NetBSD/sys/kern/sysv_shm.c
elad 0c9d8d15c9 Replace the remaining KAUTH_GENERIC_ISSUSER authorization calls with
something meaningful. All relevant documentation has been updated or
written.

Most of these changes were brought up in the following messages:

    http://mail-index.netbsd.org/tech-kern/2012/01/18/msg012490.html
    http://mail-index.netbsd.org/tech-kern/2012/01/19/msg012502.html
    http://mail-index.netbsd.org/tech-kern/2012/02/17/msg012728.html

Thanks to christos, manu, njoly, and jmmv for input.

Huge thanks to pgoyette for spinning these changes through some build
cycles and ATF.
2012-03-13 18:40:26 +00:00

1098 lines
29 KiB
C

/* $NetBSD: sysv_shm.c,v 1.123 2012/03/13 18:40:54 elad Exp $ */
/*-
* Copyright (c) 1999, 2007 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
* NASA Ames Research Center, and by Mindaugas Rasiukevicius.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1994 Adam Glass and Charles M. Hannum. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Adam Glass and Charles M.
* Hannum.
* 4. The names of the authors may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: sysv_shm.c,v 1.123 2012/03/13 18:40:54 elad Exp $");
#define SYSVSHM
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/shm.h>
#include <sys/mutex.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/sysctl.h>
#include <sys/mount.h> /* XXX for <sys/syscallargs.h> */
#include <sys/syscallargs.h>
#include <sys/queue.h>
#include <sys/kauth.h>
#include <uvm/uvm_extern.h>
#include <uvm/uvm_object.h>
struct shmmap_entry {
SLIST_ENTRY(shmmap_entry) next;
vaddr_t va;
int shmid;
};
int shm_nused __cacheline_aligned;
struct shmid_ds * shmsegs __read_mostly;
static kmutex_t shm_lock __cacheline_aligned;
static kcondvar_t * shm_cv __cacheline_aligned;
static int shm_last_free __cacheline_aligned;
static size_t shm_committed __cacheline_aligned;
static int shm_use_phys __read_mostly;
static kcondvar_t shm_realloc_cv;
static bool shm_realloc_state;
static u_int shm_realloc_disable;
struct shmmap_state {
unsigned int nitems;
unsigned int nrefs;
SLIST_HEAD(, shmmap_entry) entries;
};
#ifdef SHMDEBUG
#define SHMPRINTF(a) printf a
#else
#define SHMPRINTF(a)
#endif
static int shmrealloc(int);
/*
* Find the shared memory segment by the identifier.
* => must be called with shm_lock held;
*/
static struct shmid_ds *
shm_find_segment_by_shmid(int shmid)
{
int segnum;
struct shmid_ds *shmseg;
KASSERT(mutex_owned(&shm_lock));
segnum = IPCID_TO_IX(shmid);
if (segnum < 0 || segnum >= shminfo.shmmni)
return NULL;
shmseg = &shmsegs[segnum];
if ((shmseg->shm_perm.mode & SHMSEG_ALLOCATED) == 0)
return NULL;
if ((shmseg->shm_perm.mode &
(SHMSEG_REMOVED|SHMSEG_RMLINGER)) == SHMSEG_REMOVED)
return NULL;
if (shmseg->shm_perm._seq != IPCID_TO_SEQ(shmid))
return NULL;
return shmseg;
}
/*
* Free memory segment.
* => must be called with shm_lock held;
*/
static void
shm_free_segment(int segnum)
{
struct shmid_ds *shmseg;
size_t size;
bool wanted;
KASSERT(mutex_owned(&shm_lock));
shmseg = &shmsegs[segnum];
SHMPRINTF(("shm freeing key 0x%lx seq 0x%x\n",
shmseg->shm_perm._key, shmseg->shm_perm._seq));
size = (shmseg->shm_segsz + PGOFSET) & ~PGOFSET;
wanted = (shmseg->shm_perm.mode & SHMSEG_WANTED);
shmseg->_shm_internal = NULL;
shm_committed -= btoc(size);
shm_nused--;
shmseg->shm_perm.mode = SHMSEG_FREE;
shm_last_free = segnum;
if (wanted == true)
cv_broadcast(&shm_cv[segnum]);
}
/*
* Delete entry from the shm map.
