++;
else if (!sc->cblnums_global)
jack->cable_number = j;
ep->jacks[jack->cable_number] = jack;
jack++;
}
ep++;
}
return USBD_NORMAL_COMPLETION;
}
static void
free_all_jacks(struct umidi_softc *sc)
{
struct umidi_jack *jacks;
size_t len;
mutex_enter(&sc->sc_lock);
jacks = sc->sc_jacks;
len = sizeof(*sc->sc_out_jacks)*(sc->sc_in_num_jacks+sc->sc_out_num_jacks);
sc->sc_jacks = sc->sc_in_jacks = sc->sc_out_jacks = NULL;
mutex_exit(&sc->sc_lock);
if (jacks)
kmem_free(jacks, len);
}
static usbd_status
bind_jacks_to_mididev(struct umidi_softc *sc,
struct umidi_jack *out_jack,
struct umidi_jack *in_jack,
struct umidi_mididev *mididev)
{
if ((out_jack && out_jack->bound) || (in_jack && in_jack->bound))
return USBD_IN_USE;
if (mididev->out_jack || mididev->in_jack)
return USBD_IN_USE;
if (out_jack)
out_jack->bound = 1;
if (in_jack)
in_jack->bound = 1;
mididev->in_jack = in_jack;
mididev->out_jack = out_jack;
mididev->closing = 0;
return USBD_NORMAL_COMPLETION;
}
static void
unbind_jacks_from_mididev(struct umidi_mididev *mididev)
{
KASSERT(mutex_owned(&mididev->sc->sc_lock));
mididev->closing = 1;
if ((mididev->flags & FWRITE) && mididev->out_jack)
close_out_jack(mididev->out_jack);
if ((mididev->flags & FREAD) && mididev->in_jack)
close_in_jack(mididev->in_jack);
if (mididev->out_jack) {
mididev->out_jack->bound = 0;
mididev->out_jack = NULL;
}
if (mididev->in_jack) {
mididev->in_jack->bound = 0;
mididev->in_jack = NULL;
}
}
static void
unbind_all_jacks(struct umidi_softc *sc)
{
int i;
mutex_spin_enter(&sc->sc_lock);
if (sc->sc_mididevs)
for (i = 0; i < sc->sc_num_mididevs; i++)
unbind_jacks_from_mididev(&sc->sc_mididevs[i]);
mutex_spin_exit(&sc->sc_lock);
}
static usbd_status
assign_all_jacks_automatically(struct umidi_softc *sc)
{
usbd_status err;
int i;
struct umidi_jack *out, *in;
const signed char *asg_spec;
err =
alloc_all_mididevs(sc,
max(sc->sc_out_num_jacks, sc->sc_in_num_jacks));
if (err!=USBD_NORMAL_COMPLETION)
return err;
if (UMQ_ISTYPE(sc, UMQ_TYPE_MD_FIXED))
asg_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
UMQ_TYPE_MD_FIXED);
else
asg_spec = NULL;
for (i = 0; i < sc->sc_num_mididevs; i++) {
if (asg_spec != NULL) {
if (*asg_spec == -1)
out = NULL;
else
out = &sc->sc_out_jacks[*asg_spec];
++ asg_spec;
if (*asg_spec == -1)
in = NULL;
else
in = &sc->sc_in_jacks[*asg_spec];
++ asg_spec;
} else {
out = (i<sc->sc_out_num_jacks) ? &sc->sc_out_jacks[i]
: NULL;
in = (i<sc->sc_in_num_jacks) ? &sc->sc_in_jacks[i]
: NULL;
}
err = bind_jacks_to_mididev(sc, out, in, &sc->sc_mididevs[i]);
if (err != USBD_NORMAL_COMPLETION) {
free_all_mididevs(sc);
return err;
}
}
return USBD_NORMAL_COMPLETION;
}
static usbd_status
open_out_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *))
{
struct umidi_endpoint *ep = jack->endpoint;
struct umidi_softc *sc = ep->sc;
umidi_packet_bufp end;
int err;
KASSERT(mutex_owned(&sc->sc_lock));
if (jack->opened)
return USBD_IN_USE;
jack->arg = arg;
jack->u.out.intr = intr;
jack->midiman_ppkt = NULL;
end = ep->buffer + ep->buffer_size / sizeof *ep->buffer;
jack->opened = 1;
ep->num_open++;
/*
* out_solicit maintains an invariant that there will always be
* (num_open - num_scheduled) slots free in the buffer. as we have
* just incremented num_open, the buffer may be too full to satisfy
* the invariant until a transfer completes, for which we must wait.
