NetBSD/sys/arch/sparc64/sparc64/clock.c

1144 lines
29 KiB
C

/* $NetBSD: clock.c,v 1.46 2002/03/01 11:51:01 martin Exp $ */
/*
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
* Copyright (c) 1994 Gordon W. Ross
* Copyright (c) 1993 Adam Glass
* Copyright (c) 1996 Paul Kranenburg
* Copyright (c) 1996
* The President and Fellows of Harvard College. All rights reserved.
*
* This software was developed by the Computer Systems Engineering group
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
* contributed to Berkeley.
*
* All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Harvard University.
* This product includes software developed by the University of
* California, Lawrence Berkeley Laboratory.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* This product includes software developed by Paul Kranenburg.
* This product includes software developed by Harvard University.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)clock.c 8.1 (Berkeley) 6/11/93
*
*/
/*
* Clock driver. This is the id prom and eeprom driver as well
* and includes the timer register functions too.
*/
/* Define this for a 1/4s clock to ease debugging */
/* #define INTR_DEBUG */
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/proc.h>
#include <sys/resourcevar.h>
#include <sys/malloc.h>
#include <sys/systm.h>
#ifdef GPROF
#include <sys/gmon.h>
#endif
#include <uvm/uvm_extern.h>
#include <machine/bus.h>
#include <machine/autoconf.h>
#include <machine/eeprom.h>
#include <machine/cpu.h>
#include <machine/idprom.h>
#include <dev/clock_subr.h>
#include <dev/ic/mk48txxreg.h>
#include <dev/ic/mc146818reg.h>
#include <sparc64/sparc64/intreg.h>
#include <sparc64/sparc64/timerreg.h>
#include <sparc64/dev/iommureg.h>
#include <sparc64/dev/sbusreg.h>
#include <dev/sbus/sbusvar.h>
#include <dev/ebus/ebusreg.h>
#include <sparc64/dev/ebusvar.h>
extern u_int64_t cpu_clockrate;
struct rtc_info {
bus_space_tag_t rtc_bt; /* bus tag & handle */
bus_space_handle_t rtc_bh; /* */
u_int rtc_year0; /* What year is represented on the system
by the chip's year counter at 0 */
};
/*
* Statistics clock interval and variance, in usec. Variance must be a
* power of two. Since this gives us an even number, not an odd number,
* we discard one case and compensate. That is, a variance of 1024 would
* give us offsets in [0..1023]. Instead, we take offsets in [1..1023].
* This is symmetric about the point 512, or statvar/2, and thus averages
* to that value (assuming uniform random numbers).
*/
/* XXX fix comment to match value */
int statvar = 8192;
int statmin; /* statclock interval - 1/2*variance */
int timerok;
static long tick_increment;
int schedintr __P((void *));
static struct intrhand level10 = { clockintr };
static struct intrhand level0 = { tickintr };
static struct intrhand level14 = { statintr };
static struct intrhand schedint = { schedintr };
/*
* clock (eeprom) attaches at the sbus or the ebus (PCI)
*/
static int clockmatch_sbus __P((struct device *, struct cfdata *, void *));
static void clockattach_sbus __P((struct device *, struct device *, void *));
static int clockmatch_ebus __P((struct device *, struct cfdata *, void *));
static void clockattach_ebus __P((struct device *, struct device *, void *));
static int clockmatch_rtc __P((struct device *, struct cfdata *, void *));
static void clockattach_rtc __P((struct device *, struct device *, void *));
static void clockattach __P((int, bus_space_tag_t, bus_space_handle_t));
struct cfattach clock_sbus_ca = {
sizeof(struct device), clockmatch_sbus, clockattach_sbus
};
struct cfattach clock_ebus_ca = {
sizeof(struct device), clockmatch_ebus, clockattach_ebus
};
struct cfattach rtc_ebus_ca = {
sizeof(struct device), clockmatch_rtc, clockattach_rtc
};
extern struct cfdriver clock_cd;
/* Global TOD clock handle & idprom pointer */
static todr_chip_handle_t todr_handle = NULL;
static struct idprom *idprom;
static int timermatch __P((struct device *, struct cfdata *, void *));
static void timerattach __P((struct device *, struct device *, void *));
struct timerreg_4u timerreg_4u; /* XXX - need more cleanup */
struct cfattach timer_ca = {
sizeof(struct device), timermatch, timerattach
};
int sbus_wenable __P((struct todr_chip_handle *, int));
int ebus_wenable __P((struct todr_chip_handle *, int));
struct chiptime;
void myetheraddr __P((u_char *));
int chiptotime __P((int, int, int, int, int, int));
void timetochip __P((struct chiptime *));
void stopcounter __P((struct timer_4u *));
int timerblurb = 10; /* Guess a value; used before clock is attached */
u_int8_t rtc_read_reg(bus_space_tag_t, bus_space_handle_t, int);
void rtc_write_reg(bus_space_tag_t, bus_space_handle_t, int, u_int8_t);
int rtc_gettime(todr_chip_handle_t, struct timeval *);
int rtc_settime(todr_chip_handle_t, struct timeval *);
int rtc_getcal(todr_chip_handle_t, int *);
int rtc_setcal(todr_chip_handle_t, int);
int rtc_auto_century_adjust = 1;
/*
* The OPENPROM calls the clock the "eeprom", so we have to have our
* own special match function to call it the "clock".