* => must be called with shm_lock held;
*/
static struct uvm_object *
shm_delete_mapping(struct shmmap_state *shmmap_s,
struct shmmap_entry *shmmap_se)
{
struct uvm_object *uobj = NULL;
struct shmid_ds *shmseg;
int segnum;
KASSERT(mutex_owned(&shm_lock));
segnum = IPCID_TO_IX(shmmap_se->shmid);
shmseg = &shmsegs[segnum];
SLIST_REMOVE(&shmmap_s->entries, shmmap_se, shmmap_entry, next);
shmmap_s->nitems--;
shmseg->shm_dtime = time_second;
if ((--shmseg->shm_nattch <= 0) &&
(shmseg->shm_perm.mode & SHMSEG_REMOVED)) {
uobj = shmseg->_shm_internal;
shm_free_segment(segnum);
}
return uobj;
}
/*
* Get a non-shared shm map for that vmspace. Note, that memory
* allocation might be performed with lock held.
*/
static struct shmmap_state *
shmmap_getprivate(struct proc *p)
{
struct shmmap_state *oshmmap_s, *shmmap_s;
struct shmmap_entry *oshmmap_se, *shmmap_se;
KASSERT(mutex_owned(&shm_lock));
/* 1. A shm map with refcnt = 1, used by ourselves, thus return */
oshmmap_s = (struct shmmap_state *)p->p_vmspace->vm_shm;
if (oshmmap_s && oshmmap_s->nrefs == 1)
return oshmmap_s;
/* 2. No shm map preset - create a fresh one */
shmmap_s = kmem_zalloc(sizeof(struct shmmap_state), KM_SLEEP);
shmmap_s->nrefs = 1;
SLIST_INIT(&shmmap_s->entries);
p->p_vmspace->vm_shm = (void *)shmmap_s;
if (oshmmap_s == NULL)
return shmmap_s;
SHMPRINTF(("shmmap_getprivate: vm %p split (%d entries), was used by %d\n",
p->p_vmspace, oshmmap_s->nitems, oshmmap_s->nrefs));
/* 3. A shared shm map, copy to a fresh one and adjust refcounts */
SLIST_FOREACH(oshmmap_se, &oshmmap_s->entries, next) {
shmmap_se = kmem_alloc(sizeof(struct shmmap_entry), KM_SLEEP);
shmmap_se->va = oshmmap_se->va;
shmmap_se->shmid = oshmmap_se->shmid;
SLIST_INSERT_HEAD(&shmmap_s->entries, shmmap_se, next);
}
shmmap_s->nitems = oshmmap_s->nitems;
oshmmap_s->nrefs--;
return shmmap_s;
}
/*
* Lock/unlock the memory.
* => must be called with shm_lock held;
* => called from one place, thus, inline;
*/
static inline int
shm_memlock(struct lwp *l, struct shmid_ds *shmseg, int shmid, int cmd)
{
struct proc *p = l->l_proc;
struct shmmap_entry *shmmap_se;
struct shmmap_state *shmmap_s;
size_t size;
int error;
KASSERT(mutex_owned(&shm_lock));
shmmap_s = shmmap_getprivate(p);
/* Find our shared memory address by shmid */
SLIST_FOREACH(shmmap_se, &shmmap_s->entries, next) {
if (shmmap_se->shmid != shmid)
continue;
size = (shmseg->shm_segsz + PGOFSET) & ~PGOFSET;
if (cmd == SHM_LOCK &&
(shmseg->shm_perm.mode & SHMSEG_WIRED) == 0) {
/* Wire the object and map, then tag it */
error = uvm_obj_wirepages(shmseg->_shm_internal,
0, size, NULL);
if (error)
return EIO;
error = uvm_map_pageable(&p->p_vmspace->vm_map,
shmmap_se->va, shmmap_se->va + size, false, 0);
if (error) {
uvm_obj_unwirepages(shmseg->_shm_internal,
0, size);
if (error == EFAULT)
error = ENOMEM;
return error;
}
shmseg->shm_perm.mode |= SHMSEG_WIRED;
} else if (cmd == SHM_UNLOCK &&
(shmseg->shm_perm.mode & SHMSEG_WIRED) != 0) {
/* Unwire the object and map, then untag it */
uvm_obj_unwirepages(shmseg->_shm_internal, 0, size);
error = uvm_map_pageable(&p->p_vmspace->vm_map,
shmmap_se->va, shmmap_se->va + size, true, 0);
if (error)
return EIO;
shmseg->shm_perm.mode &= ~SHMSEG_WIRED;
}
}
return 0;
}
/*
* Unmap shared memory.
