NetBSD/sys/dev/fss.c
hannken 597afdd860 Make fss(4) D_MPSAFE.
- Use the device lock to protect fss_open(), fss_close() and fss_unmount_hook().
- Make sure fss_bs_thread() does not call biodone() with locks held.

Reviewd by: Andrew Doran <ad@netbsd.org>
2008-10-01 10:45:11 +00:00

1278 lines
29 KiB
C

/* $NetBSD: fss.c,v 1.60 2008/10/01 10:45:11 hannken Exp $ */
/*-
* Copyright (c) 2003 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Juergen Hannken-Illjes.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* File system snapshot disk driver.
*
* Block/character interface to the snapshot of a mounted file system.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: fss.c,v 1.60 2008/10/01 10:45:11 hannken Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/namei.h>
#include <sys/proc.h>
#include <sys/errno.h>
#include <sys/malloc.h>
#include <sys/buf.h>
#include <sys/ioctl.h>
#include <sys/disklabel.h>
#include <sys/device.h>
#include <sys/disk.h>
#include <sys/stat.h>
#include <sys/mount.h>
#include <sys/vnode.h>
#include <sys/file.h>
#include <sys/uio.h>
#include <sys/conf.h>
#include <sys/kthread.h>
#include <sys/fstrans.h>
#include <sys/simplelock.h>
#include <miscfs/specfs/specdev.h>
#include <dev/fssvar.h>
#include <uvm/uvm.h>
void fssattach(int);
dev_type_open(fss_open);
dev_type_close(fss_close);
dev_type_read(fss_read);
dev_type_write(fss_write);
dev_type_ioctl(fss_ioctl);
dev_type_strategy(fss_strategy);
dev_type_dump(fss_dump);
dev_type_size(fss_size);
static void fss_unmount_hook(struct mount *);
static int fss_copy_on_write(void *, struct buf *, bool);
static inline void fss_error(struct fss_softc *, const char *);
static int fss_create_files(struct fss_softc *, struct fss_set *,
off_t *, struct lwp *);
static int fss_create_snapshot(struct fss_softc *, struct fss_set *,
struct lwp *);
static int fss_delete_snapshot(struct fss_softc *, struct lwp *);
static int fss_softc_alloc(struct fss_softc *);
static void fss_softc_free(struct fss_softc *);
static int fss_read_cluster(struct fss_softc *, u_int32_t);
static void fss_bs_thread(void *);
static int fss_bs_io(struct fss_softc *, fss_io_type,
u_int32_t, off_t, int, void *);
static u_int32_t *fss_bs_indir(struct fss_softc *, u_int32_t);
static kmutex_t fss_device_lock; /* Protect all units. */
static int fss_num_attached = 0; /* Number of attached devices. */
static struct vfs_hooks fss_vfs_hooks = {
.vh_unmount = fss_unmount_hook
};
const struct bdevsw fss_bdevsw = {
fss_open, fss_close, fss_strategy, fss_ioctl,
fss_dump, fss_size, D_DISK | D_MPSAFE
};
const struct cdevsw fss_cdevsw = {
fss_open, fss_close, fss_read, fss_write, fss_ioctl,
nostop, notty, nopoll, nommap, nokqfilter, D_DISK | D_MPSAFE
};
static int fss_match(device_t, cfdata_t, void *);
static void fss_attach(device_t, device_t, void *);
static int fss_detach(device_t, int);
CFATTACH_DECL_NEW(fss, sizeof(struct fss_softc),
fss_match, fss_attach, fss_detach, NULL);
extern struct cfdriver fss_cd;
void
fssattach(int num)
{
mutex_init(&fss_device_lock, MUTEX_DEFAULT, IPL_NONE);
if (config_cfattach_attach(fss_cd.cd_name, &fss_ca))
aprint_error("%s: unable to register\n", fss_cd.cd_name);
}
static int
fss_match(device_t self, cfdata_t cfdata, void *aux)
{
return 1;
}
static void
fss_attach(device_t parent, device_t self, void *aux)
{
struct fss_softc *sc = device_private(self);
sc->sc_dev = self;
sc->sc_bdev = NODEV;
