NetBSD/sys/net/rtsock.c
christos fbbeedbe63 PR/27286: Tom Ivar Helbekkmo: Allow RTM_GET to work with RTA_IFA|RTA_IFP set.
Quiting Tom: The problem is the special case of an RTM_GET message
that wants interface information included in the response, and
therefore include the RTA_IFA or RTA_IFP (or both) flags in the
bitmask that says what addresses are supplied in the message.  For
the RTM_GET message, it doesn't make sense to supply addresses
other than the one you're asking about, so those two other bits
are, in that specific case, overloaded with this meaning.

There is code in sys/net/rtsock.c to handle the case, but at some
time, extra sanity checking of the received message was added, that
failed to take this possibility into account.

The patch, is needed for the Asterisk software PBX to work properly
when it has multiple interfaces active: it needs to ask the kernel
for the IP address of the interface that will be used to communicate
with a given host.
2004-10-23 19:13:22 +00:00

1131 lines
30 KiB
C

/* $NetBSD: rtsock.c,v 1.72 2004/10/23 19:13:22 christos Exp $ */
/*
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Copyright (c) 1988, 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)rtsock.c 8.7 (Berkeley) 10/12/95
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: rtsock.c,v 1.72 2004/10/23 19:13:22 christos Exp $");
#include "opt_inet.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/domain.h>
#include <sys/protosw.h>
#include <sys/sysctl.h>
#include <net/if.h>
#include <net/route.h>
#include <net/raw_cb.h>
#include <machine/stdarg.h>
extern struct domain routedomain; /* or at least forward */
struct sockaddr route_dst = { 2, PF_ROUTE, };
struct sockaddr route_src = { 2, PF_ROUTE, };
struct sockproto route_proto = { PF_ROUTE, };
struct walkarg {
int w_op;
int w_arg;
int w_given;
int w_needed;
caddr_t w_where;
int w_tmemsize;
int w_tmemneeded;
caddr_t w_tmem;
};
static struct mbuf *rt_msg1(int, struct rt_addrinfo *, caddr_t, int);
static int rt_msg2(int, struct rt_addrinfo *, caddr_t, struct walkarg *, int *);
static int rt_xaddrs(u_char, const char *, const char *, struct rt_addrinfo *);
static int sysctl_dumpentry(struct radix_node *, void *);
static int sysctl_iflist(int, struct walkarg *, int);
static int sysctl_rtable(SYSCTLFN_PROTO);
static __inline void rt_adjustcount(int, int);
/* Sleazy use of local variables throughout file, warning!!!! */
#define dst info.rti_info[RTAX_DST]
#define gate info.rti_info[RTAX_GATEWAY]
#define netmask info.rti_info[RTAX_NETMASK]
#define genmask info.rti_info[RTAX_GENMASK]
#define ifpaddr info.rti_info[RTAX_IFP]
#define ifaaddr info.rti_info[RTAX_IFA]
#define brdaddr info.rti_info[RTAX_BRD]
static __inline void
rt_adjustcount(int af, int cnt)
{
route_cb.any_count += cnt;
switch (af) {
case AF_INET:
route_cb.ip_count += cnt;
return;
#ifdef INET6
case AF_INET6:
route_cb.ip6_count += cnt;
return;
#endif
case AF_IPX:
route_cb.ipx_count += cnt;
return;
case AF_NS:
route_cb.ns_count += cnt;
return;
case AF_ISO:
route_cb.iso_count += cnt;
return;
}
}
/*ARGSUSED*/
int
route_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
struct mbuf *control, struct proc *p)
{
int error = 0;
struct rawcb *rp = sotorawcb(so);
int s;
if (req == PRU_ATTACH) {
MALLOC(rp, struct rawcb *, sizeof(*rp), M_PCB, M_WAITOK);
if ((so->so_pcb = rp) != NULL)
memset(so->so_pcb, 0, sizeof(*rp));
}
if (req == PRU_DETACH && rp)
rt_adjustcount(rp->rcb_proto.sp_protocol, -1);
s = splsoftnet();
/*
* Don't call raw_usrreq() in the attach case, because
* we want to allow non-privileged processes to listen on
* and send "safe" commands to the routing socket.
*/
if (req == PRU_ATTACH) {
if (p == 0)
error = EACCES;
else
error = raw_attach(so, (int)(long)nam);
} else
error = raw_usrreq(so, req, m, nam, control, p);
rp = sotorawcb(so);
if (req == PRU_ATTACH && rp) {
if (error) {
free((caddr_t)rp, M_PCB);
splx(s);
return (error);
}
rt_adjustcount(rp->rcb_proto.sp_protocol, 1);
rp->rcb_laddr = &route_src;
rp->rcb_faddr = &route_dst;
soisconnected(so);
so->so_options |= SO_USELOOPBACK;
}
splx(s);
return (error);
}
/*ARGSUSED*/
int
route_output(struct mbuf *m, ...)