*/
int
sys_shmdt(struct lwp *l, const struct sys_shmdt_args *uap, register_t *retval)
{
/* {
syscallarg(const void *) shmaddr;
} */
struct proc *p = l->l_proc;
struct shmmap_state *shmmap_s1, *shmmap_s;
struct shmmap_entry *shmmap_se;
struct uvm_object *uobj;
struct shmid_ds *shmseg;
size_t size;
mutex_enter(&shm_lock);
/* In case of reallocation, we will wait for completion */
while (__predict_false(shm_realloc_state))
cv_wait(&shm_realloc_cv, &shm_lock);
shmmap_s1 = (struct shmmap_state *)p->p_vmspace->vm_shm;
if (shmmap_s1 == NULL) {
mutex_exit(&shm_lock);
return EINVAL;
}
/* Find the map entry */
SLIST_FOREACH(shmmap_se, &shmmap_s1->entries, next)
if (shmmap_se->va == (vaddr_t)SCARG(uap, shmaddr))
break;
if (shmmap_se == NULL) {
mutex_exit(&shm_lock);
return EINVAL;
}
shmmap_s = shmmap_getprivate(p);
if (shmmap_s != shmmap_s1) {
/* Map has been copied, lookup entry in new map */
SLIST_FOREACH(shmmap_se, &shmmap_s->entries, next)
if (shmmap_se->va == (vaddr_t)SCARG(uap, shmaddr))
break;
if (shmmap_se == NULL) {
mutex_exit(&shm_lock);
return EINVAL;
}
}
SHMPRINTF(("shmdt: vm %p: remove %d @%lx\n",
p->p_vmspace, shmmap_se->shmid, shmmap_se->va));
/* Delete the entry from shm map */
uobj = shm_delete_mapping(shmmap_s, shmmap_se);
shmseg = &shmsegs[IPCID_TO_IX(shmmap_se->shmid)];
size = (shmseg->shm_segsz + PGOFSET) & ~PGOFSET;
mutex_exit(&shm_lock);
uvm_deallocate(&p->p_vmspace->vm_map, shmmap_se->va, size);
if (uobj != NULL) {
uao_detach(uobj);
}
kmem_free(shmmap_se, sizeof(struct shmmap_entry));
return 0;
}
/*
* Map shared memory.
*/
int
sys_shmat(struct lwp *l, const struct sys_shmat_args *uap, register_t *retval)
{
/* {
syscallarg(int) shmid;
syscallarg(const void *) shmaddr;
syscallarg(int) shmflg;
} */
int error, flags = 0;
struct proc *p = l->l_proc;
kauth_cred_t cred = l->l_cred;
struct shmid_ds *shmseg;
struct shmmap_state *shmmap_s;
struct shmmap_entry *shmmap_se;
struct uvm_object *uobj;
struct vmspace *vm;
vaddr_t attach_va;
vm_prot_t prot;
vsize_t size;
/* Allocate a new map entry and set it */
shmmap_se = kmem_alloc(sizeof(struct shmmap_entry), KM_SLEEP);
shmmap_se->shmid = SCARG(uap, shmid);
mutex_enter(&shm_lock);
/* In case of reallocation, we will wait for completion */
while (__predict_false(shm_realloc_state))
cv_wait(&shm_realloc_cv, &shm_lock);
shmseg = shm_find_segment_by_shmid(SCARG(uap, shmid));
if (shmseg == NULL) {
error = EINVAL;
goto err;
}
error = ipcperm(cred, &shmseg->shm_perm,
(SCARG(uap, shmflg) & SHM_RDONLY) ? IPC_R : IPC_R|IPC_W);
if (error)
goto err;
vm = p->p_vmspace;
shmmap_s = (struct shmmap_state *)vm->vm_shm;
if (shmmap_s && shmmap_s->nitems >= shminfo.shmseg) {
error = EMFILE;
goto err;
}
size = (shmseg->shm_segsz + PGOFSET) & ~PGOFSET;
prot = VM_PROT_READ;
if ((SCARG(uap, shmflg) & SHM_RDONLY) == 0)
prot |= VM_PROT_WRITE;
if (SCARG(uap, shmaddr)) {
flags |= UVM_FLAG_FIXED;
if (SCARG(uap, shmflg) & SHM_RND)
attach_va =
(vaddr_t)SCARG(uap, shmaddr) & ~(SHMLBA-1);
else if (((vaddr_t)SCARG(uap, shmaddr) & (SHMLBA-1)) == 0)
attach_va = (vaddr_t)SCARG(uap, shmaddr);
else {
error = EINVAL;
goto err;
}
} else {
/* This is just a hint to uvm_map() about where to put it. */
attach_va = p->p_emul->e_vm_default_addr(p,
(vaddr_t)vm->vm_daddr, size);
}
/*
* Create a map entry, add it to the list and increase the counters.