mutex_init(&sc->sc_slock, MUTEX_DEFAULT, IPL_NONE);
mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE);
cv_init(&sc->sc_work_cv, "fssbs");
cv_init(&sc->sc_cache_cv, "cowwait");
bufq_alloc(&sc->sc_bufq, "fcfs", 0);
sc->sc_dkdev = malloc(sizeof(*sc->sc_dkdev), M_DEVBUF, M_WAITOK);
sc->sc_dkdev->dk_info = NULL;
disk_init(sc->sc_dkdev, device_xname(self), NULL);
if (!pmf_device_register(self, NULL, NULL))
aprint_error_dev(self, "couldn't establish power handler\n");
if (fss_num_attached++ == 0)
vfs_hooks_attach(&fss_vfs_hooks);
}
static int
fss_detach(device_t self, int flags)
{
struct fss_softc *sc = device_private(self);
if (sc->sc_flags & FSS_ACTIVE)
return EBUSY;
if (--fss_num_attached == 0)
vfs_hooks_detach(&fss_vfs_hooks);
pmf_device_deregister(self);
mutex_destroy(&sc->sc_slock);
mutex_destroy(&sc->sc_lock);
cv_destroy(&sc->sc_work_cv);
cv_destroy(&sc->sc_cache_cv);
bufq_drain(sc->sc_bufq);
bufq_free(sc->sc_bufq);
disk_destroy(sc->sc_dkdev);
free(sc->sc_dkdev, M_DEVBUF);
return 0;
}
int
fss_open(dev_t dev, int flags, int mode, struct lwp *l)
{
int mflag;
cfdata_t cf;
struct fss_softc *sc;
mflag = (mode == S_IFCHR ? FSS_CDEV_OPEN : FSS_BDEV_OPEN);
mutex_enter(&fss_device_lock);
sc = device_lookup_private(&fss_cd, minor(dev));
if (sc == NULL) {
cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
cf->cf_name = fss_cd.cd_name;
cf->cf_atname = fss_cd.cd_name;
cf->cf_unit = minor(dev);
cf->cf_fstate = FSTATE_STAR;
sc = device_private(config_attach_pseudo(cf));
if (sc == NULL)
return ENOMEM;
}
mutex_enter(&sc->sc_slock);
sc->sc_flags |= mflag;
mutex_exit(&sc->sc_slock);
mutex_exit(&fss_device_lock);
return 0;
}
int
fss_close(dev_t dev, int flags, int mode, struct lwp *l)
{
int mflag, error;
cfdata_t cf;
struct fss_softc *sc = device_lookup_private(&fss_cd, minor(dev));
mflag = (mode == S_IFCHR ? FSS_CDEV_OPEN : FSS_BDEV_OPEN);
error = 0;
restart:
mutex_enter(&sc->sc_slock);
if ((sc->sc_flags & (FSS_CDEV_OPEN|FSS_BDEV_OPEN)) != mflag) {
sc->sc_flags &= ~mflag;
mutex_exit(&sc->sc_slock);
return 0;
}
if ((sc->sc_flags & FSS_ACTIVE) != 0 &&
(sc->sc_uflags & FSS_UNCONFIG_ON_CLOSE) != 0) {
sc->sc_uflags &= ~FSS_UNCONFIG_ON_CLOSE;
mutex_exit(&sc->sc_slock);
error = fss_ioctl(dev, FSSIOCCLR, NULL, FWRITE, l);
goto restart;
}
if ((sc->sc_flags & FSS_ACTIVE) != 0) {
mutex_exit(&sc->sc_slock);
return error;
}
if (! mutex_tryenter(&fss_device_lock)) {
mutex_exit(&sc->sc_slock);
goto restart;
}
KASSERT((sc->sc_flags & FSS_ACTIVE) == 0);
KASSERT((sc->sc_flags & (FSS_CDEV_OPEN|FSS_BDEV_OPEN)) == mflag);
mutex_exit(&sc->sc_slock);
cf = device_cfdata(sc->sc_dev);
error = config_detach(sc->sc_dev, DETACH_QUIET);
if (! error)
free(cf, M_DEVBUF);
mutex_exit(&fss_device_lock);
return error;
}
void
fss_strategy(struct buf *bp)
{
const bool write = ((bp->b_flags & B_READ) != B_READ);
struct fss_softc *sc = device_lookup_private(&fss_cd, minor(bp->b_dev));
mutex_enter(&sc->sc_slock);
if (write || !FSS_ISVALID(sc)) {
mutex_exit(&sc->sc_slock);
bp->b_error = (write ? EROFS : ENXIO);
bp->b_resid = bp->b_bcount;
biodone(bp);
return;
}
bp->b_rawblkno = bp->b_blkno;
BUFQ_PUT(sc->sc_bufq, bp);
cv_signal(&sc->sc_work_cv);
mutex_exit(&sc->sc_slock);
}
int
fss_read(dev_t dev, struct uio *uio, int flags)
{
return physio(fss_strategy, NULL, dev, B_READ, minphys, uio);
}
int
fss_write(dev_t dev, struct uio *uio, int flags)
{
return physio(fss_strategy, NULL, dev, B_WRITE, minphys, uio);
}
int