{
struct rt_msghdr *rtm = 0;
struct radix_node *rn = 0;
struct rtentry *rt = 0;
struct rtentry *saved_nrt = 0;
struct radix_node_head *rnh;
struct rt_addrinfo info;
int len, error = 0;
struct ifnet *ifp = 0;
struct ifaddr *ifa = 0;
struct socket *so;
va_list ap;
sa_family_t family;
va_start(ap, m);
so = va_arg(ap, struct socket *);
va_end(ap);
#define senderr(e) do { error = e; goto flush;} while (/*CONSTCOND*/ 0)
if (m == 0 || ((m->m_len < sizeof(int32_t)) &&
(m = m_pullup(m, sizeof(int32_t))) == 0))
return (ENOBUFS);
if ((m->m_flags & M_PKTHDR) == 0)
panic("route_output");
len = m->m_pkthdr.len;
if (len < sizeof(*rtm) ||
len != mtod(m, struct rt_msghdr *)->rtm_msglen) {
dst = 0;
senderr(EINVAL);
}
R_Malloc(rtm, struct rt_msghdr *, len);
if (rtm == 0) {
dst = 0;
senderr(ENOBUFS);
}
m_copydata(m, 0, len, (caddr_t)rtm);
if (rtm->rtm_version != RTM_VERSION) {
dst = 0;
senderr(EPROTONOSUPPORT);
}
rtm->rtm_pid = curproc->p_pid;
memset(&info, 0, sizeof(info));
info.rti_addrs = rtm->rtm_addrs;
if (rt_xaddrs(rtm->rtm_type, (caddr_t)(rtm + 1), len + (caddr_t)rtm, &info))
senderr(EINVAL);
info.rti_flags = rtm->rtm_flags;
if (dst == 0 || (dst->sa_family >= AF_MAX))
senderr(EINVAL);
if (gate != 0 && (gate->sa_family >= AF_MAX))
senderr(EINVAL);
if (genmask) {
struct radix_node *t;
t = rn_addmask((caddr_t)genmask, 0, 1);
if (t && genmask->sa_len >= ((struct sockaddr *)t->rn_key)->sa_len &&
Bcmp((caddr_t *)genmask + 1, (caddr_t *)t->rn_key + 1,
((struct sockaddr *)t->rn_key)->sa_len) - 1)
genmask = (struct sockaddr *)(t->rn_key);
else
senderr(ENOBUFS);
}
/*
* Verify that the caller has the appropriate privilege; RTM_GET
* is the only operation the non-superuser is allowed.
*/
if (rtm->rtm_type != RTM_GET &&
suser(curproc->p_ucred, &curproc->p_acflag) != 0)
senderr(EACCES);
switch (rtm->rtm_type) {
case RTM_ADD:
if (gate == 0)
senderr(EINVAL);
error = rtrequest1(rtm->rtm_type, &info, &saved_nrt);
if (error == 0 && saved_nrt) {
rt_setmetrics(rtm->rtm_inits,
&rtm->rtm_rmx, &saved_nrt->rt_rmx);
saved_nrt->rt_refcnt--;
saved_nrt->rt_genmask = genmask;
}
break;
case RTM_DELETE:
error = rtrequest1(rtm->rtm_type, &info, &saved_nrt);
if (error == 0) {
(rt = saved_nrt)->rt_refcnt++;
goto report;
}
break;
case RTM_GET:
case RTM_CHANGE:
case RTM_LOCK:
if ((rnh = rt_tables[dst->sa_family]) == 0) {
senderr(EAFNOSUPPORT);
}
rn = rnh->rnh_lookup(dst, netmask, rnh);
if (rn == NULL || (rn->rn_flags & RNF_ROOT) != 0) {
senderr(ESRCH);
}
rt = (struct rtentry *)rn;
rt->rt_refcnt++;
if (rtm->rtm_type != RTM_GET) {/* XXX: too grotty */
struct radix_node *rn;
extern struct radix_node_head *mask_rnhead;
if (Bcmp(dst, rt_key(rt), dst->sa_len) != 0)
senderr(ESRCH);
if (netmask && (rn = rn_search(netmask,
mask_rnhead->rnh_treetop)))