*/
while (end - ep->next_slot < ep->num_open - ep->num_scheduled) {
err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
mstohz(10));
if (err) {
ep->num_open--;
jack->opened = 0;
return USBD_IOERROR;
}
}
return USBD_NORMAL_COMPLETION;
}
static usbd_status
open_in_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *, int))
{
usbd_status err = USBD_NORMAL_COMPLETION;
struct umidi_endpoint *ep = jack->endpoint;
KASSERT(mutex_owned(&ep->sc->sc_lock));
if (jack->opened)
return USBD_IN_USE;
jack->arg = arg;
jack->u.in.intr = intr;
jack->opened = 1;
if (ep->num_open++ == 0 && UE_GET_DIR(ep->addr)==UE_DIR_IN) {
/*
* Can't hold the interrupt lock while calling into USB,
* but we can safely drop it here.
*/
mutex_exit(&ep->sc->sc_lock);
err = start_input_transfer(ep);
if (err != USBD_NORMAL_COMPLETION &&
err != USBD_IN_PROGRESS) {
ep->num_open--;
}
mutex_enter(&ep->sc->sc_lock);
}
return err;
}
static void
close_out_jack(struct umidi_jack *jack)
{
struct umidi_endpoint *ep;
struct umidi_softc *sc;
u_int16_t mask;
int err;
if (jack->opened) {
ep = jack->endpoint;
sc = ep->sc;
KASSERT(mutex_owned(&sc->sc_lock));
mask = 1 << (jack->cable_number);
while (mask & (ep->this_schedule | ep->next_schedule)) {
err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
mstohz(10));
if (err)
break;
}
/*
* We can re-enter this function from both close() and
* detach(). Make sure only one of them does this part.
*/
if (jack->opened) {
jack->opened = 0;
jack->endpoint->num_open--;
ep->this_schedule &= ~mask;
ep->next_schedule &= ~mask;
}
}
}
static void
close_in_jack(struct umidi_jack *jack)
{
if (jack->opened) {
struct umidi_softc *sc = jack->endpoint->sc;
KASSERT(mutex_owned(&sc->sc_lock));
jack->opened = 0;
if (--jack->endpoint->num_open == 0) {
/*
* We have to drop the (interrupt) lock so that
* the USB thread lock can be safely taken by
* the abort operation. This is safe as this
* either closing or dying will be set proerly.
