NetBSD/sys/dev/ic/gem.c

2013 lines
51 KiB
C

/* $NetBSD: gem.c,v 1.25 2003/02/20 00:55:21 matt Exp $ */
/*
*
* Copyright (C) 2001 Eduardo Horvath.
* All rights reserved.
*
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
/*
* Driver for Sun GEM ethernet controllers.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.25 2003/02/20 00:55:21 matt Exp $");
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/mbuf.h>
#include <sys/syslog.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/device.h>
#include <machine/endian.h>
#include <uvm/uvm_extern.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_ether.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <machine/bus.h>
#include <machine/intr.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/mii/mii_bitbang.h>
#include <dev/ic/gemreg.h>
#include <dev/ic/gemvar.h>
#define TRIES 10000
void gem_start __P((struct ifnet *));
void gem_stop __P((struct ifnet *, int));
int gem_ioctl __P((struct ifnet *, u_long, caddr_t));
void gem_tick __P((void *));
void gem_watchdog __P((struct ifnet *));
void gem_shutdown __P((void *));
int gem_init __P((struct ifnet *));
void gem_init_regs(struct gem_softc *sc);
static int gem_ringsize(int sz);
int gem_meminit __P((struct gem_softc *));
void gem_mifinit __P((struct gem_softc *));
void gem_reset __P((struct gem_softc *));
int gem_reset_rx(struct gem_softc *sc);
int gem_reset_tx(struct gem_softc *sc);
int gem_disable_rx(struct gem_softc *sc);
int gem_disable_tx(struct gem_softc *sc);
void gem_rxdrain(struct gem_softc *sc);
int gem_add_rxbuf(struct gem_softc *sc, int idx);
void gem_setladrf __P((struct gem_softc *));
/* MII methods & callbacks */
static int gem_mii_readreg __P((struct device *, int, int));
static void gem_mii_writereg __P((struct device *, int, int, int));
static void gem_mii_statchg __P((struct device *));
int gem_mediachange __P((struct ifnet *));
void gem_mediastatus __P((struct ifnet *, struct ifmediareq *));
struct mbuf *gem_get __P((struct gem_softc *, int, int));
int gem_put __P((struct gem_softc *, int, struct mbuf *));
void gem_read __P((struct gem_softc *, int, int));
int gem_eint __P((struct gem_softc *, u_int));
int gem_rint __P((struct gem_softc *));
int gem_tint __P((struct gem_softc *));
void gem_power __P((int, void *));
#ifdef GEM_DEBUG
#define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
printf x
#else
#define DPRINTF(sc, x) /* nothing */
#endif
/*
* gem_attach:
*
* Attach a Gem interface to the system.
*/
void
gem_attach(sc, enaddr)
struct gem_softc *sc;
const uint8_t *enaddr;
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct mii_data *mii = &sc->sc_mii;
struct mii_softc *child;
struct ifmedia_entry *ifm;
int i, error;
u_int32_t v;
/* Make sure the chip is stopped. */
ifp->if_softc = sc;
gem_reset(sc);
/*
* Allocate the control data structures, and create and load the
* DMA map for it.
*/
if ((error = bus_dmamem_alloc(sc->sc_dmatag,
sizeof(struct gem_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
1, &sc->sc_cdnseg, 0)) != 0) {
aprint_error(
"%s: unable to allocate control data, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail_0;
}
/* XXX should map this in with correct endianness */
if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
sizeof(struct gem_control_data), (caddr_t *)&sc->sc_control_data,
BUS_DMA_COHERENT)) != 0) {
aprint_error("%s: unable to map control data, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail_1;
}
if ((error = bus_dmamap_create(sc->sc_dmatag,
sizeof(struct gem_control_data), 1,
sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
aprint_error("%s: unable to create control data DMA map, "
"error = %d\n", sc->sc_dev.dv_xname, error);
goto fail_2;
}
if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
sc->sc_control_data, sizeof(struct gem_control_data), NULL,
0)) != 0) {
aprint_error(
"%s: unable to load control data DMA map, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail_3;
}
/*
* Initialize the transmit job descriptors.
*/
SIMPLEQ_INIT(&sc->sc_txfreeq);
SIMPLEQ_INIT(&sc->sc_txdirtyq);
/*
* Create the transmit buffer DMA maps.