*/
static int
clockmatch_sbus(parent, cf, aux)
struct device *parent;
struct cfdata *cf;
void *aux;
{
struct sbus_attach_args *sa = aux;
return (strcmp("eeprom", sa->sa_name) == 0);
}
static int
clockmatch_ebus(parent, cf, aux)
struct device *parent;
struct cfdata *cf;
void *aux;
{
struct ebus_attach_args *ea = aux;
return (strcmp("eeprom", ea->ea_name) == 0);
}
static int
clockmatch_rtc(parent, cf, aux)
struct device *parent;
struct cfdata *cf;
void *aux;
{
struct ebus_attach_args *ea = aux;
return (strcmp("rtc", ea->ea_name) == 0);
}
/*
* Attach a clock (really `eeprom') to the sbus or ebus.
*
* We ignore any existing virtual address as we need to map
* this read-only and make it read-write only temporarily,
* whenever we read or write the clock chip. The clock also
* contains the ID ``PROM'', and I have already had the pleasure
* of reloading the cpu type, Ethernet address, etc, by hand from
* the console FORTH interpreter. I intend not to enjoy it again.
*
* the MK48T02 is 2K. the MK48T08 is 8K, and the MK48T59 is
* supposed to be identical to it.
*
* This is *UGLY*! We probably have multiple mappings. But I do
* know that this all fits inside an 8K page, so I'll just map in
* once.
*
* What we really need is some way to record the bus attach args
* so we can call *_bus_map() later with BUS_SPACE_MAP_READONLY
* or not to write enable/disable the device registers. This is
* a non-trivial operation.
*/
/* Somewhere to keep info that sbus_wenable() needs */
struct sbus_info {
bus_space_tag_t si_bt;
bus_space_handle_t si_bh;
struct sbus_reg si_reg;
};
/* ARGSUSED */
static void
clockattach_sbus(parent, self, aux)
struct device *parent, *self;
void *aux;
{
struct sbus_attach_args *sa = aux;
bus_space_tag_t bt = sa->sa_bustag;
int sz;
static struct sbus_info sbi;
/* use sa->sa_regs[0].size? */
sz = 8192;
if (sbus_bus_map(bt,
sa->sa_slot,
(sa->sa_offset & ~NBPG),
sz,
BUS_SPACE_MAP_LINEAR|BUS_SPACE_MAP_READONLY,
0,
&sbi.si_bh) != 0) {
printf("%s: can't map register\n", self->dv_xname);
return;
}
clockattach(sa->sa_node, bt, sbi.si_bh);
/* Save info for the clock wenable call. */
sbi.si_bt = bt;
sbi.si_reg = sa->sa_reg[0];
todr_handle->bus_cookie = &sbi;
todr_handle->todr_setwen = sbus_wenable;
}
/*
* Write en/dis-able clock registers. We coordinate so that several
* writers can run simultaneously.
*/
int
sbus_wenable(handle, onoff)
struct todr_chip_handle *handle;
int onoff;
{
register int s, err = 0;
register int prot;/* nonzero => change prot */
static int writers;
s = splhigh();
if (onoff)
prot = writers++ == 0 ? BUS_SPACE_MAP_LINEAR : 0;
else
prot = --writers == 0 ?