*/
mutex_spin_exit(&sc->sc_lock);
usbd_abort_pipe(jack->endpoint->pipe);
mutex_spin_enter(&sc->sc_lock);
}
}
}
static usbd_status
attach_mididev(struct umidi_softc *sc, struct umidi_mididev *mididev)
{
if (mididev->sc)
return USBD_IN_USE;
mididev->sc = sc;
describe_mididev(mididev);
mididev->mdev = midi_attach_mi(&umidi_hw_if, mididev, sc->sc_dev);
return USBD_NORMAL_COMPLETION;
}
static usbd_status
detach_mididev(struct umidi_mididev *mididev, int flags)
{
struct umidi_softc *sc = mididev->sc;
if (!sc)
return USBD_NO_ADDR;
mutex_spin_enter(&sc->sc_lock);
if (mididev->opened) {
umidi_close(mididev);
}
unbind_jacks_from_mididev(mididev);
mutex_spin_exit(&sc->sc_lock);
if (mididev->mdev != NULL)
config_detach(mididev->mdev, flags);
if (NULL != mididev->label) {
kmem_free(mididev->label, mididev->label_len);
mididev->label = NULL;
}
mididev->sc = NULL;
return USBD_NORMAL_COMPLETION;
}
static void
deactivate_mididev(struct umidi_mididev *mididev)
{
if (mididev->out_jack)
mididev->out_jack->bound = 0;
if (mididev->in_jack)
mididev->in_jack->bound = 0;
}
static usbd_status
alloc_all_mididevs(struct umidi_softc *sc, int nmidi)
{
sc->sc_num_mididevs = nmidi;
sc->sc_mididevs = kmem_zalloc(sizeof(*sc->sc_mididevs)*nmidi, KM_SLEEP);
if (!sc->sc_mididevs)
return USBD_NOMEM;
return USBD_NORMAL_COMPLETION;
}
static void
free_all_mididevs(struct umidi_softc *sc)
{
struct umidi_mididev *mididevs;
size_t len;
mutex_enter(&sc->sc_lock);
mididevs = sc->sc_mididevs;
if (mididevs)
len = sizeof(*sc->sc_mididevs )* sc->sc_num_mididevs;
sc->sc_mididevs = NULL;
sc->sc_num_mididevs = 0;
mutex_exit(&sc->sc_lock);
if (mididevs)
kmem_free(mididevs, len);
}
static usbd_status
attach_all_mididevs(struct umidi_softc *sc)
{
usbd_status err;
int i;
if (sc->sc_mididevs)
for (i = 0; i < sc->sc_num_mididevs; i++) {
err = attach_mididev(sc, &sc->sc_mididevs[i]);
if (err != USBD_NORMAL_COMPLETION)
return err;
}
return USBD_NORMAL_COMPLETION;
}
static usbd_status
detach_all_mididevs(struct umidi_softc *sc, int flags)
{
usbd_status err;
int i;
if (sc->sc_mididevs)
for (i = 0; i < sc->sc_num_mididevs; i++) {
err = detach_mididev(&sc->sc_mididevs[i], flags);
if (err != USBD_NORMAL_COMPLETION)
return err;
}
return USBD_NORMAL_COMPLETION;
}
static void
deactivate_all_mididevs(struct umidi_softc *sc)
{
int i;
if (sc->sc_mididevs) {
for (i = 0; i < sc->sc_num_mididevs; i++)
deactivate_mididev(&sc->sc_mididevs[i]);
}
}
/*
* TODO: the 0-based cable numbers will often not match the labeling of the
* equipment. Ideally:
* For class-compliant devices: get the iJack string from the jack descriptor.
* Otherwise:
* - support a DISPLAY_BASE_CN quirk (add the value to each internal cable
* number for display)
* - support an array quirk explictly giving a char * for each jack.
* For now, you get 0-based cable numbers. If there are multiple endpoints and
* the CNs are not globally unique, each is shown with its associated endpoint
* address in hex also. That should not be necessary when using iJack values
* or a quirk array.