*/
for (i = 0; i < GEM_TXQUEUELEN; i++) {
struct gem_txsoft *txs;
txs = &sc->sc_txsoft[i];
txs->txs_mbuf = NULL;
if ((error = bus_dmamap_create(sc->sc_dmatag,
ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
ETHER_MAX_LEN_JUMBO, 0, 0,
&txs->txs_dmamap)) != 0) {
aprint_error("%s: unable to create tx DMA map %d, "
"error = %d\n", sc->sc_dev.dv_xname, i, error);
goto fail_4;
}
SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
}
/*
* Create the receive buffer DMA maps.
*/
for (i = 0; i < GEM_NRXDESC; i++) {
if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
aprint_error("%s: unable to create rx DMA map %d, "
"error = %d\n", sc->sc_dev.dv_xname, i, error);
goto fail_5;
}
sc->sc_rxsoft[i].rxs_mbuf = NULL;
}
/*
* From this point forward, the attachment cannot fail. A failure
* before this point releases all resources that may have been
* allocated.
*/
/* Announce ourselves. */
aprint_normal("%s: Ethernet address %s", sc->sc_dev.dv_xname,
ether_sprintf(enaddr));
/* Get RX FIFO size */
sc->sc_rxfifosize = 64 *
bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_FIFO_SIZE);
aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
/* Get TX FIFO size */
v = bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_FIFO_SIZE);
aprint_normal(", %uKB TX fifo\n", v / 16);
/* Initialize ifnet structure. */
strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
ifp->if_softc = sc;
ifp->if_flags =
IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
ifp->if_start = gem_start;
ifp->if_ioctl = gem_ioctl;
ifp->if_watchdog = gem_watchdog;
ifp->if_stop = gem_stop;
ifp->if_init = gem_init;
IFQ_SET_READY(&ifp->if_snd);
/* Initialize ifmedia structures and MII info */
mii->mii_ifp = ifp;
mii->mii_readreg = gem_mii_readreg;
mii->mii_writereg = gem_mii_writereg;
mii->mii_statchg = gem_mii_statchg;
ifmedia_init(&mii->mii_media, IFM_IMASK, gem_mediachange, gem_mediastatus);
gem_mifinit(sc);
mii_attach(&sc->sc_dev, mii, 0xffffffff,
MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
child = LIST_FIRST(&mii->mii_phys);
if (child == NULL) {
/* No PHY attached */
ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
} else {
/*
* Walk along the list of attached MII devices and
* establish an `MII instance' to `phy number'
* mapping. We'll use this mapping in media change
* requests to determine which phy to use to program
* the MIF configuration register.
*/
for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
/*
* Note: we support just two PHYs: the built-in
* internal device and an external on the MII
* connector.
*/
if (child->mii_phy > 1 || child->mii_inst > 1) {
aprint_error(
"%s: cannot accomodate MII device %s"
" at phy %d, instance %d\n",
sc->sc_dev.dv_xname,
child->mii_dev.dv_xname,
child->mii_phy, child->mii_inst);
continue;
}
sc->sc_phys[child->mii_inst] = child->mii_phy;
}
/*
* Now select and activate the PHY we will use.
*
* The order of preference is External (MDI1),
* Internal (MDI0), Serial Link (no MII).
*/
if (sc->sc_phys[1]) {
#ifdef DEBUG
aprint_debug("using external phy\n");
#endif
sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
} else {
#ifdef DEBUG
aprint_debug("using internal phy\n");
#endif
sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
}
bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_MIF_CONFIG,
sc->sc_mif_config);
/*
* XXX - we can really do the following ONLY if the
* phy indeed has the auto negotiation capability!!
*/
ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
}
/*
* If we support GigE media, we support jumbo frames too.
* Unless we are Apple.
*/
TAILQ_FOREACH(ifm, &sc->sc_media.ifm_list, ifm_list) {
if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T ||
IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX ||
IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX ||
IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) {
if (sc->sc_variant != GEM_APPLE_GMAC)
sc->sc_ethercom.ec_capabilities
|= ETHERCAP_JUMBO_MTU;
sc->sc_flags |= GEM_GIGABIT;
break;
}
}
/* claim 802.1q capability */
sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
/* Attach the interface. */
if_attach(ifp);
ether_ifattach(ifp, enaddr);
sc->sc_sh = shutdownhook_establish(gem_shutdown, sc);
if (sc->sc_sh == NULL)
panic("gem_config: can't establish shutdownhook");
#if NRND > 0
rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
RND_TYPE_NET, 0);
#endif
evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
NULL, sc->sc_dev.dv_xname, "interrupts");
#ifdef GEM_COUNTERS
evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
&sc->sc_ev_intr, sc->sc_dev.dv_xname, "tx interrupts");
evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
&sc->sc_ev_intr, sc->sc_dev.dv_xname, "rx interrupts");
evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
&sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx ring full");
evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
&sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx malloc failure");
evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
&sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 0desc");
evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
&sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 1desc");
evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
&sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 2desc");
evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
&sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 3desc");
evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
&sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >3desc");
evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
&sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >7desc");
evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
&sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >15desc");
evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
&sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >31desc");
evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
&sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >63desc");
#endif
#if notyet
/*
* Add a suspend hook to make sure we come back up after a
* resume.