BUS_SPACE_MAP_LINEAR|BUS_SPACE_MAP_READONLY : 0;
splx(s);
if (prot) {
struct sbus_info *sbi = (struct sbus_info *)handle->bus_cookie;
bus_space_handle_t newaddr;
err = sbus_bus_map(sbi->si_bt, sbi->si_reg.sbr_slot,
(sbi->si_reg.sbr_offset & ~NBPG),
8192, prot, (vaddr_t)sbi->si_bh, &newaddr);
/* We can panic now or take a datafault later... */
if (sbi->si_bh != newaddr)
panic("sbus_wenable: address %p changed to %p\n",
(void *)(u_long)sbi->si_bh,
(void *)(u_long)newaddr);
}
return (err);
}
struct ebus_info {
bus_space_tag_t ei_bt;
bus_space_handle_t ei_bh;
struct ebus_regs ei_reg;
};
/* ARGSUSED */
static void
clockattach_ebus(parent, self, aux)
struct device *parent, *self;
void *aux;
{
struct ebus_attach_args *ea = aux;
bus_space_tag_t bt = ea->ea_bustag;
int sz;
static struct ebus_info ebi;
/* hard code to 8K? */
sz = ea->ea_regs[0].size;
if (ebus_bus_map(bt,
0,
EBUS_ADDR_FROM_REG(&ea->ea_regs[0]),
sz,
BUS_SPACE_MAP_LINEAR,
0,
&ebi.ei_bh) != 0) {
printf("%s: can't map register\n", self->dv_xname);
return;
}
clockattach(ea->ea_node, bt, ebi.ei_bh);
/* Save info for the clock wenable call. */
ebi.ei_bt = bt;
ebi.ei_reg = ea->ea_regs[0];
todr_handle->bus_cookie = &ebi;
todr_handle->todr_setwen = ebus_wenable;
}
/*
* Write en/dis-able clock registers. We coordinate so that several
* writers can run simultaneously.
*/
int
ebus_wenable(handle, onoff)
struct todr_chip_handle *handle;
int onoff;
{
register int s, err = 0;
register int prot;/* nonzero => change prot */
static int writers;
s = splhigh();
if (onoff)
prot = writers++ == 0 ? BUS_SPACE_MAP_LINEAR : 0;
else
prot = --writers == 0 ?
BUS_SPACE_MAP_LINEAR|BUS_SPACE_MAP_READONLY : 0;
splx(s);
if (prot) {
struct ebus_info *ebi = (struct ebus_info *)handle->bus_cookie;
bus_space_handle_t newaddr;
err = sbus_bus_map(ebi->ei_bt, 0,
EBUS_ADDR_FROM_REG(&ebi->ei_reg), 8192, prot,
(vaddr_t)ebi->ei_bh, &newaddr);
/* We can panic now or take a datafault later... */
if (ebi->ei_bh != newaddr)
panic("ebus_wenable: address %p changed to %p\n",
(void *)(u_long)ebi->ei_bh,
(void *)(u_long)newaddr);
}
return (err);
}
static void
clockattach(node, bt, bh)
int node;
bus_space_tag_t bt;
bus_space_handle_t bh;
{
char *model;
struct idprom *idp;
int h;
model = PROM_getpropstring(node, "model");
#ifdef DIAGNOSTIC
if (model == NULL)
panic("clockattach: no model property");
#endif
/* Our TOD clock year 0 is 1968 */
todr_handle = mk48txx_attach(bt, bh, model, 1968, NULL, NULL);
if (todr_handle == NULL)
panic("Can't attach %s tod clock", model);
#define IDPROM_OFFSET (8*1024 - 40) /* XXX - get nvram sz from driver */
idp = (struct idprom *)((u_long)bh + IDPROM_OFFSET);
h = idp->id_machine << 24;
h |= idp->id_hostid[0] << 16;
h |= idp->id_hostid[1] << 8;
h |= idp->id_hostid[2];
hostid = h;
printf(": hostid %x\n", (u_int)hostid);
idprom = idp;
}
/*
* `rtc' is a ds1287 on an ebus (actually an isa bus, but we use the
* ebus driver for isa.) So we can use ebus_wenable() but need to do
* different attach work and use different todr routines. It does not
* incorporate an IDPROM.