* The lock will be dropped before the mapping, disable reallocation.
*/
shmmap_s = shmmap_getprivate(p);
SLIST_INSERT_HEAD(&shmmap_s->entries, shmmap_se, next);
shmmap_s->nitems++;
shmseg->shm_lpid = p->p_pid;
shmseg->shm_nattch++;
shm_realloc_disable++;
mutex_exit(&shm_lock);
/*
* Add a reference to the memory object, map it to the
* address space, and lock the memory, if needed.
*/
uobj = shmseg->_shm_internal;
uao_reference(uobj);
error = uvm_map(&vm->vm_map, &attach_va, size, uobj, 0, 0,
UVM_MAPFLAG(prot, prot, UVM_INH_SHARE, UVM_ADV_RANDOM, flags));
if (error)
goto err_detach;
if (shm_use_phys || (shmseg->shm_perm.mode & SHMSEG_WIRED)) {
error = uvm_map_pageable(&vm->vm_map, attach_va,
attach_va + size, false, 0);
if (error) {
if (error == EFAULT)
error = ENOMEM;
uvm_deallocate(&vm->vm_map, attach_va, size);
goto err_detach;
}
}
/* Set the new address, and update the time */
mutex_enter(&shm_lock);
shmmap_se->va = attach_va;
shmseg->shm_atime = time_second;
shm_realloc_disable--;
retval[0] = attach_va;
SHMPRINTF(("shmat: vm %p: add %d @%lx\n",
p->p_vmspace, shmmap_se->shmid, attach_va));
err:
cv_broadcast(&shm_realloc_cv);
mutex_exit(&shm_lock);
if (error && shmmap_se) {
kmem_free(shmmap_se, sizeof(struct shmmap_entry));
}
return error;
err_detach:
uao_detach(uobj);
mutex_enter(&shm_lock);
uobj = shm_delete_mapping(shmmap_s, shmmap_se);
shm_realloc_disable--;
cv_broadcast(&shm_realloc_cv);
mutex_exit(&shm_lock);
if (uobj != NULL) {
uao_detach(uobj);
}
kmem_free(shmmap_se, sizeof(struct shmmap_entry));
return error;
}
/*
* Shared memory control operations.
*/
int
sys___shmctl50(struct lwp *l, const struct sys___shmctl50_args *uap,
register_t *retval)
{
/* {
syscallarg(int) shmid;
syscallarg(int) cmd;
syscallarg(struct shmid_ds *) buf;
} */
struct shmid_ds shmbuf;
int cmd, error;
cmd = SCARG(uap, cmd);
if (cmd == IPC_SET) {
error = copyin(SCARG(uap, buf), &shmbuf, sizeof(shmbuf));
if (error)
return error;
}
error = shmctl1(l, SCARG(uap, shmid), cmd,
(cmd == IPC_SET || cmd == IPC_STAT) ? &shmbuf : NULL);
if (error == 0 && cmd == IPC_STAT)
error = copyout(&shmbuf, SCARG(uap, buf), sizeof(shmbuf));
return error;
}
int
shmctl1(struct lwp *l, int shmid, int cmd, struct shmid_ds *shmbuf)
{
struct uvm_object *uobj = NULL;
kauth_cred_t cred = l->l_cred;
struct shmid_ds *shmseg;
int error = 0;
mutex_enter(&shm_lock);
/* In case of reallocation, we will wait for completion */
while (__predict_false(shm_realloc_state))
cv_wait(&shm_realloc_cv, &shm_lock);
shmseg = shm_find_segment_by_shmid(shmid);
if (shmseg == NULL) {
mutex_exit(&shm_lock);
return EINVAL;
}
switch (cmd) {
case IPC_STAT:
if ((error = ipcperm(cred, &shmseg->shm_perm, IPC_R)) != 0)
break;
memcpy(shmbuf, shmseg, sizeof(struct shmid_ds));
break;
case IPC_SET:
if ((error = ipcperm(cred, &shmseg->shm_perm, IPC_M)) != 0)
break;
shmseg->shm_perm.uid = shmbuf->shm_perm.uid;
shmseg->shm_perm.gid = shmbuf->shm_perm.gid;
shmseg->shm_perm.mode =
(shmseg->shm_perm.mode & ~ACCESSPERMS) |
(shmbuf->shm_perm.mode & ACCESSPERMS);
shmseg->shm_ctime = time_second;