*/
sc->sc_powerhook = powerhook_establish(gem_power, sc);
if (sc->sc_powerhook == NULL)
aprint_error("%s: WARNING: unable to establish power hook\n",
sc->sc_dev.dv_xname);
#endif
callout_init(&sc->sc_tick_ch);
return;
/*
* Free any resources we've allocated during the failed attach
* attempt. Do this in reverse order and fall through.
*/
fail_5:
for (i = 0; i < GEM_NRXDESC; i++) {
if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
bus_dmamap_destroy(sc->sc_dmatag,
sc->sc_rxsoft[i].rxs_dmamap);
}
fail_4:
for (i = 0; i < GEM_TXQUEUELEN; i++) {
if (sc->sc_txsoft[i].txs_dmamap != NULL)
bus_dmamap_destroy(sc->sc_dmatag,
sc->sc_txsoft[i].txs_dmamap);
}
bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
fail_3:
bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
fail_2:
bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)sc->sc_control_data,
sizeof(struct gem_control_data));
fail_1:
bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
fail_0:
return;
}
void
gem_tick(arg)
void *arg;
{
struct gem_softc *sc = arg;
int s;
s = splnet();
mii_tick(&sc->sc_mii);
splx(s);
callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
}
void
gem_reset(sc)
struct gem_softc *sc;
{
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t h = sc->sc_h;
int i;
int s;
s = splnet();
DPRINTF(sc, ("%s: gem_reset\n", sc->sc_dev.dv_xname));
gem_reset_rx(sc);
gem_reset_tx(sc);
/* Do a full reset */
bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
for (i=TRIES; i--; delay(100))
if ((bus_space_read_4(t, h, GEM_RESET) &
(GEM_RESET_RX|GEM_RESET_TX)) == 0)
break;
if ((bus_space_read_4(t, h, GEM_RESET) &
(GEM_RESET_RX|GEM_RESET_TX)) != 0) {
printf("%s: cannot reset device\n",
sc->sc_dev.dv_xname);
}
splx(s);
}
/*
* gem_rxdrain:
*
* Drain the receive queue.
*/
void
gem_rxdrain(struct gem_softc *sc)
{
struct gem_rxsoft *rxs;
int i;
for (i = 0; i < GEM_NRXDESC; i++) {
rxs = &sc->sc_rxsoft[i];
if (rxs->rxs_mbuf != NULL) {
bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
m_freem(rxs->rxs_mbuf);
rxs->rxs_mbuf = NULL;
}
}
}
/*
* Reset the whole thing.
*/
void
gem_stop(struct ifnet *ifp, int disable)
{
struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
struct gem_txsoft *txs;
DPRINTF(sc, ("%s: gem_stop\n", sc->sc_dev.dv_xname));
callout_stop(&sc->sc_tick_ch);
mii_down(&sc->sc_mii);
/* XXX - Should we reset these instead? */
gem_disable_rx(sc);
gem_disable_tx(sc);
/*
* Release any queued transmit buffers.
*/
while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
if (txs->txs_mbuf != NULL) {
bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
m_freem(txs->txs_mbuf);
txs->txs_mbuf = NULL;
}
SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
}
if (disable) {
gem_rxdrain(sc);
}
/*
* Mark the interface down and cancel the watchdog timer.
*/
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ifp->if_timer = 0;
}
/*
* Reset the receiver
*/
int
gem_reset_rx(struct gem_softc *sc)
{
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t h = sc->sc_h;
int i;
/*
* Resetting while DMA is in progress can cause a bus hang, so we
* disable DMA first.
*/
gem_disable_rx(sc);
bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
/* Wait till it finishes */
for (i=TRIES; i--; delay(100))
if ((bus_space_read_4(t, h, GEM_RX_CONFIG) & 1) == 0)
break;
if ((bus_space_read_4(t, h, GEM_RX_CONFIG) & 1) != 0)
printf("%s: cannot disable read dma\n",
sc->sc_dev.dv_xname);
/* Wait 5ms extra. */
delay(5000);
/* Finally, reset the ERX */
bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX);
/* Wait till it finishes */
for (i=TRIES; i--; delay(100))
if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_RX) == 0)
break;
if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_RX) != 0) {
printf("%s: cannot reset receiver\n",
sc->sc_dev.dv_xname);
return (1);
}
return (0);
}
/*
* Reset the transmitter
*/
int
gem_reset_tx(struct gem_softc *sc)
{
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t h = sc->sc_h;
int i;
/*
* Resetting while DMA is in progress can cause a bus hang, so we
* disable DMA first.