*/
/*
* XXX the stupid ds1287 is not mapped directly but uses an address
* and a data reg so we cannot access the stuuupid thing w/o having
* write access to the registers.
*
* XXXX We really need to mutex register access!
*/
#define RTC_ADDR 0
#define RTC_DATA 1
u_int8_t
rtc_read_reg(bus_space_tag_t bt, bus_space_handle_t bh, int reg)
{
bus_space_write_1(bt, bh, RTC_ADDR, reg);
return (bus_space_read_1(bt, bh, RTC_DATA));
}
void
rtc_write_reg(bus_space_tag_t bt, bus_space_handle_t bh, int reg, u_int8_t val)
{
bus_space_write_1(bt, bh, RTC_ADDR, reg);
bus_space_write_1(bt, bh, RTC_DATA, val);
}
/* ARGSUSED */
static void
clockattach_rtc(parent, self, aux)
struct device *parent, *self;
void *aux;
{
struct ebus_attach_args *ea = aux;
bus_space_tag_t bt = ea->ea_bustag;
todr_chip_handle_t handle;
struct rtc_info *rtc;
char *model;
int sz;
static struct ebus_info ebi;
/* hard code to 8K? */
sz = ea->ea_regs[0].size;
if (ebus_bus_map(bt,
0,
EBUS_ADDR_FROM_REG(&ea->ea_regs[0]),
sz,
BUS_SPACE_MAP_LINEAR,
0,
&ebi.ei_bh) != 0) {
printf("%s: can't map register\n", self->dv_xname);
return;
}
model = PROM_getpropstring(ea->ea_node, "model");
#ifdef DIAGNOSTIC
if (model == NULL)
panic("clockattach_rtc: no model property");
#endif
printf(": %s\n", model);
/*
* Turn interrupts off, just in case. (Although they shouldn't
* be wired to an interrupt controller on sparcs).
*/
rtc_write_reg(bt, ebi.ei_bh,
MC_REGB, MC_REGB_BINARY | MC_REGB_24HR);
/* Setup our todr_handle */
sz = ALIGN(sizeof(struct todr_chip_handle)) + sizeof(struct rtc_info);
handle = malloc(sz, M_DEVBUF, M_NOWAIT);
rtc = (struct rtc_info*)((u_long)handle +
ALIGN(sizeof(struct todr_chip_handle)));
handle->cookie = rtc;
handle->todr_gettime = rtc_gettime;
handle->todr_settime = rtc_settime;
handle->todr_getcal = rtc_getcal;
handle->todr_setcal = rtc_setcal;
handle->todr_setwen = NULL;
rtc->rtc_bt = bt;
rtc->rtc_bh = ebi.ei_bh;
/* Our TOD clock year 0 is 1968 */
rtc->rtc_year0 = 1968; /* XXX Really? */
/* Save info for the clock wenable call. */
ebi.ei_bt = bt;
ebi.ei_reg = ea->ea_regs[0];
handle->bus_cookie = &ebi;
handle->todr_setwen = ebus_wenable;
todr_handle = handle;
}
/*
* The sun4u OPENPROMs call the timer the "counter-timer", except for
* the lame UltraSPARC IIi PCI machines that don't have them.
*/
static int
timermatch(parent, cf, aux)
struct device *parent;
struct cfdata *cf;
void *aux;
{
struct mainbus_attach_args *ma = aux;
return (strcmp("counter-timer", ma->ma_name) == 0);
}
static void
timerattach(parent, self, aux)
struct device *parent, *self;
void *aux;
{
struct mainbus_attach_args *ma = aux;
u_int *va = ma->ma_address;
#if 0
volatile int64_t *cnt = NULL, *lim = NULL;
#endif
/*
* What we should have are 3 sets of registers that reside on
* different parts of SYSIO or PSYCHO. We'll use the prom
* mappings cause we can't get rid of them and set up appropriate
* pointers on the timerreg_4u structure.