*/
void
describe_mididev(struct umidi_mididev *md)
{
char in_label[16];
char out_label[16];
const char *unit_label;
char *final_label;
struct umidi_softc *sc;
int show_ep_in;
int show_ep_out;
size_t len;
sc = md->sc;
show_ep_in = sc-> sc_in_num_endpoints > 1 && !sc->cblnums_global;
show_ep_out = sc->sc_out_num_endpoints > 1 && !sc->cblnums_global;
if (NULL == md->in_jack)
in_label[0] = '\0';
else if (show_ep_in)
snprintf(in_label, sizeof in_label, "<%d(%x) ",
md->in_jack->cable_number, md->in_jack->endpoint->addr);
else
snprintf(in_label, sizeof in_label, "<%d ",
md->in_jack->cable_number);
if (NULL == md->out_jack)
out_label[0] = '\0';
else if (show_ep_out)
snprintf(out_label, sizeof out_label, ">%d(%x) ",
md->out_jack->cable_number, md->out_jack->endpoint->addr);
else
snprintf(out_label, sizeof out_label, ">%d ",
md->out_jack->cable_number);
unit_label = device_xname(sc->sc_dev);
len = strlen(in_label) + strlen(out_label) + strlen(unit_label) + 4;
final_label = kmem_alloc(len, KM_SLEEP);
snprintf(final_label, len, "%s%son %s",
in_label, out_label, unit_label);
md->label = final_label;
md->label_len = len;
}
#ifdef UMIDI_DEBUG
static void
dump_sc(struct umidi_softc *sc)
{
int i;
DPRINTFN(10, ("%s: dump_sc\n", device_xname(sc->sc_dev)));
for (i=0; i<sc->sc_out_num_endpoints; i++) {
DPRINTFN(10, ("\tout_ep(%p):\n", &sc->sc_out_ep[i]));
dump_ep(&sc->sc_out_ep[i]);
}
for (i=0; i<sc->sc_in_num_endpoints; i++) {
DPRINTFN(10, ("\tin_ep(%p):\n", &sc->sc_in_ep[i]));
dump_ep(&sc->sc_in_ep[i]);
}
}
static void
dump_ep(struct umidi_endpoint *ep)
{
int i;
for (i=0; i<UMIDI_MAX_EPJACKS; i++) {
if (NULL==ep->jacks[i])
continue;
DPRINTFN(10, ("\t\tjack[%d]:%p:\n", i, ep->jacks[i]));
dump_jack(ep->jacks[i]);
}
}
static void
dump_jack(struct umidi_jack *jack)
{
DPRINTFN(10, ("\t\t\tep=%p\n",
jack->endpoint));
}
#endif /* UMIDI_DEBUG */
/*
* MUX MIDI PACKET
*/
static const int packet_length[16] = {
/*0*/ -1,
/*1*/ -1,
/*2*/ 2,
/*3*/ 3,
/*4*/ 3,
/*5*/ 1,
/*6*/ 2,
/*7*/ 3,
/*8*/ 3,
/*9*/ 3,
/*A*/ 3,
/*B*/ 3,
/*C*/ 2,
/*D*/ 2,
/*E*/ 3,
/*F*/ 1,
};
#define GET_CN(p) (((unsigned char)(p)>>4)&0x0F)
#define GET_CIN(p) ((unsigned char)(p)&0x0F)
#define MIX_CN_CIN(cn, cin) \
((unsigned char)((((unsigned char)(cn)&0x0F)<<4)| \
((unsigned char)(cin)&0x0F)))
static usbd_status
start_input_transfer(struct umidi_endpoint *ep)
{
usbd_setup_xfer(ep->xfer, ep->pipe,
(usbd_private_handle)ep,
ep->buffer, ep->buffer_size,
USBD_SHORT_XFER_OK | USBD_NO_COPY,
USBD_NO_TIMEOUT, in_intr);
return usbd_transfer(ep->xfer);
}
static usbd_status
start_output_transfer(struct umidi_endpoint *ep)
{
usbd_status rv;
u_int32_t length;
int i;
length = (ep->next_slot - ep->buffer) * sizeof *ep->buffer;
DPRINTFN(200,("umidi out transfer: start %p end %p length %u\n",
ep->buffer, ep->next_slot, length));
usbd_setup_xfer(ep->xfer, ep->pipe,
(usbd_private_handle)ep,
ep->buffer, length,
USBD_NO_COPY, USBD_NO_TIMEOUT, out_intr);
rv = usbd_transfer(ep->xfer);
/*
* Once the transfer is scheduled, no more adding to partial
* packets within it.