break;
case IPC_RMID:
if ((error = ipcperm(cred, &shmseg->shm_perm, IPC_M)) != 0)
break;
shmseg->shm_perm._key = IPC_PRIVATE;
shmseg->shm_perm.mode |= SHMSEG_REMOVED;
if (shmseg->shm_nattch <= 0) {
uobj = shmseg->_shm_internal;
shm_free_segment(IPCID_TO_IX(shmid));
}
break;
case SHM_LOCK:
case SHM_UNLOCK:
if ((error = kauth_authorize_system(cred,
KAUTH_SYSTEM_SYSVIPC,
(cmd == SHM_LOCK) ? KAUTH_REQ_SYSTEM_SYSVIPC_SHM_LOCK :
KAUTH_REQ_SYSTEM_SYSVIPC_SHM_UNLOCK, NULL, NULL, NULL)) != 0)
break;
error = shm_memlock(l, shmseg, shmid, cmd);
break;
default:
error = EINVAL;
}
mutex_exit(&shm_lock);
if (uobj != NULL)
uao_detach(uobj);
return error;
}
/*
* Try to take an already existing segment.
* => must be called with shm_lock held;
* => called from one place, thus, inline;
*/
static inline int
shmget_existing(struct lwp *l, const struct sys_shmget_args *uap, int mode,
register_t *retval)
{
struct shmid_ds *shmseg;
kauth_cred_t cred = l->l_cred;
int segnum, error;
again:
KASSERT(mutex_owned(&shm_lock));
/* Find segment by key */
for (segnum = 0; segnum < shminfo.shmmni; segnum++)
if ((shmsegs[segnum].shm_perm.mode & SHMSEG_ALLOCATED) &&
shmsegs[segnum].shm_perm._key == SCARG(uap, key))
break;
if (segnum == shminfo.shmmni) {
/* Not found */
return -1;
}
shmseg = &shmsegs[segnum];
if (shmseg->shm_perm.mode & SHMSEG_REMOVED) {
/*
* This segment is in the process of being allocated. Wait
* until it's done, and look the key up again (in case the
* allocation failed or it was freed).
*/
shmseg->shm_perm.mode |= SHMSEG_WANTED;
error = cv_wait_sig(&shm_cv[segnum], &shm_lock);
if (error)
return error;
goto again;
}
/*
* First check the flags, to generate a useful error when a
* segment already exists.
*/
if ((SCARG(uap, shmflg) & (IPC_CREAT | IPC_EXCL)) ==
(IPC_CREAT | IPC_EXCL))
return EEXIST;
/* Check the permission and segment size. */
error = ipcperm(cred, &shmseg->shm_perm, mode);
if (error)
return error;
if (SCARG(uap, size) && SCARG(uap, size) > shmseg->shm_segsz)
return EINVAL;
*retval = IXSEQ_TO_IPCID(segnum, shmseg->shm_perm);
return 0;
}
int
sys_shmget(struct lwp *l, const struct sys_shmget_args *uap, register_t *retval)
{
/* {
syscallarg(key_t) key;
syscallarg(size_t) size;
syscallarg(int) shmflg;
} */
struct shmid_ds *shmseg;
kauth_cred_t cred = l->l_cred;
key_t key = SCARG(uap, key);
size_t size;
int error, mode, segnum;
bool lockmem;
mode = SCARG(uap, shmflg) & ACCESSPERMS;
if (SCARG(uap, shmflg) & _SHM_RMLINGER)
mode |= SHMSEG_RMLINGER;
SHMPRINTF(("shmget: key 0x%lx size 0x%zx shmflg 0x%x mode 0x%x\n",
SCARG(uap, key), SCARG(uap, size), SCARG(uap, shmflg), mode));
mutex_enter(&shm_lock);
/* In case of reallocation, we will wait for completion */
while (__predict_false(shm_realloc_state))
cv_wait(&shm_realloc_cv, &shm_lock);
if (key != IPC_PRIVATE) {
error = shmget_existing(l, uap, mode, retval);
if (error != -1) {
mutex_exit(&shm_lock);
return error;
}
if ((SCARG(uap, shmflg) & IPC_CREAT) == 0) {
mutex_exit(&shm_lock);
return ENOENT;
}
}
error = 0;
/*
* Check the for the limits.