*/
timerreg_4u.t_timer = (struct timer_4u *)(u_long)va[0];
timerreg_4u.t_clrintr = (int64_t *)(u_long)va[1];
timerreg_4u.t_mapintr = (int64_t *)(u_long)va[2];
/* Install the appropriate interrupt vector here */
level10.ih_number = ma->ma_interrupts[0];
level10.ih_clr = (void*)&timerreg_4u.t_clrintr[0];
intr_establish(10, &level10);
level14.ih_number = ma->ma_interrupts[1];
level14.ih_clr = (void*)&timerreg_4u.t_clrintr[1];
intr_establish(14, &level14);
printf(" irq vectors %lx and %lx",
(u_long)level10.ih_number,
(u_long)level14.ih_number);
#if 0
cnt = &(timerreg_4u.t_timer[0].t_count);
lim = &(timerreg_4u.t_timer[0].t_limit);
/*
* Calibrate delay() by tweaking the magic constant
* until a delay(100) actually reads (at least) 100 us
* on the clock. Since we're using the %tick register
* which should be running at exactly the CPU clock rate, it
* has a period of somewhere between 7ns and 3ns.
*/
#ifdef DEBUG
printf("Delay calibrarion....\n");
#endif
for (timerblurb = 1; timerblurb > 0; timerblurb++) {
volatile int discard;
register int t0, t1;
/* Reset counter register by writing some large limit value */
discard = *lim;
*lim = tmr_ustolim(TMR_MASK-1);
t0 = *cnt;
delay(100);
t1 = *cnt;
if (t1 & TMR_LIMIT)
panic("delay calibration");
t0 = (t0 >> TMR_SHIFT) & TMR_MASK;
t1 = (t1 >> TMR_SHIFT) & TMR_MASK;
if (t1 >= t0 + 100)
break;
}
printf(" delay constant %d\n", timerblurb);
#endif
printf("\n");
timerok = 1;
}
void
stopcounter(creg)
struct timer_4u *creg;
{
/* Stop the clock */
volatile int discard;
discard = creg->t_limit;
creg->t_limit = 0;
}
/*
* XXX this belongs elsewhere
*/
void
myetheraddr(cp)
u_char *cp;
{
struct idprom *idp;
if ((idp = idprom) == NULL) {
int node, n;
node = findroot();
if (PROM_getprop(node, "idprom", sizeof *idp, &n, (void **)&idp) ||
n != 1) {
printf("\nmyetheraddr: clock not setup yet, "
"and no idprom property in /\n");
return;
}
}
cp[0] = idp->id_ether[0];
cp[1] = idp->id_ether[1];
cp[2] = idp->id_ether[2];
cp[3] = idp->id_ether[3];
cp[4] = idp->id_ether[4];
cp[5] = idp->id_ether[5];
if (idprom == NULL)
free(idp, M_DEVBUF);
}
/*
* Set up the real-time and statistics clocks. Leave stathz 0 only if
* no alternative timer is available.
*
* The frequencies of these clocks must be an even number of microseconds.
*/
void
cpu_initclocks()
{
int statint, minint;
static u_int64_t start_time;
#ifdef DEBUG
extern int intrdebug;
#endif
#ifdef DEBUG
/* Set a 1s clock */
if (intrdebug) {
hz = 1;
tick = 1000000 / hz;
printf("intrdebug set: 1Hz clock\n");
}
#endif
if (1000000 % hz) {
printf("cannot get %d Hz clock; using 100 Hz\n", hz);
hz = 100;
tick = 1000000 / hz;
}
/* Make sure we have a sane cpu_clockrate -- we'll need it */
if (!cpu_clockrate)
/* Default to 200MHz clock XXXXX */
cpu_clockrate = 200000000;
/*
* Calculate the starting %tick value. We set that to the same
* as time, scaled for the CPU clockrate. This gets nasty, but
* we can handle it. time.tv_usec is in microseconds.
* cpu_clockrate is in MHz.
*/
start_time = time.tv_sec * cpu_clockrate;
/* Now fine tune the usecs */
start_time += cpu_clockrate / 1000000 * time.tv_usec;
/* Initialize the %tick register */
#ifdef __arch64__
__asm __volatile("wrpr %0, 0, %%tick" : : "r" (start_time));
#else
{
int start_hi = (start_time>>32), start_lo = start_time;
__asm __volatile("sllx %1,32,%0; or %0,%2,%0; wrpr %0, 0, %%tick"
: "=&r" (start_hi) /* scratch register */
: "r" ((int)(start_hi)), "r" ((int)(start_lo)));
}
#endif
/*
* Now handle machines w/o counter-timers.