fss_ioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
{
int error;
struct fss_softc *sc = device_lookup_private(&fss_cd, minor(dev));
struct fss_set *fss = (struct fss_set *)data;
struct fss_get *fsg = (struct fss_get *)data;
switch (cmd) {
case FSSIOCSET:
mutex_enter(&sc->sc_lock);
if ((flag & FWRITE) == 0)
error = EPERM;
else if ((sc->sc_flags & FSS_ACTIVE) != 0)
error = EBUSY;
else
error = fss_create_snapshot(sc, fss, l);
mutex_exit(&sc->sc_lock);
break;
case FSSIOCCLR:
mutex_enter(&sc->sc_lock);
if ((flag & FWRITE) == 0)
error = EPERM;
else if ((sc->sc_flags & FSS_ACTIVE) == 0)
error = ENXIO;
else
error = fss_delete_snapshot(sc, l);
mutex_exit(&sc->sc_lock);
break;
case FSSIOCGET:
mutex_enter(&sc->sc_lock);
switch (sc->sc_flags & (FSS_PERSISTENT | FSS_ACTIVE)) {
case FSS_ACTIVE:
memcpy(fsg->fsg_mount, sc->sc_mntname, MNAMELEN);
fsg->fsg_csize = FSS_CLSIZE(sc);
fsg->fsg_time = sc->sc_time;
fsg->fsg_mount_size = sc->sc_clcount;
fsg->fsg_bs_size = sc->sc_clnext;
error = 0;
break;
case FSS_PERSISTENT | FSS_ACTIVE:
memcpy(fsg->fsg_mount, sc->sc_mntname, MNAMELEN);
fsg->fsg_csize = 0;
fsg->fsg_time = sc->sc_time;
fsg->fsg_mount_size = 0;
fsg->fsg_bs_size = 0;
error = 0;
break;
default:
error = ENXIO;
break;
}
mutex_exit(&sc->sc_lock);
break;
case FSSIOFSET:
mutex_enter(&sc->sc_slock);
sc->sc_uflags = *(int *)data;
mutex_exit(&sc->sc_slock);
error = 0;
break;
case FSSIOFGET:
mutex_enter(&sc->sc_slock);
*(int *)data = sc->sc_uflags;
mutex_exit(&sc->sc_slock);
error = 0;
break;
default:
error = EINVAL;
break;
}
return error;
}
int
fss_size(dev_t dev)
{
return -1;
}
int
fss_dump(dev_t dev, daddr_t blkno, void *va,
size_t size)
{
return EROFS;
}
/*
* An error occurred reading or writing the snapshot or backing store.
* If it is the first error log to console.
* The caller holds the mutex.
*/
static inline void
fss_error(struct fss_softc *sc, const char *msg)
{
if ((sc->sc_flags & (FSS_ACTIVE|FSS_ERROR)) == FSS_ACTIVE)
aprint_error_dev(sc->sc_dev, "snapshot invalid: %s\n", msg);
if ((sc->sc_flags & FSS_ACTIVE) == FSS_ACTIVE)
sc->sc_flags |= FSS_ERROR;
}
/*
* Allocate the variable sized parts of the softc and
* fork the kernel thread.
*
* The fields sc_clcount, sc_clshift, sc_cache_size and sc_indir_size
* must be initialized.
*/
static int
fss_softc_alloc(struct fss_softc *sc)
{
int i, error;
if ((sc->sc_flags & FSS_PERSISTENT) == 0) {
sc->sc_copied =
kmem_zalloc(howmany(sc->sc_clcount, NBBY), KM_SLEEP);
if (sc->sc_copied == NULL)
return(ENOMEM);
sc->sc_cache = kmem_alloc(sc->sc_cache_size *
sizeof(struct fss_cache), KM_SLEEP);
if (sc->sc_cache == NULL)
return(ENOMEM);
for (i = 0; i < sc->sc_cache_size; i++) {
sc->sc_cache[i].fc_type = FSS_CACHE_FREE;
sc->sc_cache[i].fc_data =
kmem_alloc(FSS_CLSIZE(sc), KM_SLEEP);
if (sc->sc_cache[i].fc_data == NULL)
return(ENOMEM);
cv_init(&sc->sc_cache[i].fc_state_cv, "cowwait1");
}
sc->sc_indir_valid =
kmem_zalloc(howmany(sc->sc_indir_size, NBBY), KM_SLEEP);
if (sc->sc_indir_valid == NULL)
return(ENOMEM);
sc->sc_indir_data = kmem_zalloc(FSS_CLSIZE(sc), KM_SLEEP);
if (sc->sc_indir_data == NULL)
return(ENOMEM);
} else {
sc->sc_copied = NULL;
sc->sc_cache = NULL;
sc->sc_indir_valid = NULL;
sc->sc_indir_data = NULL;
}
if ((error = kthread_create(PRI_BIO, 0, NULL, fss_bs_thread, sc,
&sc->sc_bs_lwp, device_xname(sc->sc_dev))) != 0)
return error;
sc->sc_flags |= FSS_BS_THREAD;
disk_attach(sc->sc_dkdev);
return 0;
}
/*
* Free the variable sized parts of the softc.