netmask = (struct sockaddr *)rn->rn_key;
for (rn = rt->rt_nodes; rn; rn = rn->rn_dupedkey)
if (netmask == (struct sockaddr *)rn->rn_mask)
break;
if (rn == 0)
senderr(ETOOMANYREFS);
rt = (struct rtentry *)rn;
}
switch (rtm->rtm_type) {
case RTM_GET:
report:
dst = rt_key(rt);
gate = rt->rt_gateway;
netmask = rt_mask(rt);
genmask = rt->rt_genmask;
if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) {
if ((ifp = rt->rt_ifp) != NULL) {
ifpaddr = TAILQ_FIRST(&ifp->if_addrlist)->ifa_addr;
ifaaddr = rt->rt_ifa->ifa_addr;
if (ifp->if_flags & IFF_POINTOPOINT)
brdaddr = rt->rt_ifa->ifa_dstaddr;
else
brdaddr = 0;
rtm->rtm_index = ifp->if_index;
} else {
ifpaddr = 0;
ifaaddr = 0;
}
}
(void)rt_msg2(rtm->rtm_type, &info, (caddr_t)0,
(struct walkarg *)0, &len);
if (len > rtm->rtm_msglen) {
struct rt_msghdr *new_rtm;
R_Malloc(new_rtm, struct rt_msghdr *, len);
if (new_rtm == 0)
senderr(ENOBUFS);
Bcopy(rtm, new_rtm, rtm->rtm_msglen);
Free(rtm); rtm = new_rtm;
}
(void)rt_msg2(rtm->rtm_type, &info, (caddr_t)rtm,
(struct walkarg *)0, 0);
rtm->rtm_flags = rt->rt_flags;
rtm->rtm_rmx = rt->rt_rmx;
rtm->rtm_addrs = info.rti_addrs;
break;
case RTM_CHANGE:
/*
* new gateway could require new ifaddr, ifp;
* flags may also be different; ifp may be specified
* by ll sockaddr when protocol address is ambiguous
*/
if ((error = rt_getifa(&info)) != 0)
senderr(error);
if (gate && rt_setgate(rt, rt_key(rt), gate))
senderr(EDQUOT);
/* new gateway could require new ifaddr, ifp;
flags may also be different; ifp may be specified
by ll sockaddr when protocol address is ambiguous */
if (ifpaddr && (ifa = ifa_ifwithnet(ifpaddr)) &&
(ifp = ifa->ifa_ifp) && (ifaaddr || gate))
ifa = ifaof_ifpforaddr(ifaaddr ? ifaaddr : gate,
ifp);
else if ((ifaaddr && (ifa = ifa_ifwithaddr(ifaaddr))) ||
(gate && (ifa = ifa_ifwithroute(rt->rt_flags,
rt_key(rt), gate))))
ifp = ifa->ifa_ifp;
if (ifa) {
struct ifaddr *oifa = rt->rt_ifa;
if (oifa != ifa) {
if (oifa && oifa->ifa_rtrequest)
oifa->ifa_rtrequest(RTM_DELETE, rt,
&info);
IFAFREE(rt->rt_ifa);
rt->rt_ifa = ifa;
IFAREF(rt->rt_ifa);
rt->rt_ifp = ifp;
}
}
rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx,
&rt->rt_rmx);
if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest)
rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info);
if (genmask)
rt->rt_genmask = genmask;
/*
* Fall into
*/
case RTM_LOCK:
rt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits);
rt->rt_rmx.rmx_locks |=
(rtm->rtm_inits & rtm->rtm_rmx.rmx_locks);
break;
}
break;
default:
senderr(EOPNOTSUPP);
}
flush:
if (rtm) {
if (error)
rtm->rtm_errno = error;
else
rtm->rtm_flags |= RTF_DONE;
}
family = dst ? dst->sa_family : 0;
if (rt)
rtfree(rt);
{
struct rawcb *rp = 0;
/*
* Check to see if we don't want our own messages.