*/
size = SCARG(uap, size);
if (size < shminfo.shmmin || size > shminfo.shmmax) {
mutex_exit(&shm_lock);
return EINVAL;
}
if (shm_nused >= shminfo.shmmni) {
mutex_exit(&shm_lock);
return ENOSPC;
}
size = (size + PGOFSET) & ~PGOFSET;
if (shm_committed + btoc(size) > shminfo.shmall) {
mutex_exit(&shm_lock);
return ENOMEM;
}
/* Find the first available segment */
if (shm_last_free < 0) {
for (segnum = 0; segnum < shminfo.shmmni; segnum++)
if (shmsegs[segnum].shm_perm.mode & SHMSEG_FREE)
break;
KASSERT(segnum < shminfo.shmmni);
} else {
segnum = shm_last_free;
shm_last_free = -1;
}
/*
* Initialize the segment.
* We will drop the lock while allocating the memory, thus mark the
* segment present, but removed, that no other thread could take it.
* Also, disable reallocation, while lock is dropped.
*/
shmseg = &shmsegs[segnum];
shmseg->shm_perm.mode = SHMSEG_ALLOCATED | SHMSEG_REMOVED;
shm_committed += btoc(size);
shm_nused++;
lockmem = shm_use_phys;
shm_realloc_disable++;
mutex_exit(&shm_lock);
/* Allocate the memory object and lock it if needed */
shmseg->_shm_internal = uao_create(size, 0);
if (lockmem) {
/* Wire the pages and tag it */
error = uvm_obj_wirepages(shmseg->_shm_internal, 0, size, NULL);
if (error) {
uao_detach(shmseg->_shm_internal);
mutex_enter(&shm_lock);
shm_free_segment(segnum);
shm_realloc_disable--;
mutex_exit(&shm_lock);
return error;
}
}
/*
* Please note, while segment is marked, there are no need to hold the
* lock, while setting it (except shm_perm.mode).
*/
shmseg->shm_perm._key = SCARG(uap, key);
shmseg->shm_perm._seq = (shmseg->shm_perm._seq + 1) & 0x7fff;
*retval = IXSEQ_TO_IPCID(segnum, shmseg->shm_perm);
shmseg->shm_perm.cuid = shmseg->shm_perm.uid = kauth_cred_geteuid(cred);
shmseg->shm_perm.cgid = shmseg->shm_perm.gid = kauth_cred_getegid(cred);
shmseg->shm_segsz = SCARG(uap, size);
shmseg->shm_cpid = l->l_proc->p_pid;
shmseg->shm_lpid = shmseg->shm_nattch = 0;
shmseg->shm_atime = shmseg->shm_dtime = 0;
shmseg->shm_ctime = time_second;
/*
* Segment is initialized.
* Enter the lock, mark as allocated, and notify waiters (if any).
* Also, unmark the state of reallocation.
*/
mutex_enter(&shm_lock);
shmseg->shm_perm.mode = (shmseg->shm_perm.mode & SHMSEG_WANTED) |
(mode & (ACCESSPERMS | SHMSEG_RMLINGER)) |
SHMSEG_ALLOCATED | (lockmem ? SHMSEG_WIRED : 0);
if (shmseg->shm_perm.mode & SHMSEG_WANTED) {
shmseg->shm_perm.mode &= ~SHMSEG_WANTED;
cv_broadcast(&shm_cv[segnum]);
}
shm_realloc_disable--;
cv_broadcast(&shm_realloc_cv);
mutex_exit(&shm_lock);
return error;
}
void
shmfork(struct vmspace *vm1, struct vmspace *vm2)
{
struct shmmap_state *shmmap_s;
struct shmmap_entry *shmmap_se;
SHMPRINTF(("shmfork %p->%p\n", vm1, vm2));
mutex_enter(&shm_lock);
vm2->vm_shm = vm1->vm_shm;
if (vm1->vm_shm) {
shmmap_s = (struct shmmap_state *)vm1->vm_shm;
SLIST_FOREACH(shmmap_se, &shmmap_s->entries, next)
shmsegs[IPCID_TO_IX(shmmap_se->shmid)].shm_nattch++;
shmmap_s->nrefs++;
}
mutex_exit(&shm_lock);
}
void
shmexit(struct vmspace *vm)
{
struct shmmap_state *shmmap_s;
struct shmmap_entry *shmmap_se;
mutex_enter(&shm_lock);
shmmap_s = (struct shmmap_state *)vm->vm_shm;
if (shmmap_s == NULL) {
mutex_exit(&shm_lock);
return;
}
vm->vm_shm = NULL;
if (--shmmap_s->nrefs > 0) {
SHMPRINTF(("shmexit: vm %p drop ref (%d entries), refs = %d\n",
vm, shmmap_s->nitems, shmmap_s->nrefs));
SLIST_FOREACH(shmmap_se, &shmmap_s->entries, next) {
shmsegs[IPCID_TO_IX(shmmap_se->shmid)].shm_nattch--;
}
mutex_exit(&shm_lock);
return;
}
SHMPRINTF(("shmexit: vm %p cleanup (%d entries)\n", vm, shmmap_s->nitems));
if (shmmap_s->nitems == 0) {
mutex_exit(&shm_lock);
kmem_free(shmmap_s, sizeof(struct shmmap_state));
return;
}
/*
* Delete the entry from shm map.