*/
if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
for (i=0; i<UMIDI_MAX_EPJACKS; ++i)
if (NULL != ep->jacks[i])
ep->jacks[i]->midiman_ppkt = NULL;
}
return rv;
}
#ifdef UMIDI_DEBUG
#define DPR_PACKET(dir, sc, p) \
if ((unsigned char)(p)[1]!=0xFE) \
DPRINTFN(500, \
("%s: umidi packet(" #dir "): %02X %02X %02X %02X\n", \
device_xname(sc->sc_dev), \
(unsigned char)(p)[0], \
(unsigned char)(p)[1], \
(unsigned char)(p)[2], \
(unsigned char)(p)[3]));
#else
#define DPR_PACKET(dir, sc, p)
#endif
/*
* A 4-byte Midiman packet superficially resembles a 4-byte USB MIDI packet
* with the cable number and length in the last byte instead of the first,
* but there the resemblance ends. Where a USB MIDI packet is a semantic
* unit, a Midiman packet is just a wrapper for 1 to 3 bytes of raw MIDI
* with a cable nybble and a length nybble (which, unlike the CIN of a
* real USB MIDI packet, has no semantics at all besides the length).
* A packet received from a Midiman may contain part of a MIDI message,
* more than one MIDI message, or parts of more than one MIDI message. A
* three-byte MIDI message may arrive in three packets of data length 1, and
* running status may be used. Happily, the midi(4) driver above us will put
* it all back together, so the only cost is in USB bandwidth. The device
* has an easier time with what it receives from us: we'll pack messages in
* and across packets, but filling the packets whenever possible and,
* as midi(4) hands us a complete message at a time, we'll never send one
* in a dribble of short packets.
*/
static int
out_jack_output(struct umidi_jack *out_jack, u_char *src, int len, int cin)
{
struct umidi_endpoint *ep = out_jack->endpoint;
struct umidi_softc *sc = ep->sc;
unsigned char *packet;
int plen;
int poff;
KASSERT(mutex_owned(&sc->sc_lock));
if (sc->sc_dying)
return EIO;
if (!out_jack->opened)
return ENODEV; /* XXX as it was, is this the right errno? */
sc->sc_refcnt++;
#ifdef UMIDI_DEBUG
if (umididebug >= 100)
microtime(&umidi_tv);
#endif
DPRINTFN(100, ("umidi out: %"PRIu64".%06"PRIu64"s ep=%p cn=%d len=%d cin=%#x\n",
umidi_tv.tv_sec%100, (uint64_t)umidi_tv.tv_usec,
ep, out_jack->cable_number, len, cin));
packet = *ep->next_slot++;
KASSERT(ep->buffer_size >=
(ep->next_slot - ep->buffer) * sizeof *ep->buffer);
memset(packet, 0, UMIDI_PACKET_SIZE);
if (UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
if (NULL != out_jack->midiman_ppkt) { /* fill out a prev pkt */
poff = 0x0f & (out_jack->midiman_ppkt[3]);
plen = 3 - poff;
if (plen > len)
plen = len;
memcpy(out_jack->midiman_ppkt+poff, src, plen);
src += plen;
len -= plen;
plen += poff;
out_jack->midiman_ppkt[3] =
MIX_CN_CIN(out_jack->cable_number, plen);
DPR_PACKET(out+, sc, out_jack->midiman_ppkt);
if (3 == plen)
out_jack->midiman_ppkt = NULL; /* no more */
}
if (0 == len)
ep->next_slot--; /* won't be needed, nevermind */
else {
memcpy(packet, src, len);
packet[3] = MIX_CN_CIN(out_jack->cable_number, len);
DPR_PACKET(out, sc, packet);
if (len < 3)
out_jack->midiman_ppkt = packet;
}
} else { /* the nice simple USB class-compliant case */
packet[0] = MIX_CN_CIN(out_jack->cable_number, cin);
memcpy(packet+1, src, len);
DPR_PACKET(out, sc, packet);
}
ep->next_schedule |= 1<<(out_jack->cable_number);
++ ep->num_scheduled;
if (!ep->armed && !ep->soliciting) {
/*
* It would be bad to call out_solicit directly here (the
* caller need not be reentrant) but a soft interrupt allows
* solicit to run immediately the caller exits its critical
* section, and if the caller has more to write we can get it
* before starting the USB transfer, and send a longer one.