*/
static void
fss_softc_free(struct fss_softc *sc)
{
int i;
if ((sc->sc_flags & FSS_BS_THREAD) != 0) {
mutex_enter(&sc->sc_slock);
sc->sc_flags &= ~FSS_BS_THREAD;
cv_signal(&sc->sc_work_cv);
while (sc->sc_bs_lwp != NULL)
kpause("fssdetach", false, 1, &sc->sc_slock);
mutex_exit(&sc->sc_slock);
}
disk_detach(sc->sc_dkdev);
if (sc->sc_copied != NULL)
kmem_free(sc->sc_copied, howmany(sc->sc_clcount, NBBY));
sc->sc_copied = NULL;
if (sc->sc_cache != NULL) {
for (i = 0; i < sc->sc_cache_size; i++)
if (sc->sc_cache[i].fc_data != NULL) {
cv_destroy(&sc->sc_cache[i].fc_state_cv);
kmem_free(sc->sc_cache[i].fc_data,
FSS_CLSIZE(sc));
}
kmem_free(sc->sc_cache,
sc->sc_cache_size*sizeof(struct fss_cache));
}
sc->sc_cache = NULL;
if (sc->sc_indir_valid != NULL)
kmem_free(sc->sc_indir_valid, howmany(sc->sc_indir_size, NBBY));
sc->sc_indir_valid = NULL;
if (sc->sc_indir_data != NULL)
kmem_free(sc->sc_indir_data, FSS_CLSIZE(sc));
sc->sc_indir_data = NULL;
}
/*
* Set all active snapshots on this file system into ERROR state.
*/
static void
fss_unmount_hook(struct mount *mp)
{
int i;
struct fss_softc *sc;
mutex_enter(&fss_device_lock);
for (i = 0; i < fss_cd.cd_ndevs; i++) {
if ((sc = device_lookup_private(&fss_cd, i)) == NULL)
continue;
mutex_enter(&sc->sc_slock);
if ((sc->sc_flags & FSS_ACTIVE) != 0 &&
sc->sc_mount == mp)
fss_error(sc, "forced unmount");
mutex_exit(&sc->sc_slock);
}
mutex_exit(&fss_device_lock);
}
/*
* A buffer is written to the snapshotted block device. Copy to
* backing store if needed.
*/
static int
fss_copy_on_write(void *v, struct buf *bp, bool data_valid)
{
int error;
u_int32_t cl, ch, c;
struct fss_softc *sc = v;
mutex_enter(&sc->sc_slock);
if (!FSS_ISVALID(sc)) {
mutex_exit(&sc->sc_slock);
return 0;
}
cl = FSS_BTOCL(sc, dbtob(bp->b_blkno));
ch = FSS_BTOCL(sc, dbtob(bp->b_blkno)+bp->b_bcount-1);
error = 0;
if (curlwp == uvm.pagedaemon_lwp) {
for (c = cl; c <= ch; c++)
if (isclr(sc->sc_copied, c)) {
error = ENOMEM;
break;
}
}
mutex_exit(&sc->sc_slock);
if (error == 0)
for (c = cl; c <= ch; c++) {
error = fss_read_cluster(sc, c);
if (error)
break;
}
return error;
}
/*
* Lookup and open needed files.
*
* For file system internal snapshot initializes sc_mntname, sc_mount,
* sc_bs_vp and sc_time.
*
* Otherwise returns dev and size of the underlying block device.
* Initializes sc_mntname, sc_mount, sc_bdev, sc_bs_vp and sc_mount
*/
static int
fss_create_files(struct fss_softc *sc, struct fss_set *fss,
off_t *bsize, struct lwp *l)
{
int error, bits, fsbsize;
struct timespec ts;
struct partinfo dpart;
struct vattr va;
struct nameidata nd;
/*
* Get the mounted file system.
*/
NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, fss->fss_mount);
if ((error = namei(&nd)) != 0)
return error;
if ((nd.ni_vp->v_vflag & VV_ROOT) != VV_ROOT) {
vrele(nd.ni_vp);
return EINVAL;
}
sc->sc_mount = nd.ni_vp->v_mount;
memcpy(sc->sc_mntname, sc->sc_mount->mnt_stat.f_mntonname, MNAMELEN);
vrele(nd.ni_vp);
/*
* Check for file system internal snapshot.
*/
NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF, UIO_USERSPACE, fss->fss_bstore);
if ((error = namei(&nd)) != 0)
return error;
if (nd.ni_vp->v_type == VREG && nd.ni_vp->v_mount == sc->sc_mount) {
sc->sc_flags |= FSS_PERSISTENT;
sc->sc_bs_vp = nd.ni_vp;
fsbsize = sc->sc_bs_vp->v_mount->mnt_stat.f_iosize;
bits = sizeof(sc->sc_bs_bshift)*NBBY;
for (sc->sc_bs_bshift = 1; sc->sc_bs_bshift < bits;
sc->sc_bs_bshift++)
if (FSS_FSBSIZE(sc) == fsbsize)
break;
if (sc->sc_bs_bshift >= bits) {
VOP_UNLOCK(sc->sc_bs_vp, 0);
return EINVAL;
}
sc->sc_bs_bmask = FSS_FSBSIZE(sc)-1;
sc->sc_clshift = 0;
error = VFS_SNAPSHOT(sc->sc_mount, sc->sc_bs_vp, &ts);
TIMESPEC_TO_TIMEVAL(&sc->sc_time, &ts);
VOP_UNLOCK(sc->sc_bs_vp, 0);
return error;
}
vput(nd.ni_vp);
/*
* Get the block device it is mounted on.