*/
if ((so->so_options & SO_USELOOPBACK) == 0) {
if (route_cb.any_count <= 1) {
if (rtm)
Free(rtm);
m_freem(m);
return (error);
}
/* There is another listener, so construct message */
rp = sotorawcb(so);
}
if (rtm) {
m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm);
if (m->m_pkthdr.len < rtm->rtm_msglen) {
m_freem(m);
m = NULL;
} else if (m->m_pkthdr.len > rtm->rtm_msglen)
m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
Free(rtm);
}
if (rp)
rp->rcb_proto.sp_family = 0; /* Avoid us */
if (family)
route_proto.sp_protocol = family;
if (m)
raw_input(m, &route_proto, &route_src, &route_dst);
if (rp)
rp->rcb_proto.sp_family = PF_ROUTE;
}
return (error);
}
void
rt_setmetrics(u_long which, const struct rt_metrics *in, struct rt_metrics *out)
{
#define metric(f, e) if (which & (f)) out->e = in->e;
metric(RTV_RPIPE, rmx_recvpipe);
metric(RTV_SPIPE, rmx_sendpipe);
metric(RTV_SSTHRESH, rmx_ssthresh);
metric(RTV_RTT, rmx_rtt);
metric(RTV_RTTVAR, rmx_rttvar);
metric(RTV_HOPCOUNT, rmx_hopcount);
metric(RTV_MTU, rmx_mtu);
metric(RTV_EXPIRE, rmx_expire);
#undef metric
}
#define ROUNDUP(a) \
((a) > 0 ? (1 + (((a) - 1) | (sizeof(long) - 1))) : sizeof(long))
#define ADVANCE(x, n) (x += ROUNDUP((n)->sa_len))
static int
rt_xaddrs(u_char rtmtype, const char *cp, const char *cplim, struct rt_addrinfo *rtinfo)
{
const struct sockaddr *sa = NULL; /* Quell compiler warning */
int i;
for (i = 0; (i < RTAX_MAX) && (cp < cplim); i++) {
if ((rtinfo->rti_addrs & (1 << i)) == 0)
continue;
rtinfo->rti_info[i] = sa = (struct sockaddr *)cp;
ADVANCE(cp, sa);
}
/* Check for extra addresses specified, except RTM_GET asking for interface info. */
if (rtmtype == RTM_GET) {
if (((rtinfo->rti_addrs & (~((1 << RTAX_IFP) | (1 << RTAX_IFA)))) & (~0 << i)) != 0)
return (1);
} else {
if ((rtinfo->rti_addrs & (~0 << i)) != 0)
return (1);
}
/* Check for bad data length. */
if (cp != cplim) {
if (i == RTAX_NETMASK + 1 &&
cp - ROUNDUP(sa->sa_len) + sa->sa_len == cplim)
/*
* The last sockaddr was netmask.
* We accept this for now for the sake of old
* binaries or third party softwares.
*/
;
else
return (1);
}
return (0);
}
static struct mbuf *
rt_msg1(int type, struct rt_addrinfo *rtinfo, caddr_t data, int datalen)
{
struct rt_msghdr *rtm;
struct mbuf *m;
int i;
const struct sockaddr *sa;
int len, dlen;
m = m_gethdr(M_DONTWAIT, MT_DATA);
if (m == 0)
return (m);
MCLAIM(m, &routedomain.dom_mowner);
switch (type) {
case RTM_DELADDR:
case RTM_NEWADDR:
len = sizeof(struct ifa_msghdr);
break;
#ifdef COMPAT_14
case RTM_OIFINFO:
len = sizeof(struct if_msghdr14);
break;
#endif
case RTM_IFINFO:
len = sizeof(struct if_msghdr);
break;
case RTM_IFANNOUNCE:
len = sizeof(struct if_announcemsghdr);
break;
default:
len = sizeof(struct rt_msghdr);
}
if (len > MHLEN + MLEN)
panic("rt_msg1: message too long");
else if (len > MHLEN) {
m->m_next = m_get(M_DONTWAIT, MT_DATA);
if (m->m_next == NULL) {
m_freem(m);
return (NULL);
}
MCLAIM(m->m_next, m->m_owner);
m->m_pkthdr.len = len;
m->m_len = MHLEN;
m->m_next->m_len = len - MHLEN;
} else {
m->m_pkthdr.len = m->m_len = len;
}
m->m_pkthdr.rcvif = 0;
m_copyback(m, 0, datalen, data);
rtm = mtod(m, struct rt_msghdr *);
for (i = 0; i < RTAX_MAX; i++) {
if ((sa = rtinfo->rti_info[i]) == NULL)
continue;
rtinfo->rti_addrs |= (1 << i);
dlen = ROUNDUP(sa->sa_len);
m_copyback(m, len, dlen, (caddr_t)sa);
len += dlen;
}
if (m->m_pkthdr.len != len) {
m_freem(m);
return (NULL);
}
rtm->rtm_msglen = len;
rtm->rtm_version = RTM_VERSION;
rtm->rtm_type = type;
return (m);
}
/*
* rt_msg2
*
* fills 'cp' or 'w'.w_tmem with the routing socket message and
* returns the length of the message in 'lenp'.
*
* if walkarg is 0, cp is expected to be 0 or a buffer large enough to hold
* the message
* otherwise walkarg's w_needed is updated and if the user buffer is
* specified and w_needed indicates space exists the information is copied
* into the temp space (w_tmem). w_tmem is [re]allocated if necessary,
* if the allocation fails ENOBUFS is returned.