*/
gem_disable_tx(sc);
bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
/* Wait till it finishes */
for (i=TRIES; i--; delay(100))
if ((bus_space_read_4(t, h, GEM_TX_CONFIG) & 1) == 0)
break;
if ((bus_space_read_4(t, h, GEM_TX_CONFIG) & 1) != 0)
printf("%s: cannot disable read dma\n",
sc->sc_dev.dv_xname);
/* Wait 5ms extra. */
delay(5000);
/* Finally, reset the ETX */
bus_space_write_4(t, h, GEM_RESET, GEM_RESET_TX);
/* Wait till it finishes */
for (i=TRIES; i--; delay(100))
if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) == 0)
break;
if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) != 0) {
printf("%s: cannot reset receiver\n",
sc->sc_dev.dv_xname);
return (1);
}
return (0);
}
/*
* disable receiver.
*/
int
gem_disable_rx(struct gem_softc *sc)
{
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t h = sc->sc_h;
int i;
u_int32_t cfg;
/* Flip the enable bit */
cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
cfg &= ~GEM_MAC_RX_ENABLE;
bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
/* Wait for it to finish */
for (i=TRIES; i--; delay(100))
if ((bus_space_read_4(t, h, GEM_MAC_RX_CONFIG) &
GEM_MAC_RX_ENABLE) == 0)
return (0);
return (1);
}
/*
* disable transmitter.
*/
int
gem_disable_tx(struct gem_softc *sc)
{
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t h = sc->sc_h;
int i;
u_int32_t cfg;
/* Flip the enable bit */
cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
cfg &= ~GEM_MAC_TX_ENABLE;
bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
/* Wait for it to finish */
for (i=TRIES; i--; delay(100))
if ((bus_space_read_4(t, h, GEM_MAC_TX_CONFIG) &
GEM_MAC_TX_ENABLE) == 0)
return (0);
return (1);
}
/*
* Initialize interface.
*/
int
gem_meminit(struct gem_softc *sc)
{
struct gem_rxsoft *rxs;
int i, error;
/*
* Initialize the transmit descriptor ring.
*/
memset((void *)sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
for (i = 0; i < GEM_NTXDESC; i++) {
sc->sc_txdescs[i].gd_flags = 0;
sc->sc_txdescs[i].gd_addr = 0;
}
GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
sc->sc_txfree = GEM_NTXDESC-1;
sc->sc_txnext = 0;
sc->sc_txwin = 0;
/*
* Initialize the receive descriptor and receive job
* descriptor rings.
*/
for (i = 0; i < GEM_NRXDESC; i++) {
rxs = &sc->sc_rxsoft[i];
if (rxs->rxs_mbuf == NULL) {
if ((error = gem_add_rxbuf(sc, i)) != 0) {
printf("%s: unable to allocate or map rx "
"buffer %d, error = %d\n",
sc->sc_dev.dv_xname, i, error);
/*
* XXX Should attempt to run with fewer receive
* XXX buffers instead of just failing.
*/
gem_rxdrain(sc);
return (1);
}
} else
GEM_INIT_RXDESC(sc, i);
}
sc->sc_rxptr = 0;
return (0);
}
static int
gem_ringsize(int sz)
{
int v;
switch (sz) {
case 32:
v = GEM_RING_SZ_32;
break;
case 64:
v = GEM_RING_SZ_64;
break;
case 128:
v = GEM_RING_SZ_128;
break;
case 256:
v = GEM_RING_SZ_256;
break;
case 512:
v = GEM_RING_SZ_512;
break;
case 1024:
v = GEM_RING_SZ_1024;
break;
case 2048:
v = GEM_RING_SZ_2048;
break;
case 4096:
v = GEM_RING_SZ_4096;
break;
case 8192:
v = GEM_RING_SZ_8192;
break;
default:
printf("gem: invalid Receive Descriptor ring size\n");
break;
}
return (v);
}
/*
* Initialization of interface; set up initialization block
* and transmit/receive descriptor rings.