*/
NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE,
sc->sc_mount->mnt_stat.f_mntfromname);
if ((error = namei(&nd)) != 0)
return error;
if (nd.ni_vp->v_type != VBLK) {
vrele(nd.ni_vp);
return EINVAL;
}
sc->sc_bdev = nd.ni_vp->v_rdev;
vrele(nd.ni_vp);
/*
* Get the block device size.
*/
error = bdev_ioctl(sc->sc_bdev, DIOCGPART, &dpart, FREAD, l);
if (error)
return error;
*bsize = (off_t)dpart.disklab->d_secsize*dpart.part->p_size;
/*
* Get the backing store
*/
NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, fss->fss_bstore);
if ((error = vn_open(&nd, FREAD|FWRITE, 0)) != 0)
return error;
VOP_UNLOCK(nd.ni_vp, 0);
sc->sc_bs_vp = nd.ni_vp;
if (nd.ni_vp->v_type != VREG && nd.ni_vp->v_type != VCHR)
return EINVAL;
if (sc->sc_bs_vp->v_type == VREG) {
error = VOP_GETATTR(sc->sc_bs_vp, &va, l->l_cred);
if (error != 0)
return error;
sc->sc_bs_size = va.va_size;
fsbsize = sc->sc_bs_vp->v_mount->mnt_stat.f_iosize;
if (fsbsize & (fsbsize-1)) /* No power of two */
return EINVAL;
for (sc->sc_bs_bshift = 1; sc->sc_bs_bshift < 32;
sc->sc_bs_bshift++)
if (FSS_FSBSIZE(sc) == fsbsize)
break;
if (sc->sc_bs_bshift >= 32)
return EINVAL;
sc->sc_bs_bmask = FSS_FSBSIZE(sc)-1;
} else {
sc->sc_bs_bshift = DEV_BSHIFT;
sc->sc_bs_bmask = FSS_FSBSIZE(sc)-1;
}
/*
* As all IO to from/to the backing store goes through
* VOP_STRATEGY() clean the buffer cache to prevent
* cache incoherencies.
*/
if ((error = vinvalbuf(sc->sc_bs_vp, V_SAVE, l->l_cred, l, 0, 0)) != 0)
return error;
return 0;
}
/*
* Create a snapshot.
*/
static int
fss_create_snapshot(struct fss_softc *sc, struct fss_set *fss, struct lwp *l)
{
int len, error;
u_int32_t csize;
off_t bsize;
bsize = 0; /* XXX gcc */
/*
* Open needed files.
*/
if ((error = fss_create_files(sc, fss, &bsize, l)) != 0)
goto bad;
if (sc->sc_flags & FSS_PERSISTENT) {
fss_softc_alloc(sc);
sc->sc_flags |= FSS_ACTIVE;
return 0;
}
/*
* Set cluster size. Must be a power of two and
* a multiple of backing store block size.
*/
if (fss->fss_csize <= 0)
csize = MAXPHYS;
else
csize = fss->fss_csize;
if (bsize/csize > FSS_CLUSTER_MAX)
csize = bsize/FSS_CLUSTER_MAX+1;
for (sc->sc_clshift = sc->sc_bs_bshift; sc->sc_clshift < 32;
sc->sc_clshift++)
if (FSS_CLSIZE(sc) >= csize)
break;
if (sc->sc_clshift >= 32) {
error = EINVAL;
goto bad;
}
sc->sc_clmask = FSS_CLSIZE(sc)-1;
/*
* Set number of cache slots.
*/
if (FSS_CLSIZE(sc) <= 8192)
sc->sc_cache_size = 32;
else if (FSS_CLSIZE(sc) <= 65536)
sc->sc_cache_size = 8;
else
sc->sc_cache_size = 4;
/*
* Set number of clusters and size of last cluster.
*/
sc->sc_clcount = FSS_BTOCL(sc, bsize-1)+1;
sc->sc_clresid = FSS_CLOFF(sc, bsize-1)+1;
/*
* Set size of indirect table.
*/
len = sc->sc_clcount*sizeof(u_int32_t);
sc->sc_indir_size = FSS_BTOCL(sc, len)+1;
sc->sc_clnext = sc->sc_indir_size;
sc->sc_indir_cur = 0;
if ((error = fss_softc_alloc(sc)) != 0)
goto bad;
/*
* Activate the snapshot.