*/
static int
rt_msg2(int type, struct rt_addrinfo *rtinfo, caddr_t cp, struct walkarg *w,
int *lenp)
{
int i;
int len, dlen, second_time = 0;
caddr_t cp0;
rtinfo->rti_addrs = 0;
again:
switch (type) {
case RTM_DELADDR:
case RTM_NEWADDR:
len = sizeof(struct ifa_msghdr);
break;
#ifdef COMPAT_14
case RTM_OIFINFO:
len = sizeof(struct if_msghdr14);
break;
#endif
case RTM_IFINFO:
len = sizeof(struct if_msghdr);
break;
default:
len = sizeof(struct rt_msghdr);
}
if ((cp0 = cp) != NULL)
cp += len;
for (i = 0; i < RTAX_MAX; i++) {
const struct sockaddr *sa;
if ((sa = rtinfo->rti_info[i]) == 0)
continue;
rtinfo->rti_addrs |= (1 << i);
dlen = ROUNDUP(sa->sa_len);
if (cp) {
bcopy(sa, cp, (unsigned)dlen);
cp += dlen;
}
len += dlen;
}
if (cp == 0 && w != NULL && !second_time) {
struct walkarg *rw = w;
rw->w_needed += len;
if (rw->w_needed <= 0 && rw->w_where) {
if (rw->w_tmemsize < len) {
if (rw->w_tmem)
free(rw->w_tmem, M_RTABLE);
rw->w_tmem = (caddr_t) malloc(len, M_RTABLE,
M_NOWAIT);
if (rw->w_tmem)
rw->w_tmemsize = len;
}
if (rw->w_tmem) {
cp = rw->w_tmem;
second_time = 1;
goto again;
} else {
rw->w_tmemneeded = len;
return (ENOBUFS);
}
}
}
if (cp) {
struct rt_msghdr *rtm = (struct rt_msghdr *)cp0;
rtm->rtm_version = RTM_VERSION;
rtm->rtm_type = type;
rtm->rtm_msglen = len;
}
if (lenp)
*lenp = len;
return (0);
}
/*
* This routine is called to generate a message from the routing
* socket indicating that a redirect has occurred, a routing lookup
* has failed, or that a protocol has detected timeouts to a particular
* destination.
*/
void
rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error)
{
struct rt_msghdr rtm;
struct mbuf *m;
const struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
if (route_cb.any_count == 0)
return;
memset(&rtm, 0, sizeof(rtm));
rtm.rtm_flags = RTF_DONE | flags;
rtm.rtm_errno = error;
m = rt_msg1(type, rtinfo, (caddr_t)&rtm, sizeof(rtm));
if (m == 0)
return;
mtod(m, struct rt_msghdr *)->rtm_addrs = rtinfo->rti_addrs;
route_proto.sp_protocol = sa ? sa->sa_family : 0;
raw_input(m, &route_proto, &route_src, &route_dst);
}
/*
* This routine is called to generate a message from the routing
* socket indicating that the status of a network interface has changed.
*/
void
rt_ifmsg(struct ifnet *ifp)
{
struct if_msghdr ifm;
#ifdef COMPAT_14
struct if_msghdr14 oifm;
#endif
struct mbuf *m;
struct rt_addrinfo info;
if (route_cb.any_count == 0)
return;
memset(&info, 0, sizeof(info));
memset(&ifm, 0, sizeof(ifm));
ifm.ifm_index = ifp->if_index;
ifm.ifm_flags = ifp->if_flags;
ifm.ifm_data = ifp->if_data;
ifm.ifm_addrs = 0;
m = rt_msg1(RTM_IFINFO, &info, (caddr_t)&ifm, sizeof(ifm));
if (m == 0)
return;
route_proto.sp_protocol = 0;
raw_input(m, &route_proto, &route_src, &route_dst);
#ifdef COMPAT_14
memset(&info, 0, sizeof(info));
memset(&oifm, 0, sizeof(oifm));
oifm.ifm_index = ifp->if_index;
oifm.ifm_flags = ifp->if_flags;
oifm.ifm_data.ifi_type = ifp->if_data.ifi_type;
oifm.ifm_data.ifi_addrlen = ifp->if_data.ifi_addrlen;
oifm.ifm_data.ifi_hdrlen = ifp->if_data.ifi_hdrlen;
oifm.ifm_data.ifi_mtu = ifp->if_data.ifi_mtu;
oifm.ifm_data.ifi_metric = ifp->if_data.ifi_metric;
oifm.ifm_data.ifi_baudrate = ifp->if_data.ifi_baudrate;
oifm.ifm_data.ifi_ipackets = ifp->if_data.ifi_ipackets;