*/
int
gem_init(struct ifnet *ifp)
{
struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t h = sc->sc_h;
int s;
u_int max_frame_size;
u_int32_t v;
s = splnet();
DPRINTF(sc, ("%s: gem_init: calling stop\n", sc->sc_dev.dv_xname));
/*
* Initialization sequence. The numbered steps below correspond
* to the sequence outlined in section 6.3.5.1 in the Ethernet
* Channel Engine manual (part of the PCIO manual).
* See also the STP2002-STQ document from Sun Microsystems.
*/
/* step 1 & 2. Reset the Ethernet Channel */
gem_stop(ifp, 0);
gem_reset(sc);
DPRINTF(sc, ("%s: gem_init: restarting\n", sc->sc_dev.dv_xname));
/* Re-initialize the MIF */
gem_mifinit(sc);
/* Call MI reset function if any */
if (sc->sc_hwreset)
(*sc->sc_hwreset)(sc);
/* step 3. Setup data structures in host memory */
gem_meminit(sc);
/* step 4. TX MAC registers & counters */
gem_init_regs(sc);
max_frame_size = max(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
max_frame_size += ETHER_VLAN_ENCAP_LEN;
bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
max_frame_size|/* burst size */(0x2000<<16));
/* step 5. RX MAC registers & counters */
gem_setladrf(sc);
/* step 6 & 7. Program Descriptor Ring Base Addresses */
/* NOTE: we use only 32-bit DMA addresses here. */
bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
/* step 8. Global Configuration & Interrupt Mask */
bus_space_write_4(t, h, GEM_INTMASK,
~(GEM_INTR_TX_INTME|
GEM_INTR_TX_EMPTY|
GEM_INTR_RX_DONE|GEM_INTR_RX_NOBUF|
GEM_INTR_RX_TAG_ERR|GEM_INTR_PCS|
GEM_INTR_MAC_CONTROL|GEM_INTR_MIF|
GEM_INTR_BERR));
bus_space_write_4(t, h, GEM_MAC_RX_MASK,
GEM_MAC_RX_DONE|GEM_MAC_RX_FRAME_CNT);
bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXXX */
bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK, 0); /* XXXX */
/* step 9. ETX Configuration: use mostly default values */
/* Enable DMA */
v = gem_ringsize(GEM_NTXDESC /*XXX*/);
bus_space_write_4(t, h, GEM_TX_CONFIG,
v|GEM_TX_CONFIG_TXDMA_EN|
((0x400<<10)&GEM_TX_CONFIG_TXFIFO_TH));
bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
/* step 10. ERX Configuration */
/* Encode Receive Descriptor ring size: four possible values */
v = gem_ringsize(GEM_NRXDESC /*XXX*/);
/* Enable DMA */
bus_space_write_4(t, h, GEM_RX_CONFIG,
v|(GEM_THRSH_1024<<GEM_RX_CONFIG_FIFO_THRS_SHIFT)|
(2<<GEM_RX_CONFIG_FBOFF_SHFT)|GEM_RX_CONFIG_RXDMA_EN|
(0<<GEM_RX_CONFIG_CXM_START_SHFT));
/*
* The following value is for an OFF Threshold of about 3/4 full
* and an ON Threshold of 1/4 full.
*/
bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
(3 * sc->sc_rxfifosize / 256) |
( (sc->sc_rxfifosize / 256) << 12));
bus_space_write_4(t, h, GEM_RX_BLANKING, (6<<12)|6);
/* step 11. Configure Media */
mii_mediachg(&sc->sc_mii);
/* XXXX Serial link needs a whole different setup. */
/* step 12. RX_MAC Configuration Register */
v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
v |= GEM_MAC_RX_ENABLE;
bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
/* step 14. Issue Transmit Pending command */
/* Call MI initialization function if any */
if (sc->sc_hwinit)
(*sc->sc_hwinit)(sc);
/* step 15. Give the reciever a swift kick */
bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
/* Start the one second timer. */
callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
ifp->if_timer = 0;
splx(s);
return (0);
}
void
gem_init_regs(struct gem_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t h = sc->sc_h;
const u_char *laddr = LLADDR(ifp->if_sadl);
u_int32_t v;
/* These regs are not cleared on reset */
if (!sc->sc_inited) {
/* Wooo. Magic values. */
bus_space_write_4(t, h, GEM_MAC_IPG0, 0);
bus_space_write_4(t, h, GEM_MAC_IPG1, 8);
bus_space_write_4(t, h, GEM_MAC_IPG2, 4);
bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
/* Max frame and max burst size */
bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
ETHER_MAX_LEN | (0x2000<<16));
bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x7);
bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x4);
bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
/* Dunno.... */
bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
((laddr[5]<<8)|laddr[4])&0x3ff);
/* Secondary MAC addr set to 0:0:0:0:0:0 */
bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
/* MAC control addr set to 01:80:c2:00:00:01 */
bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
/* MAC filter addr set to 0:0:0:0:0:0 */
bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
sc->sc_inited = 1;
}
/* Counters need to be zeroed */
bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
/* Un-pause stuff */
#if 0
bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
#else
bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0);
#endif
/*
* Set the station address.