*/
if ((error = vfs_suspend(sc->sc_mount, 0)) != 0)
goto bad;
microtime(&sc->sc_time);
if (error == 0)
error = fscow_establish(sc->sc_mount,
fss_copy_on_write, sc);
if (error == 0)
sc->sc_flags |= FSS_ACTIVE;
vfs_resume(sc->sc_mount);
if (error != 0)
goto bad;
aprint_debug_dev(sc->sc_dev, "%s snapshot active\n", sc->sc_mntname);
aprint_debug_dev(sc->sc_dev,
"%u clusters of %u, %u cache slots, %u indir clusters\n",
sc->sc_clcount, FSS_CLSIZE(sc),
sc->sc_cache_size, sc->sc_indir_size);
return 0;
bad:
fss_softc_free(sc);
if (sc->sc_bs_vp != NULL) {
if (sc->sc_flags & FSS_PERSISTENT)
vn_close(sc->sc_bs_vp, FREAD, l->l_cred);
else
vn_close(sc->sc_bs_vp, FREAD|FWRITE, l->l_cred);
}
sc->sc_bs_vp = NULL;
return error;
}
/*
* Delete a snapshot.
*/
static int
fss_delete_snapshot(struct fss_softc *sc, struct lwp *l)
{
if ((sc->sc_flags & FSS_PERSISTENT) == 0)
fscow_disestablish(sc->sc_mount, fss_copy_on_write, sc);
mutex_enter(&sc->sc_slock);
sc->sc_flags &= ~(FSS_ACTIVE|FSS_ERROR);
sc->sc_mount = NULL;
sc->sc_bdev = NODEV;
mutex_exit(&sc->sc_slock);
fss_softc_free(sc);
if (sc->sc_flags & FSS_PERSISTENT)
vn_close(sc->sc_bs_vp, FREAD, l->l_cred);
else
vn_close(sc->sc_bs_vp, FREAD|FWRITE, l->l_cred);
sc->sc_bs_vp = NULL;
sc->sc_flags &= ~FSS_PERSISTENT;
return 0;
}
/*
* Read a cluster from the snapshotted block device to the cache.
*/
static int
fss_read_cluster(struct fss_softc *sc, u_int32_t cl)
{
int error, todo, offset, len;
daddr_t dblk;
struct buf *bp, *mbp;
struct fss_cache *scp, *scl;
/*
* Get a free cache slot.
*/
scl = sc->sc_cache+sc->sc_cache_size;
mutex_enter(&sc->sc_slock);
restart:
if (isset(sc->sc_copied, cl) || !FSS_ISVALID(sc)) {
mutex_exit(&sc->sc_slock);
return 0;
}
for (scp = sc->sc_cache; scp < scl; scp++)
if (scp->fc_cluster == cl) {
if (scp->fc_type == FSS_CACHE_VALID) {
mutex_exit(&sc->sc_slock);
return 0;
} else if (scp->fc_type == FSS_CACHE_BUSY) {
cv_wait(&scp->fc_state_cv, &sc->sc_slock);
goto restart;
}
}
for (scp = sc->sc_cache; scp < scl; scp++)
if (scp->fc_type == FSS_CACHE_FREE) {
scp->fc_type = FSS_CACHE_BUSY;
scp->fc_cluster = cl;
break;
}
if (scp >= scl) {
cv_wait(&sc->sc_cache_cv, &sc->sc_slock);
goto restart;
}
mutex_exit(&sc->sc_slock);
/*
* Start the read.
*/
dblk = btodb(FSS_CLTOB(sc, cl));
if (cl == sc->sc_clcount-1) {
todo = sc->sc_clresid;
memset((char *)scp->fc_data + todo, 0, FSS_CLSIZE(sc) - todo);
} else
todo = FSS_CLSIZE(sc);
offset = 0;
mbp = getiobuf(NULL, true);
mbp->b_bufsize = todo;
mbp->b_data = scp->fc_data;
mbp->b_resid = mbp->b_bcount = todo;
mbp->b_flags = B_READ;
mbp->b_cflags = BC_BUSY;
mbp->b_dev = sc->sc_bdev;
while (todo > 0) {
len = todo;
if (len > MAXPHYS)
len = MAXPHYS;
if (btodb(FSS_CLTOB(sc, cl)) == dblk && len == todo)
bp = mbp;
else {
bp = getiobuf(NULL, true);
nestiobuf_setup(mbp, bp, offset, len);
}
bp->b_lblkno = 0;
bp->b_blkno = dblk;
bdev_strategy(bp);
dblk += btodb(len);
offset += len;
todo -= len;
}
error = biowait(mbp);
putiobuf(mbp);
mutex_enter(&sc->sc_slock);
scp->fc_type = (error ? FSS_CACHE_FREE : FSS_CACHE_VALID);
cv_broadcast(&scp->fc_state_cv);
if (error == 0) {
setbit(sc->sc_copied, scp->fc_cluster);
cv_signal(&sc->sc_work_cv);
}
mutex_exit(&sc->sc_slock);
return error;
}
/*
* Read/write clusters from/to backing store.
* For persistent snapshots must be called with cl == 0. off is the
* offset into the snapshot.