*/
ep->soliciting = 1;
softint_schedule(ep->solicit_cookie);
}
if (--sc->sc_refcnt < 0)
usb_detach_broadcast(sc->sc_dev, &sc->sc_detach_cv);
return 0;
}
static void
in_intr(usbd_xfer_handle xfer, usbd_private_handle priv,
usbd_status status)
{
int cn, len, i;
struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
struct umidi_softc *sc = ep->sc;
struct umidi_jack *jack;
unsigned char *packet;
umidi_packet_bufp slot;
umidi_packet_bufp end;
unsigned char *data;
u_int32_t count;
if (ep->sc->sc_dying || !ep->num_open)
return;
mutex_enter(&sc->sc_lock);
usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
if (0 == count % UMIDI_PACKET_SIZE) {
DPRINTFN(200,("%s: input endpoint %p transfer length %u\n",
device_xname(ep->sc->sc_dev), ep, count));
} else {
DPRINTF(("%s: input endpoint %p odd transfer length %u\n",
device_xname(ep->sc->sc_dev), ep, count));
}
slot = ep->buffer;
end = slot + count / sizeof *slot;
for (packet = *slot; slot < end; packet = *++slot) {
if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
cn = (0xf0&(packet[3]))>>4;
len = 0x0f&(packet[3]);
data = packet;
} else {
cn = GET_CN(packet[0]);
len = packet_length[GET_CIN(packet[0])];
data = packet + 1;
}
/* 0 <= cn <= 15 by inspection of above code */
if (!(jack = ep->jacks[cn]) || cn != jack->cable_number) {
DPRINTF(("%s: stray input endpoint %p cable %d len %d: "
"%02X %02X %02X (try CN_SEQ quirk?)\n",
device_xname(ep->sc->sc_dev), ep, cn, len,
(unsigned)data[0],
(unsigned)data[1],
(unsigned)data[2]));
mutex_exit(&sc->sc_lock);
return;
}
if (!jack->bound || !jack->opened)
continue;
DPRINTFN(500,("%s: input endpoint %p cable %d len %d: "
"%02X %02X %02X\n",
device_xname(ep->sc->sc_dev), ep, cn, len,
(unsigned)data[0],
(unsigned)data[1],
(unsigned)data[2]));
if (jack->u.in.intr) {
for (i = 0; i < len; i++) {
(*jack->u.in.intr)(jack->arg, data[i]);
}
}
}
(void)start_input_transfer(ep);
mutex_exit(&sc->sc_lock);
}
static void
out_intr(usbd_xfer_handle xfer, usbd_private_handle priv,
usbd_status status)
{
struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
struct umidi_softc *sc = ep->sc;
u_int32_t count;
if (sc->sc_dying)
return;
mutex_enter(&sc->sc_lock);
#ifdef UMIDI_DEBUG
if (umididebug >= 200)
microtime(&umidi_tv);
#endif
usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
if (0 == count % UMIDI_PACKET_SIZE) {
DPRINTFN(200,("%s: %"PRIu64".%06"PRIu64"s out ep %p xfer length %u\n",
device_xname(ep->sc->sc_dev),
umidi_tv.tv_sec%100, (uint64_t)umidi_tv.tv_usec, ep, count));
} else {
DPRINTF(("%s: output endpoint %p odd transfer length %u\n",
device_xname(ep->sc->sc_dev), ep, count));
}
count /= UMIDI_PACKET_SIZE;
/*
* If while the transfer was pending we buffered any new messages,
* move them to the start of the buffer.