*/
bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
#if 0
if (sc->sc_variant != APPLE_GMAC)
return;
#endif
/*
* Enable MII outputs. Enable GMII if there is a gigabit PHY.
*/
sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
v = GEM_MAC_XIF_TX_MII_ENA;
if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
v |= GEM_MAC_XIF_FDPLX_LED;
if (sc->sc_flags & GEM_GIGABIT)
v |= GEM_MAC_XIF_GMII_MODE;
}
bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
}
void
gem_start(ifp)
struct ifnet *ifp;
{
struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
struct mbuf *m0, *m;
struct gem_txsoft *txs, *last_txs;
bus_dmamap_t dmamap;
int error, firsttx, nexttx, lasttx, ofree, seg;
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
return;
/*
* Remember the previous number of free descriptors and
* the first descriptor we'll use.
*/
ofree = sc->sc_txfree;
firsttx = sc->sc_txnext;
DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
sc->sc_dev.dv_xname, ofree, firsttx));
/*
* Loop through the send queue, setting up transmit descriptors
* until we drain the queue, or use up all available transmit
* descriptors.
*/
while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
sc->sc_txfree != 0) {
/*
* Grab a packet off the queue.
*/
IFQ_POLL(&ifp->if_snd, m0);
if (m0 == NULL)
break;
m = NULL;
dmamap = txs->txs_dmamap;
/*
* Load the DMA map. If this fails, the packet either
* didn't fit in the alloted number of segments, or we were
* short on resources. In this case, we'll copy and try
* again.
*/
if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
if (m0->m_pkthdr.len > MCLBYTES) {
printf("%s: unable to allocate jumbo Tx "
"cluster\n", sc->sc_dev.dv_xname);
IFQ_DEQUEUE(&ifp->if_snd, m0);
m_freem(m0);
continue;
}
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
printf("%s: unable to allocate Tx mbuf\n",
sc->sc_dev.dv_xname);
break;
}
if (m0->m_pkthdr.len > MHLEN) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
printf("%s: unable to allocate Tx "
"cluster\n", sc->sc_dev.dv_xname);
m_freem(m);
break;
}
}
m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
if (error) {
printf("%s: unable to load Tx buffer, "
"error = %d\n", sc->sc_dev.dv_xname, error);
break;
}
}
/*
* Ensure we have enough descriptors free to describe
* the packet.
*/
if (dmamap->dm_nsegs > sc->sc_txfree) {
/*
* Not enough free descriptors to transmit this
* packet. We haven't committed to anything yet,
* so just unload the DMA map, put the packet
* back on the queue, and punt. Notify the upper
* layer that there are no more slots left.
*
* XXX We could allocate an mbuf and copy, but
* XXX it is worth it?
*/
ifp->if_flags |= IFF_OACTIVE;
bus_dmamap_unload(sc->sc_dmatag, dmamap);
if (m != NULL)
m_freem(m);
break;
}
IFQ_DEQUEUE(&ifp->if_snd, m0);
if (m != NULL) {
m_freem(m0);
m0 = m;
}
/*
* WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
*/
/* Sync the DMA map. */
bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
BUS_DMASYNC_PREWRITE);
/*
* Initialize the transmit descriptors.
*/
for (nexttx = sc->sc_txnext, seg = 0;
seg < dmamap->dm_nsegs;
seg++, nexttx = GEM_NEXTTX(nexttx)) {
uint64_t flags;
/*
* If this is the first descriptor we're
* enqueueing, set the start of packet flag,
* and the checksum stuff if we want the hardware
* to do it.