oifm.ifm_data.ifi_ierrors = ifp->if_data.ifi_ierrors;
oifm.ifm_data.ifi_opackets = ifp->if_data.ifi_opackets;
oifm.ifm_data.ifi_oerrors = ifp->if_data.ifi_oerrors;
oifm.ifm_data.ifi_collisions = ifp->if_data.ifi_collisions;
oifm.ifm_data.ifi_ibytes = ifp->if_data.ifi_ibytes;
oifm.ifm_data.ifi_obytes = ifp->if_data.ifi_obytes;
oifm.ifm_data.ifi_imcasts = ifp->if_data.ifi_imcasts;
oifm.ifm_data.ifi_omcasts = ifp->if_data.ifi_omcasts;
oifm.ifm_data.ifi_iqdrops = ifp->if_data.ifi_iqdrops;
oifm.ifm_data.ifi_noproto = ifp->if_data.ifi_noproto;
oifm.ifm_data.ifi_lastchange = ifp->if_data.ifi_lastchange;
oifm.ifm_addrs = 0;
m = rt_msg1(RTM_OIFINFO, &info, (caddr_t)&oifm, sizeof(oifm));
if (m == 0)
return;
route_proto.sp_protocol = 0;
raw_input(m, &route_proto, &route_src, &route_dst);
#endif
}
/*
* This is called to generate messages from the routing socket
* indicating a network interface has had addresses associated with it.
* if we ever reverse the logic and replace messages TO the routing
* socket indicate a request to configure interfaces, then it will
* be unnecessary as the routing socket will automatically generate
* copies of it.
*/
void
rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt)
{
struct rt_addrinfo info;
struct sockaddr *sa = NULL;
int pass;
struct mbuf *m = NULL;
struct ifnet *ifp = ifa->ifa_ifp;
if (route_cb.any_count == 0)
return;
for (pass = 1; pass < 3; pass++) {
memset(&info, 0, sizeof(info));
if ((cmd == RTM_ADD && pass == 1) ||
(cmd == RTM_DELETE && pass == 2)) {
struct ifa_msghdr ifam;
int ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR;
ifaaddr = sa = ifa->ifa_addr;
ifpaddr = TAILQ_FIRST(&ifp->if_addrlist)->ifa_addr;
netmask = ifa->ifa_netmask;
brdaddr = ifa->ifa_dstaddr;
memset(&ifam, 0, sizeof(ifam));
ifam.ifam_index = ifp->if_index;
ifam.ifam_metric = ifa->ifa_metric;
ifam.ifam_flags = ifa->ifa_flags;
m = rt_msg1(ncmd, &info, (caddr_t)&ifam, sizeof(ifam));
if (m == NULL)
continue;
mtod(m, struct ifa_msghdr *)->ifam_addrs =
info.rti_addrs;
}
if ((cmd == RTM_ADD && pass == 2) ||
(cmd == RTM_DELETE && pass == 1)) {
struct rt_msghdr rtm;
if (rt == 0)
continue;
netmask = rt_mask(rt);
dst = sa = rt_key(rt);
gate = rt->rt_gateway;
memset(&rtm, 0, sizeof(rtm));
rtm.rtm_index = ifp->if_index;
rtm.rtm_flags |= rt->rt_flags;
rtm.rtm_errno = error;
m = rt_msg1(cmd, &info, (caddr_t)&rtm, sizeof(rtm));
if (m == NULL)
continue;
mtod(m, struct rt_msghdr *)->rtm_addrs = info.rti_addrs;
}
route_proto.sp_protocol = sa ? sa->sa_family : 0;
raw_input(m, &route_proto, &route_src, &route_dst);
}
}
/*
* This is called to generate routing socket messages indicating
* network interface arrival and departure.
*/
void
rt_ifannouncemsg(struct ifnet *ifp, int what)
{
struct if_announcemsghdr ifan;
struct mbuf *m;
struct rt_addrinfo info;
if (route_cb.any_count == 0)
return;
memset(&info, 0, sizeof(info));
memset(&ifan, 0, sizeof(ifan));
ifan.ifan_index = ifp->if_index;
strlcpy(ifan.ifan_name, ifp->if_xname, sizeof(ifan.ifan_name));
ifan.ifan_what = what;
m = rt_msg1(RTM_IFANNOUNCE, &info, (caddr_t)&ifan, sizeof(ifan));
if (m == 0)
return;
route_proto.sp_protocol = 0;
raw_input(m, &route_proto, &route_src, &route_dst);
}
/*
* This is used in dumping the kernel table via sysctl().