*/
static int
fss_bs_io(struct fss_softc *sc, fss_io_type rw,
u_int32_t cl, off_t off, int len, void *data)
{
int error;
off += FSS_CLTOB(sc, cl);
vn_lock(sc->sc_bs_vp, LK_EXCLUSIVE|LK_RETRY);
error = vn_rdwr((rw == FSS_READ ? UIO_READ : UIO_WRITE), sc->sc_bs_vp,
data, len, off, UIO_SYSSPACE, IO_UNIT|IO_NODELOCKED,
sc->sc_bs_lwp->l_cred, NULL, NULL);
if (error == 0) {
mutex_enter(&sc->sc_bs_vp->v_interlock);
error = VOP_PUTPAGES(sc->sc_bs_vp, trunc_page(off),
round_page(off+len), PGO_CLEANIT|PGO_SYNCIO|PGO_FREE);
}
VOP_UNLOCK(sc->sc_bs_vp, 0);
return error;
}
/*
* Get a pointer to the indirect slot for this cluster.
*/
static u_int32_t *
fss_bs_indir(struct fss_softc *sc, u_int32_t cl)
{
u_int32_t icl;
int ioff;
icl = cl/(FSS_CLSIZE(sc)/sizeof(u_int32_t));
ioff = cl%(FSS_CLSIZE(sc)/sizeof(u_int32_t));
if (sc->sc_indir_cur == icl)
return &sc->sc_indir_data[ioff];
if (sc->sc_indir_dirty) {
if (fss_bs_io(sc, FSS_WRITE, sc->sc_indir_cur, 0,
FSS_CLSIZE(sc), (void *)sc->sc_indir_data) != 0)
return NULL;
setbit(sc->sc_indir_valid, sc->sc_indir_cur);
}
sc->sc_indir_dirty = 0;
sc->sc_indir_cur = icl;
if (isset(sc->sc_indir_valid, sc->sc_indir_cur)) {
if (fss_bs_io(sc, FSS_READ, sc->sc_indir_cur, 0,
FSS_CLSIZE(sc), (void *)sc->sc_indir_data) != 0)
return NULL;
} else
memset(sc->sc_indir_data, 0, FSS_CLSIZE(sc));
return &sc->sc_indir_data[ioff];
}
/*
* The kernel thread (one for every active snapshot).
*
* After wakeup it cleans the cache and runs the I/O requests.
*/
static void
fss_bs_thread(void *arg)
{
bool thread_idle, is_valid;
int error, i, todo, len, crotor, is_read;
long off;
char *addr;
u_int32_t c, cl, ch, *indirp;
struct buf *bp, *nbp;
struct fss_softc *sc;
struct fss_cache *scp, *scl;
sc = arg;
scl = sc->sc_cache+sc->sc_cache_size;
crotor = 0;
thread_idle = false;
mutex_enter(&sc->sc_slock);
for (;;) {
if (thread_idle)
cv_wait(&sc->sc_work_cv, &sc->sc_slock);
thread_idle = true;
if ((sc->sc_flags & FSS_BS_THREAD) == 0) {
sc->sc_bs_lwp = NULL;
mutex_exit(&sc->sc_slock);
kthread_exit(0);
}
/*
* Process I/O requests (persistent)
*/
if (sc->sc_flags & FSS_PERSISTENT) {
if ((bp = BUFQ_GET(sc->sc_bufq)) == NULL)
continue;
is_valid = FSS_ISVALID(sc);
is_read = (bp->b_flags & B_READ);
thread_idle = false;
mutex_exit(&sc->sc_slock);
if (is_valid) {
disk_busy(sc->sc_dkdev);
error = fss_bs_io(sc, FSS_READ, 0,
dbtob(bp->b_blkno), bp->b_bcount,
bp->b_data);
disk_unbusy(sc->sc_dkdev,
(error ? 0 : bp->b_bcount), is_read);
} else
error = ENXIO;
bp->b_error = error;
bp->b_resid = (error ? bp->b_bcount : 0);
biodone(bp);
mutex_enter(&sc->sc_slock);
continue;
}
/*
* Clean the cache
*/
for (i = 0; i < sc->sc_cache_size; i++) {
crotor = (crotor + 1) % sc->sc_cache_size;
scp = sc->sc_cache + crotor;
if (scp->fc_type != FSS_CACHE_VALID)
continue;
mutex_exit(&sc->sc_slock);
thread_idle = false;
indirp = fss_bs_indir(sc, scp->fc_cluster);
if (indirp != NULL) {
error = fss_bs_io(sc, FSS_WRITE, sc->sc_clnext,
0, FSS_CLSIZE(sc), scp->fc_data);
} else
error = EIO;
mutex_enter(&sc->sc_slock);
if (error == 0) {
*indirp = sc->sc_clnext++;
sc->sc_indir_dirty = 1;
} else
fss_error(sc, "write error on backing store");
scp->fc_type = FSS_CACHE_FREE;
cv_signal(&sc->sc_cache_cv);
break;
}
/*
* Process I/O requests
*/
if ((bp = BUFQ_GET(sc->sc_bufq)) == NULL)
continue;
is_valid = FSS_ISVALID(sc);
is_read = (bp->b_flags & B_READ);
thread_idle = false;
if (!is_valid) {
mutex_exit(&sc->sc_slock);
bp->b_error = ENXIO;
bp->b_resid = bp->b_bcount;
biodone(bp);
mutex_enter(&sc->sc_slock);
continue;
}
disk_busy(sc->sc_dkdev);
/*
* First read from the snapshotted block device unless
* this request is completely covered by backing store.