*/
sc->sc_txdescs[nexttx].gd_addr =
GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
if (nexttx == firsttx) {
flags |= GEM_TD_START_OF_PACKET;
if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
sc->sc_txwin = 0;
flags |= GEM_TD_INTERRUPT_ME;
}
}
if (seg == dmamap->dm_nsegs - 1) {
flags |= GEM_TD_END_OF_PACKET;
}
sc->sc_txdescs[nexttx].gd_flags =
GEM_DMA_WRITE(sc, flags);
lasttx = nexttx;
}
#ifdef GEM_DEBUG
if (ifp->if_flags & IFF_DEBUG) {
printf(" gem_start %p transmit chain:\n", txs);
for (seg = sc->sc_txnext;; seg = GEM_NEXTTX(seg)) {
printf("descriptor %d:\t", seg);
printf("gd_flags: 0x%016llx\t", (long long)
GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_flags));
printf("gd_addr: 0x%016llx\n", (long long)
GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_addr));
if (seg == lasttx)
break;
}
}
#endif
/* Sync the descriptors we're using. */
GEM_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/*
* Store a pointer to the packet so we can free it later,
* and remember what txdirty will be once the packet is
* done.
*/
txs->txs_mbuf = m0;
txs->txs_firstdesc = sc->sc_txnext;
txs->txs_lastdesc = lasttx;
txs->txs_ndescs = dmamap->dm_nsegs;
/* Advance the tx pointer. */
sc->sc_txfree -= dmamap->dm_nsegs;
sc->sc_txnext = nexttx;
SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
last_txs = txs;
#if NBPFILTER > 0
/*
* Pass the packet to any BPF listeners.
*/
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m0);
#endif /* NBPFILTER > 0 */
}
if (txs == NULL || sc->sc_txfree == 0) {
/* No more slots left; notify upper layer. */
ifp->if_flags |= IFF_OACTIVE;
}
if (sc->sc_txfree != ofree) {
DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
sc->sc_dev.dv_xname, lasttx, firsttx));
/*
* The entire packet chain is set up.
* Kick the transmitter.
*/
DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
sc->sc_dev.dv_xname, nexttx));
bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_TX_KICK,
sc->sc_txnext);
/* Set a watchdog timer in case the chip flakes out. */
ifp->if_timer = 5;
DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
sc->sc_dev.dv_xname, ifp->if_timer));
}
}
/*
* Transmit interrupt.
*/
int
gem_tint(sc)
struct gem_softc *sc;
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t mac = sc->sc_h;
struct gem_txsoft *txs;
int txlast;
int progress = 0;
DPRINTF(sc, ("%s: gem_tint\n", sc->sc_dev.dv_xname));
/*
* Unload collision counters
*/
ifp->if_collisions +=
bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT) +
bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
/*
* then clear the hardware counters.
*/
bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
/*
* Go through our Tx list and free mbufs for those
* frames that have been transmitted.
*/
while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
GEM_CDTXSYNC(sc, txs->txs_lastdesc,
txs->txs_ndescs,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
#ifdef GEM_DEBUG
if (ifp->if_flags & IFF_DEBUG) {
int i;
printf(" txsoft %p transmit chain:\n", txs);
for (i = txs->txs_firstdesc;; i = GEM_NEXTTX(i)) {
printf("descriptor %d: ", i);
printf("gd_flags: 0x%016llx\t", (long long)
GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
printf("gd_addr: 0x%016llx\n", (long long)
GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
if (i == txs->txs_lastdesc)
break;
}
}
#endif
/*
* In theory, we could harveast some descriptors before
* the ring is empty, but that's a bit complicated.
*
* GEM_TX_COMPLETION points to the last descriptor
* processed +1.
*/
txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
DPRINTF(sc,
("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
txs->txs_lastdesc, txlast));
if (txs->txs_firstdesc <= txs->txs_lastdesc) {
if ((txlast >= txs->txs_firstdesc) &&
(txlast <= txs->txs_lastdesc))
break;
} else {
/* Ick -- this command wraps */
if ((txlast >= txs->txs_firstdesc) ||
(txlast <= txs->txs_lastdesc))
break;
}
DPRINTF(sc, ("gem_tint: releasing a desc\n"));
SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
sc->sc_txfree += txs->txs_ndescs;
if (txs->txs_mbuf == NULL) {
#ifdef DIAGNOSTIC
panic("gem_txintr: null mbuf");
#endif
}
bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
0, txs->txs_dmamap->dm_mapsize,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
m_freem(txs->txs_mbuf);
txs->txs_mbuf = NULL;
SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
ifp->if_opackets++;
progress = 1;
}
DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
"GEM_TX_DATA_PTR %llx "
"GEM_TX_COMPLETION %x\n",
bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_STATE_MACHINE),
((long long) bus_space_read_4(sc->sc_bustag, sc->sc_h,
GEM_TX_DATA_PTR_HI) << 32) |
bus_space_read_4(sc->sc_bustag, sc->sc_h,
GEM_TX_DATA_PTR_LO),
bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_COMPLETION)));
if (progress) {
if (sc->sc_txfree == GEM_NTXDESC - 1)
sc->sc_txwin = 0;
ifp->if_flags &= ~IFF_OACTIVE;
gem_start(ifp);
if (SIMPLEQ_EMPTY(&sc->sc_txdirtyq))
ifp->if_timer = 0;
}
DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
sc->sc_dev.dv_xname, ifp->if_timer));
return (1);
}
/*
* Receive interrupt.