*/
for (;;) {
struct shmid_ds *shmseg;
struct uvm_object *uobj;
size_t sz;
shmmap_se = SLIST_FIRST(&shmmap_s->entries);
KASSERT(shmmap_se != NULL);
shmseg = &shmsegs[IPCID_TO_IX(shmmap_se->shmid)];
sz = (shmseg->shm_segsz + PGOFSET) & ~PGOFSET;
/* shm_delete_mapping() removes from the list. */
uobj = shm_delete_mapping(shmmap_s, shmmap_se);
mutex_exit(&shm_lock);
uvm_deallocate(&vm->vm_map, shmmap_se->va, sz);
if (uobj != NULL) {
uao_detach(uobj);
}
kmem_free(shmmap_se, sizeof(struct shmmap_entry));
if (SLIST_EMPTY(&shmmap_s->entries)) {
break;
}
mutex_enter(&shm_lock);
KASSERT(!SLIST_EMPTY(&shmmap_s->entries));
}
kmem_free(shmmap_s, sizeof(struct shmmap_state));
}
static int
shmrealloc(int newshmni)
{
vaddr_t v;
struct shmid_ds *oldshmsegs, *newshmsegs;
kcondvar_t *newshm_cv, *oldshm_cv;
size_t sz;
int i, lsegid, oldshmni;
if (newshmni < 1)
return EINVAL;
/* Allocate new memory area */
sz = ALIGN(newshmni * sizeof(struct shmid_ds)) +
ALIGN(newshmni * sizeof(kcondvar_t));
sz = round_page(sz);
v = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED|UVM_KMF_ZERO);
if (v == 0)
return ENOMEM;
mutex_enter(&shm_lock);
while (shm_realloc_state || shm_realloc_disable)
cv_wait(&shm_realloc_cv, &shm_lock);
/*
* Get the number of last segment. Fail we are trying to
* reallocate less memory than we use.
*/
lsegid = 0;
for (i = 0; i < shminfo.shmmni; i++)
if ((shmsegs[i].shm_perm.mode & SHMSEG_FREE) == 0)
lsegid = i;
if (lsegid >= newshmni) {
mutex_exit(&shm_lock);
uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED);
return EBUSY;
}
shm_realloc_state = true;
newshmsegs = (void *)v;
newshm_cv = (void *)((uintptr_t)newshmsegs +
ALIGN(newshmni * sizeof(struct shmid_ds)));
/* Copy all memory to the new area */
for (i = 0; i < shm_nused; i++)
(void)memcpy(&newshmsegs[i], &shmsegs[i],
sizeof(newshmsegs[0]));
/* Mark as free all new segments, if there is any */
for (; i < newshmni; i++) {
cv_init(&newshm_cv[i], "shmwait");
newshmsegs[i].shm_perm.mode = SHMSEG_FREE;
newshmsegs[i].shm_perm._seq = 0;
}
oldshmsegs = shmsegs;
oldshmni = shminfo.shmmni;
shminfo.shmmni = newshmni;
shmsegs = newshmsegs;
shm_cv = newshm_cv;
/* Reallocation completed - notify all waiters, if any */
shm_realloc_state = false;
cv_broadcast(&shm_realloc_cv);
mutex_exit(&shm_lock);
/* Release now unused resources. */
oldshm_cv = (void *)((uintptr_t)oldshmsegs +
ALIGN(oldshmni * sizeof(struct shmid_ds)));
for (i = 0; i < oldshmni; i++)
cv_destroy(&oldshm_cv[i]);
sz = ALIGN(oldshmni * sizeof(struct shmid_ds)) +
ALIGN(oldshmni * sizeof(kcondvar_t));
sz = round_page(sz);
uvm_km_free(kernel_map, (vaddr_t)oldshmsegs, sz, UVM_KMF_WIRED);
return 0;
}
void
shminit(void)
{
vaddr_t v;
size_t sz;
int i;
mutex_init(&shm_lock, MUTEX_DEFAULT, IPL_NONE);
cv_init(&shm_realloc_cv, "shmrealc");
/* Allocate the wired memory for our structures */
sz = ALIGN(shminfo.shmmni * sizeof(struct shmid_ds)) +
ALIGN(shminfo.shmmni * sizeof(kcondvar_t));
sz = round_page(sz);
v = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED|UVM_KMF_ZERO);
if (v == 0)
panic("sysv_shm: cannot allocate memory");