*/
static int
sysctl_dumpentry(struct radix_node *rn, void *v)
{
struct walkarg *w = v;
struct rtentry *rt = (struct rtentry *)rn;
int error = 0, size;
struct rt_addrinfo info;
if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg))
return 0;
memset(&info, 0, sizeof(info));
dst = rt_key(rt);
gate = rt->rt_gateway;
netmask = rt_mask(rt);
genmask = rt->rt_genmask;
if (rt->rt_ifp) {
ifpaddr = TAILQ_FIRST(&rt->rt_ifp->if_addrlist)->ifa_addr;
ifaaddr = rt->rt_ifa->ifa_addr;
if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
brdaddr = rt->rt_ifa->ifa_dstaddr;
}
if ((error = rt_msg2(RTM_GET, &info, 0, w, &size)))
return (error);
if (w->w_where && w->w_tmem && w->w_needed <= 0) {
struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem;
rtm->rtm_flags = rt->rt_flags;
rtm->rtm_use = rt->rt_use;
rtm->rtm_rmx = rt->rt_rmx;
rtm->rtm_index = rt->rt_ifp->if_index;
rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0;
rtm->rtm_addrs = info.rti_addrs;
if ((error = copyout(rtm, w->w_where, size)) != 0)
w->w_where = NULL;
else
w->w_where += size;
}
return (error);
}
static int
sysctl_iflist(int af, struct walkarg *w, int type)
{
struct ifnet *ifp;
struct ifaddr *ifa;
struct rt_addrinfo info;
int len, error = 0;
memset(&info, 0, sizeof(info));
TAILQ_FOREACH(ifp, &ifnet, if_list) {
if (w->w_arg && w->w_arg != ifp->if_index)
continue;
ifa = TAILQ_FIRST(&ifp->if_addrlist);
ifpaddr = ifa->ifa_addr;
switch (type) {
case NET_RT_IFLIST:
error =
rt_msg2(RTM_IFINFO, &info, (caddr_t)0, w, &len);
break;
#ifdef COMPAT_14
case NET_RT_OIFLIST:
error =
rt_msg2(RTM_OIFINFO, &info, (caddr_t)0, w, &len);
break;
#endif
default:
panic("sysctl_iflist(1)");
}
if (error)
return (error);
ifpaddr = 0;
if (w->w_where && w->w_tmem && w->w_needed <= 0) {
switch (type) {
case NET_RT_IFLIST: {
struct if_msghdr *ifm;
ifm = (struct if_msghdr *)w->w_tmem;
ifm->ifm_index = ifp->if_index;
ifm->ifm_flags = ifp->if_flags;
ifm->ifm_data = ifp->if_data;
ifm->ifm_addrs = info.rti_addrs;
error = copyout(ifm, w->w_where, len);
if (error)
return (error);
w->w_where += len;
break;
}
#ifdef COMPAT_14
case NET_RT_OIFLIST: {
struct if_msghdr14 *ifm;
ifm = (struct if_msghdr14 *)w->w_tmem;
ifm->ifm_index = ifp->if_index;
ifm->ifm_flags = ifp->if_flags;
ifm->ifm_data.ifi_type = ifp->if_data.ifi_type;
ifm->ifm_data.ifi_addrlen =
ifp->if_data.ifi_addrlen;
ifm->ifm_data.ifi_hdrlen =
ifp->if_data.ifi_hdrlen;
ifm->ifm_data.ifi_mtu = ifp->if_data.ifi_mtu;
ifm->ifm_data.ifi_metric =
ifp->if_data.ifi_metric;
ifm->ifm_data.ifi_baudrate =
ifp->if_data.ifi_baudrate;
ifm->ifm_data.ifi_ipackets =
ifp->if_data.ifi_ipackets;
ifm->ifm_data.ifi_ierrors =
ifp->if_data.ifi_ierrors;
ifm->ifm_data.ifi_opackets =
ifp->if_data.ifi_opackets;
ifm->ifm_data.ifi_oerrors =
ifp->if_data.ifi_oerrors;
ifm->ifm_data.ifi_collisions =
ifp->if_data.ifi_collisions;
ifm->ifm_data.ifi_ibytes =
ifp->if_data.ifi_ibytes;
ifm->ifm_data.ifi_obytes =
ifp->if_data.ifi_obytes;
ifm->ifm_data.ifi_imcasts =
ifp->if_data.ifi_imcasts;
ifm->ifm_data.ifi_omcasts =
ifp->if_data.ifi_omcasts;
ifm->ifm_data.ifi_iqdrops =
ifp->if_data.ifi_iqdrops;
ifm->ifm_data.ifi_noproto =
ifp->if_data.ifi_noproto;
ifm->ifm_data.ifi_lastchange =