*/
if (!timerreg_4u.t_timer || !timerreg_4u.t_clrintr) {
printf("No counter-timer -- using %%tick at %ldMHz as system clock.\n",
(long)(cpu_clockrate/1000000));
/* We don't have a counter-timer -- use %tick */
level0.ih_clr = 0;
/*
* Establish a level 10 interrupt handler
*
* We will have a conflict with the softint handler,
* so we set the ih_number to 1.
*/
level0.ih_number = 1;
intr_establish(10, &level0);
/* We only have one timer so we have no statclock */
stathz = 0;
/* set the next interrupt time */
tick_increment = cpu_clockrate / hz;
#ifdef DEBUG
printf("Using %%tick -- intr in %ld cycles...", tick_increment);
#endif
next_tick(tick_increment);
#ifdef DEBUG
printf("done.\n");
#endif
return;
}
if (stathz == 0)
stathz = hz;
if (1000000 % stathz) {
printf("cannot get %d Hz statclock; using 100 Hz\n", stathz);
stathz = 100;
}
profhz = stathz; /* always */
statint = 1000000 / stathz;
minint = statint / 2 + 100;
while (statvar > minint)
statvar >>= 1;
/*
* Establish scheduler softint.
*/
schedint.ih_pil = PIL_SCHED;
schedint.ih_clr = NULL;
schedint.ih_arg = 0;
schedint.ih_pending = 0;
schedhz = stathz/4;
/*
* Enable timers
*
* Also need to map the interrupts cause we're not a child of the sbus.
* N.B. By default timer[0] is disabled and timer[1] is enabled.
*/
stxa((vaddr_t)&timerreg_4u.t_timer[0].t_limit, ASI_NUCLEUS,
tmr_ustolim(tick)|TMR_LIM_IEN|TMR_LIM_PERIODIC|TMR_LIM_RELOAD);
stxa((vaddr_t)&timerreg_4u.t_mapintr[0], ASI_NUCLEUS,
timerreg_4u.t_mapintr[0]|INTMAP_V);
#ifdef DEBUG
if (intrdebug)
/* Neglect to enable timer */
stxa((vaddr_t)&timerreg_4u.t_timer[1].t_limit, ASI_NUCLEUS,
tmr_ustolim(statint)|TMR_LIM_RELOAD);
else
#endif
stxa((vaddr_t)&timerreg_4u.t_timer[1].t_limit, ASI_NUCLEUS,
tmr_ustolim(statint)|TMR_LIM_IEN|TMR_LIM_RELOAD);
stxa((vaddr_t)&timerreg_4u.t_mapintr[1], ASI_NUCLEUS,
timerreg_4u.t_mapintr[1]|INTMAP_V);
statmin = statint - (statvar >> 1);
}
/*
* Dummy setstatclockrate(), since we know profhz==hz.
*/
/* ARGSUSED */
void
setstatclockrate(newhz)
int newhz;
{
/* nothing */
}
/*
* Level 10 (clock) interrupts. If we are using the FORTH PROM for
* console input, we need to check for that here as well, and generate
* a software interrupt to read it.
*/
#ifdef DEBUG
static int clockcheck = 0;
#endif
int
clockintr(cap)
void *cap;
{
#ifdef DEBUG
static int64_t tick_base = 0;
int64_t t = (u_int64_t)tick();
if (!tick_base) {
tick_base = (time.tv_sec * 1000000LL + time.tv_usec)
* 1000000LL / cpu_clockrate;
tick_base -= t;
} else if (clockcheck) {
int64_t tk = t;
int64_t clk = (time.tv_sec * 1000000LL + time.tv_usec);
t -= tick_base;
t = t * 1000000LL / cpu_clockrate;
if (t - clk > hz) {
printf("Clock lost an interrupt!\n");
printf("Actual: %llx Expected: %llx tick %llx tick_base %llx\n",
(long long)t, (long long)clk, (long long)tk, (long long)tick_base);
Debugger();
tick_base = 0;
}
}
#endif
/* Let locore.s clear the interrupt for us. */
hardclock((struct clockframe *)cap);
return (1);
}
int poll_console = 0;
/*
* Level 10 (clock) interrupts. If we are using the FORTH PROM for
* console input, we need to check for that here as well, and generate
* a software interrupt to read it.