shmsegs = (void *)v;
shm_cv = (void *)((uintptr_t)shmsegs +
ALIGN(shminfo.shmmni * sizeof(struct shmid_ds)));
if (shminfo.shmmax == 0)
shminfo.shmmax = max(physmem / 4, 1024) * PAGE_SIZE;
else
shminfo.shmmax *= PAGE_SIZE;
shminfo.shmall = shminfo.shmmax / PAGE_SIZE;
for (i = 0; i < shminfo.shmmni; i++) {
cv_init(&shm_cv[i], "shmwait");
shmsegs[i].shm_perm.mode = SHMSEG_FREE;
shmsegs[i].shm_perm._seq = 0;
}
shm_last_free = 0;
shm_nused = 0;
shm_committed = 0;
shm_realloc_disable = 0;
shm_realloc_state = false;
sysvipcinit();
}
static int
sysctl_ipc_shmmni(SYSCTLFN_ARGS)
{
int newsize, error;
struct sysctlnode node;
node = *rnode;
node.sysctl_data = &newsize;
newsize = shminfo.shmmni;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return error;
sysctl_unlock();
error = shmrealloc(newsize);
sysctl_relock();
return error;
}
static int
sysctl_ipc_shmmaxpgs(SYSCTLFN_ARGS)
{
uint32_t newsize;
int error;
struct sysctlnode node;
node = *rnode;
node.sysctl_data = &newsize;
newsize = shminfo.shmall;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return error;
if (newsize < 1)
return EINVAL;
shminfo.shmall = newsize;
shminfo.shmmax = (uint64_t)shminfo.shmall * PAGE_SIZE;
return 0;
}
static int
sysctl_ipc_shmmax(SYSCTLFN_ARGS)
{
uint64_t newsize;
int error;
struct sysctlnode node;
node = *rnode;
node.sysctl_data = &newsize;
newsize = shminfo.shmmax;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return error;
if (newsize < PAGE_SIZE)
return EINVAL;
shminfo.shmmax = round_page(newsize);
shminfo.shmall = shminfo.shmmax >> PAGE_SHIFT;
return 0;
}
SYSCTL_SETUP(sysctl_ipc_shm_setup, "sysctl kern.ipc subtree setup")
{
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "kern", NULL,
NULL, 0, NULL, 0,
CTL_KERN, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "ipc",
SYSCTL_DESCR("SysV IPC options"),
NULL, 0, NULL, 0,
CTL_KERN, KERN_SYSVIPC, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
CTLTYPE_QUAD, "shmmax",
SYSCTL_DESCR("Max shared memory segment size in bytes"),
sysctl_ipc_shmmax, 0, &shminfo.shmmax, 0,
CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SHMMAX, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
CTLTYPE_INT, "shmmni",
SYSCTL_DESCR("Max number of shared memory identifiers"),
sysctl_ipc_shmmni, 0, &shminfo.shmmni, 0,
CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SHMMNI, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
CTLTYPE_INT, "shmseg",
SYSCTL_DESCR("Max shared memory segments per process"),
NULL, 0, &shminfo.shmseg, 0,
CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SHMSEG, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
CTLTYPE_INT, "shmmaxpgs",
SYSCTL_DESCR("Max amount of shared memory in pages"),
sysctl_ipc_shmmaxpgs, 0, &shminfo.shmall, 0,
CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SHMMAXPGS, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
CTLTYPE_INT, "shm_use_phys",
SYSCTL_DESCR("Enable/disable locking of shared memory in "
"physical memory"), NULL, 0, &shm_use_phys, 0,
CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SHMUSEPHYS, CTL_EOL);
}