ifp->if_data.ifi_lastchange;
ifm->ifm_addrs = info.rti_addrs;
error = copyout(ifm, w->w_where, len);
if (error)
return (error);
w->w_where += len;
break;
}
#endif
default:
panic("sysctl_iflist(2)");
}
}
while ((ifa = TAILQ_NEXT(ifa, ifa_list)) != NULL) {
if (af && af != ifa->ifa_addr->sa_family)
continue;
ifaaddr = ifa->ifa_addr;
netmask = ifa->ifa_netmask;
brdaddr = ifa->ifa_dstaddr;
if ((error = rt_msg2(RTM_NEWADDR, &info, 0, w, &len)))
return (error);
if (w->w_where && w->w_tmem && w->w_needed <= 0) {
struct ifa_msghdr *ifam;
ifam = (struct ifa_msghdr *)w->w_tmem;
ifam->ifam_index = ifa->ifa_ifp->if_index;
ifam->ifam_flags = ifa->ifa_flags;
ifam->ifam_metric = ifa->ifa_metric;
ifam->ifam_addrs = info.rti_addrs;
error = copyout(w->w_tmem, w->w_where, len);
if (error)
return (error);
w->w_where += len;
}
}
ifaaddr = netmask = brdaddr = 0;
}
return (0);
}
static int
sysctl_rtable(SYSCTLFN_ARGS)
{
void *where = oldp;
size_t *given = oldlenp;
const void *new = newp;
struct radix_node_head *rnh;
int i, s, error = EINVAL;
u_char af;
struct walkarg w;
if (namelen == 1 && name[0] == CTL_QUERY)
return (sysctl_query(SYSCTLFN_CALL(rnode)));
if (new)
return (EPERM);
if (namelen != 3)
return (EINVAL);
af = name[0];
w.w_tmemneeded = 0;
w.w_tmemsize = 0;
w.w_tmem = NULL;
again:
/* we may return here if a later [re]alloc of the t_mem buffer fails */
if (w.w_tmemneeded) {
w.w_tmem = (caddr_t) malloc(w.w_tmemneeded, M_RTABLE, M_WAITOK);
w.w_tmemsize = w.w_tmemneeded;
w.w_tmemneeded = 0;
}
w.w_op = name[1];
w.w_arg = name[2];
w.w_given = *given;
w.w_needed = 0 - w.w_given;
w.w_where = where;
s = splsoftnet();
switch (w.w_op) {
case NET_RT_DUMP:
case NET_RT_FLAGS:
for (i = 1; i <= AF_MAX; i++)
if ((rnh = rt_tables[i]) && (af == 0 || af == i) &&
(error = (*rnh->rnh_walktree)(rnh,
sysctl_dumpentry, &w)))
break;
break;
#ifdef COMPAT_14
case NET_RT_OIFLIST:
error = sysctl_iflist(af, &w, w.w_op);
break;
#endif
case NET_RT_IFLIST:
error = sysctl_iflist(af, &w, w.w_op);
}
splx(s);
/* check to see if we couldn't allocate memory with NOWAIT */
if (error == ENOBUFS && w.w_tmem == 0 && w.w_tmemneeded)
goto again;
if (w.w_tmem)
free(w.w_tmem, M_RTABLE);
w.w_needed += w.w_given;
if (where) {
*given = w.w_where - (caddr_t) where;
if (*given < w.w_needed)
return (ENOMEM);
} else {
*given = (11 * w.w_needed) / 10;
}
return (error);
}
/*
* Definitions of protocols supported in the ROUTE domain.
*/
const struct protosw routesw[] = {
{
SOCK_RAW, &routedomain, 0, PR_ATOMIC|PR_ADDR,
raw_input, route_output, raw_ctlinput, 0,
route_usrreq,
raw_init, 0, 0, 0,
} };
struct domain routedomain = {
PF_ROUTE, "route", route_init, 0, 0,
routesw, &routesw[sizeof(routesw)/sizeof(routesw[0])]
};
SYSCTL_SETUP(sysctl_net_route_setup, "sysctl net.route subtree setup")
{
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "net", NULL,
NULL, 0, NULL, 0,
CTL_NET, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "route",
SYSCTL_DESCR("PF_ROUTE information"),
NULL, 0, NULL, 0,
CTL_NET, PF_ROUTE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "rtable",
SYSCTL_DESCR("Routing table information"),
sysctl_rtable, 0, NULL, 0,
CTL_NET, PF_ROUTE, 0 /* any protocol */, CTL_EOL);
}