*
* %tick is really a level-14 interrupt. We need to remap this in
* locore.s to a level 10.
*/
int
tickintr(cap)
void *cap;
{
int s;
#if NKBD > 0
extern int cnrom __P((void));
extern int rom_console_input;
#endif
hardclock((struct clockframe *)cap);
if (poll_console)
setsoftint();
s = splhigh();
/* Reset the interrupt */
next_tick(tick_increment);
splx(s);
return (1);
}
/*
* Level 14 (stat clock) interrupt handler.
*/
int
statintr(cap)
void *cap;
{
register u_long newint, r, var;
struct cpu_info *ci = curcpu();
#ifdef NOT_DEBUG
printf("statclock: count %x:%x, limit %x:%x\n",
timerreg_4u.t_timer[1].t_count, timerreg_4u.t_timer[1].t_limit);
#endif
#ifdef NOT_DEBUG
prom_printf("!");
#endif
statclock((struct clockframe *)cap);
#ifdef NOTDEF_DEBUG
/* Don't re-schedule the IRQ */
return 1;
#endif
/*
* Compute new randomized interval. The intervals are uniformly
* distributed on [statint - statvar / 2, statint + statvar / 2],
* and therefore have mean statint, giving a stathz frequency clock.
*/
var = statvar;
do {
r = random() & (var - 1);
} while (r == 0);
newint = statmin + r;
if (schedhz)
if ((++ci->ci_schedstate.spc_schedticks & 3) == 0)
send_softint(-1, PIL_SCHED, &schedint);
stxa((vaddr_t)&timerreg_4u.t_timer[1].t_limit, ASI_NUCLEUS,
tmr_ustolim(newint)|TMR_LIM_IEN|TMR_LIM_RELOAD);
return (1);
}
int
schedintr(arg)
void *arg;
{
if (curproc)
schedclock(curproc);
return (1);
}
/*
* `sparc_clock_time_is_ok' is used in cpu_reboot() to determine
* whether it is appropriate to call resettodr() to consolidate
* pending time adjustments.
*/
int sparc_clock_time_is_ok;
/*
* Set up the system's time, given a `reasonable' time value.
*/
void
inittodr(base)
time_t base;
{
int badbase = 0, waszero = base == 0;
if (base < 5 * SECYR) {
/*
* If base is 0, assume filesystem time is just unknown
* in stead of preposterous. Don't bark.
*/
if (base != 0)
printf("WARNING: preposterous time in file system\n");
/* not going to use it anyway, if the chip is readable */
base = 21*SECYR + 186*SECDAY + SECDAY/2;
badbase = 1;
}
if (todr_handle &&
(todr_gettime(todr_handle, (struct timeval *)&time) != 0 ||
time.tv_sec == 0)) {
printf("WARNING: bad date in battery clock");
/*
* Believe the time in the file system for lack of
* anything better, resetting the clock.
*/
time.tv_sec = base;
if (!badbase)
resettodr();
} else {
int deltat = time.tv_sec - base;
sparc_clock_time_is_ok = 1;
if (deltat < 0)
deltat = -deltat;
if (waszero || deltat < 2 * SECDAY)
return;
printf("WARNING: clock %s %d days",
time.tv_sec < base ? "lost" : "gained", deltat / SECDAY);
}
printf(" -- CHECK AND RESET THE DATE!\n");
}
/*
* Reset the clock based on the current time.
* Used when the current clock is preposterous, when the time is changed,
* and when rebooting. Do nothing if the time is not yet known, e.g.,
* when crashing during autoconfig.
*/
void
resettodr()
{
if (time.tv_sec == 0)
return;
sparc_clock_time_is_ok = 1;
if (todr_handle == 0 ||
todr_settime(todr_handle, (struct timeval *)&time) != 0)
printf("Cannot set time in time-of-day clock\n");
}
/*
* XXX: these may actually belong somewhere else, but since the
* EEPROM is so closely tied to the clock on some models, perhaps
* it needs to stay here...
*/
int
eeprom_uio(uio)
struct uio *uio;
{
return (ENODEV);
}
/*
* RTC todr routines.
*/
/*
* Get time-of-day and convert to a `struct timeval'
* Return 0 on success; an error number otherwise.