*/
ep->next_slot -= count;
if (ep->buffer < ep->next_slot) {
memcpy(ep->buffer, ep->buffer + count,
(char *)ep->next_slot - (char *)ep->buffer);
}
cv_broadcast(&sc->sc_cv);
/*
* Do not want anyone else to see armed <- 0 before soliciting <- 1.
* Running at IPL_USB so the following should happen to be safe.
*/
ep->armed = 0;
if (!ep->soliciting) {
ep->soliciting = 1;
out_solicit_locked(ep);
}
mutex_exit(&sc->sc_lock);
}
/*
* A jack on which we have received a packet must be called back on its
* out.intr handler before it will send us another; it is considered
* 'scheduled'. It is nice and predictable - as long as it is scheduled,
* we need no extra buffer space for it.
*
* In contrast, a jack that is open but not scheduled may supply us a packet
* at any time, driven by the top half, and we must be able to accept it, no
* excuses. So we must ensure that at any point in time there are at least
* (num_open - num_scheduled) slots free.
*
* As long as there are more slots free than that minimum, we can loop calling
* scheduled jacks back on their "interrupt" handlers, soliciting more
* packets, starting the USB transfer only when the buffer space is down to
* the minimum or no jack has any more to send.
*/
static void
out_solicit_locked(void *arg)
{
struct umidi_endpoint *ep = arg;
umidi_packet_bufp end;
u_int16_t which;
struct umidi_jack *jack;
KASSERT(mutex_owned(&ep->sc->sc_lock));
end = ep->buffer + ep->buffer_size / sizeof *ep->buffer;
for ( ;; ) {
if (end - ep->next_slot <= ep->num_open - ep->num_scheduled)
break; /* at IPL_USB */
if (ep->this_schedule == 0) {
if (ep->next_schedule == 0)
break; /* at IPL_USB */
ep->this_schedule = ep->next_schedule;
ep->next_schedule = 0;
}
/*
* At least one jack is scheduled. Find and mask off the least
* set bit in this_schedule and decrement num_scheduled.
* Convert mask to bit index to find the corresponding jack,
* and call its intr handler. If it has a message, it will call
* back one of the output methods, which will set its bit in
* next_schedule (not copied into this_schedule until the
* latter is empty). In this way we round-robin the jacks that
* have messages to send, until the buffer is as full as we
* dare, and then start a transfer.
*/
which = ep->this_schedule;
which &= (~which)+1; /* now mask of least set bit */
ep->this_schedule &= ~which;
--ep->num_scheduled;
--which; /* now 1s below mask - count 1s to get index */
which -= ((which >> 1) & 0x5555);/* SWAR credit aggregate.org */
which = (((which >> 2) & 0x3333) + (which & 0x3333));
which = (((which >> 4) + which) & 0x0f0f);
which += (which >> 8);
which &= 0x1f; /* the bit index a/k/a jack number */
jack = ep->jacks[which];
if (jack->u.out.intr)
(*jack->u.out.intr)(jack->arg);
}
/* intr lock held at loop exit */
if (!ep->armed && ep->next_slot > ep->buffer) {
/*
* Can't hold the interrupt lock while calling into USB,
* but we can safely drop it here.
*/
mutex_exit(&ep->sc->sc_lock);
ep->armed = (USBD_IN_PROGRESS == start_output_transfer(ep));
mutex_enter(&ep->sc->sc_lock);
}
ep->soliciting = 0;
}
/* Entry point for the softintr. */
static void
out_solicit(void *arg)
{
struct umidi_endpoint *ep = arg;
struct umidi_softc *sc = ep->sc;
mutex_enter(&sc->sc_lock);
out_solicit_locked(arg);
mutex_exit(&sc->sc_lock);
}