*/
cl = FSS_BTOCL(sc, dbtob(bp->b_blkno));
off = FSS_CLOFF(sc, dbtob(bp->b_blkno));
ch = FSS_BTOCL(sc, dbtob(bp->b_blkno)+bp->b_bcount-1);
error = 0;
for (c = cl; c <= ch; c++) {
if (isset(sc->sc_copied, c))
continue;
mutex_exit(&sc->sc_slock);
/* Not on backing store, read from device. */
nbp = getiobuf(NULL, true);
nbp->b_flags = B_READ;
nbp->b_resid = nbp->b_bcount = bp->b_bcount;
nbp->b_bufsize = bp->b_bcount;
nbp->b_data = bp->b_data;
nbp->b_blkno = bp->b_blkno;
nbp->b_lblkno = 0;
nbp->b_dev = sc->sc_bdev;
SET(nbp->b_cflags, BC_BUSY); /* mark buffer busy */
bdev_strategy(nbp);
error = biowait(nbp);
if (error != 0) {
bp->b_resid = bp->b_bcount;
bp->b_error = nbp->b_error;
disk_unbusy(sc->sc_dkdev, 0, is_read);
biodone(bp);
}
putiobuf(nbp);
mutex_enter(&sc->sc_slock);
break;
}
if (error)
continue;
/*
* Replace those parts that have been saved to backing store.
*/
addr = bp->b_data;
todo = bp->b_bcount;
for (c = cl; c <= ch; c++, off = 0, todo -= len, addr += len) {
len = FSS_CLSIZE(sc)-off;
if (len > todo)
len = todo;
if (isclr(sc->sc_copied, c))
continue;
mutex_exit(&sc->sc_slock);
indirp = fss_bs_indir(sc, c);
if (indirp == NULL || *indirp == 0) {
/*
* Not on backing store. Either in cache
* or hole in the snapshotted block device.
*/
mutex_enter(&sc->sc_slock);
for (scp = sc->sc_cache; scp < scl; scp++)
if (scp->fc_type == FSS_CACHE_VALID &&
scp->fc_cluster == c)
break;
if (scp < scl)
memcpy(addr, (char *)scp->fc_data+off,
len);
else
memset(addr, 0, len);
continue;
}
/*
* Read from backing store.
*/
error =
fss_bs_io(sc, FSS_READ, *indirp, off, len, addr);
mutex_enter(&sc->sc_slock);
if (error) {
bp->b_resid = bp->b_bcount;
bp->b_error = error;
break;
}
}
mutex_exit(&sc->sc_slock);
disk_unbusy(sc->sc_dkdev, (error ? 0 : bp->b_bcount), is_read);
biodone(bp);
mutex_enter(&sc->sc_slock);
}
}
#ifdef _MODULE
#include <sys/module.h>
MODULE(MODULE_CLASS_DRIVER, fss, NULL);
CFDRIVER_DECL(fss, DV_DISK, NULL);
static int
fss_modcmd(modcmd_t cmd, void *arg)
{
int bmajor = -1, cmajor = -1, error = 0;
switch (cmd) {
case MODULE_CMD_INIT:
mutex_init(&fss_device_lock, MUTEX_DEFAULT, IPL_NONE);
error = config_cfdriver_attach(&fss_cd);
if (error) {
mutex_destroy(&fss_device_lock);
break;
}
error = config_cfattach_attach(fss_cd.cd_name, &fss_ca);
if (error) {
config_cfdriver_detach(&fss_cd);
mutex_destroy(&fss_device_lock);
break;
}
error = devsw_attach(fss_cd.cd_name,
&fss_bdevsw, &bmajor, &fss_cdevsw, &cmajor);
if (error) {
config_cfattach_detach(fss_cd.cd_name, &fss_ca);
config_cfdriver_detach(&fss_cd);
mutex_destroy(&fss_device_lock);
break;
}
break;
case MODULE_CMD_FINI:
error = config_cfattach_detach(fss_cd.cd_name, &fss_ca);
if (error)
break;
config_cfdriver_detach(&fss_cd);
devsw_detach(&fss_bdevsw, &fss_cdevsw);
mutex_destroy(&fss_device_lock);
break;
default:
error = ENOTTY;
break;
}
return error;
}
#endif /* _MODULE */