*/
int
rtc_gettime(handle, tv)
todr_chip_handle_t handle;
struct timeval *tv;
{
struct rtc_info *rtc = handle->cookie;
bus_space_tag_t bt = rtc->rtc_bt;
bus_space_handle_t bh = rtc->rtc_bh;
struct clock_ymdhms dt;
int year;
u_int8_t csr;
todr_wenable(handle, 1);
/* Stop updates. */
csr = rtc_read_reg(bt, bh, MC_REGB);
csr |= MC_REGB_SET;
rtc_write_reg(bt, bh, MC_REGB, csr);
/* Read time */
dt.dt_sec = rtc_read_reg(bt, bh, MC_SEC);
dt.dt_min = rtc_read_reg(bt, bh, MC_MIN);
dt.dt_hour = rtc_read_reg(bt, bh, MC_HOUR);
dt.dt_day = rtc_read_reg(bt, bh, MC_DOM);
dt.dt_wday = rtc_read_reg(bt, bh, MC_DOW);
dt.dt_mon = rtc_read_reg(bt, bh, MC_MONTH);
year = rtc_read_reg(bt, bh, MC_YEAR);
printf("rtc_gettime: read y %x/%d m %x/%d wd %d d %x/%d "
"h %x/%d m %x/%d s %x/%d\n",
year, year, dt.dt_mon, dt.dt_mon, dt.dt_wday,
dt.dt_day, dt.dt_day, dt.dt_hour, dt.dt_hour,
dt.dt_min, dt.dt_min, dt.dt_sec, dt.dt_sec);
year += rtc->rtc_year0;
if (year < POSIX_BASE_YEAR && rtc_auto_century_adjust != 0)
year += 100;
dt.dt_year = year;
/* time wears on */
csr = rtc_read_reg(bt, bh, MC_REGB);
csr &= ~MC_REGB_SET;
rtc_write_reg(bt, bh, MC_REGB, csr);
todr_wenable(handle, 0);
/* simple sanity checks */
if (dt.dt_mon > 12 || dt.dt_day > 31 ||
dt.dt_hour >= 24 || dt.dt_min >= 60 || dt.dt_sec >= 60)
return (1);
tv->tv_sec = clock_ymdhms_to_secs(&dt);
tv->tv_usec = 0;
return (0);
}
/*
* Set the time-of-day clock based on the value of the `struct timeval' arg.
* Return 0 on success; an error number otherwise.
*/
int
rtc_settime(handle, tv)
todr_chip_handle_t handle;
struct timeval *tv;
{
struct rtc_info *rtc = handle->cookie;
bus_space_tag_t bt = rtc->rtc_bt;
bus_space_handle_t bh = rtc->rtc_bh;
struct clock_ymdhms dt;
u_int8_t csr;
int year;
/* Note: we ignore `tv_usec' */
clock_secs_to_ymdhms(tv->tv_sec, &dt);
year = dt.dt_year - rtc->rtc_year0;
if (year > 99 && rtc_auto_century_adjust != 0)
year -= 100;
todr_wenable(handle, 1);
/* enable write */
csr = rtc_read_reg(bt, bh, MC_REGB);
csr |= MC_REGB_SET;
rtc_write_reg(bt, bh, MC_REGB, csr);
rtc_write_reg(bt, bh, MC_SEC, dt.dt_sec);
rtc_write_reg(bt, bh, MC_MIN, dt.dt_min);
rtc_write_reg(bt, bh, MC_HOUR, dt.dt_hour);
rtc_write_reg(bt, bh, MC_DOW, dt.dt_wday);
rtc_write_reg(bt, bh, MC_DOM, dt.dt_day);
rtc_write_reg(bt, bh, MC_MONTH, dt.dt_mon);
rtc_write_reg(bt, bh, MC_YEAR, year);
/* load them up */
csr = rtc_read_reg(bt, bh, MC_REGB);
csr &= ~MC_REGB_SET;
rtc_write_reg(bt, bh, MC_REGB, csr);
todr_wenable(handle, 0);
return (0);
}
int
rtc_getcal(handle, vp)
todr_chip_handle_t handle;
int *vp;
{
return (EOPNOTSUPP);
}
int
rtc_setcal(handle, v)
todr_chip_handle_t handle;
int v;
{
return (EOPNOTSUPP);
}