*/
int
gem_rint(sc)
struct gem_softc *sc;
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t h = sc->sc_h;
struct ether_header *eh;
struct gem_rxsoft *rxs;
struct mbuf *m;
u_int64_t rxstat;
u_int32_t rxcomp;
int i, len, progress = 0;
DPRINTF(sc, ("%s: gem_rint\n", sc->sc_dev.dv_xname));
/*
* Read the completion register once. This limits
* how long the following loop can execute.
*/
rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
/*
* XXXX Read the lastrx only once at the top for speed.
*/
DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
sc->sc_rxptr, rxcomp));
/*
* Go into the loop at least once.
*/
for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
i = GEM_NEXTRX(i)) {
rxs = &sc->sc_rxsoft[i];
GEM_CDRXSYNC(sc, i,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
if (rxstat & GEM_RD_OWN) {
/*
* We have processed all of the receive buffers.
*/
break;
}
progress++;
ifp->if_ipackets++;
if (rxstat & GEM_RD_BAD_CRC) {
ifp->if_ierrors++;
printf("%s: receive error: CRC error\n",
sc->sc_dev.dv_xname);
GEM_INIT_RXDESC(sc, i);
continue;
}
bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
#ifdef GEM_DEBUG
if (ifp->if_flags & IFF_DEBUG) {
printf(" rxsoft %p descriptor %d: ", rxs, i);
printf("gd_flags: 0x%016llx\t", (long long)
GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
printf("gd_addr: 0x%016llx\n", (long long)
GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
}
#endif
/*
* No errors; receive the packet. Note the Gem
* includes the CRC with every packet.
*/
len = GEM_RD_BUFLEN(rxstat);
/*
* Allocate a new mbuf cluster. If that fails, we are
* out of memory, and must drop the packet and recycle
* the buffer that's already attached to this descriptor.
*/
m = rxs->rxs_mbuf;
if (gem_add_rxbuf(sc, i) != 0) {
GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
ifp->if_ierrors++;
GEM_INIT_RXDESC(sc, i);
bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
continue;
}
m->m_data += 2; /* We're already off by two */
eh = mtod(m, struct ether_header *);
m->m_flags |= M_HASFCS;
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = len;
#if NBPFILTER > 0
/*
* Pass this up to any BPF listeners, but only
* pass it up the stack if its for us.
*/
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m);
#endif /* NPBFILTER > 0 */
/* Pass it on. */
(*ifp->if_input)(ifp, m);
}
if (progress) {
/* Update the receive pointer. */
if (i == sc->sc_rxptr) {
GEM_COUNTER_INCR(sc, sc_ev_rxfull);
#ifdef GEM_DEBUG
if (ifp->if_flags & GEM_DEBUG)
printf("%s: rint: ring wrap\n",
sc->sc_dev.dv_xname);
#endif
}
sc->sc_rxptr = i;
bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
}
#ifdef GEM_COUNTERS
if (progress <= 4) {
GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
} else if (progress > 31) {
if (progress < 16)
GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
else
GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
} else {
if (progress < 64)
GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
else
GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
}
#endif
DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
return (1);
}
/*
* gem_add_rxbuf:
*
* Add a receive buffer to the indicated descriptor.
*/
int
gem_add_rxbuf(struct gem_softc *sc, int idx)
{
struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
struct mbuf *m;
int error;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
return (ENOBUFS);
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
return (ENOBUFS);
}
#ifdef GEM_DEBUG
/* bzero the packet to check dma */
memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
#endif
if (rxs->rxs_mbuf != NULL)
bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
rxs->rxs_mbuf = m;
error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
BUS_DMA_READ|BUS_DMA_NOWAIT);
if (error) {
printf("%s: can't load rx DMA map %d, error = %d\n",
sc->sc_dev.dv_xname, idx, error);
panic("gem_add_rxbuf"); /* XXX */
}
bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
GEM_INIT_RXDESC(sc, idx);
return (0);
}
int
gem_eint(sc, status)
struct gem_softc *sc;
u_int status;
{
char bits[128];
if ((status & GEM_INTR_MIF) != 0) {
printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
return (1);
}
printf("%s: status=%s\n", sc->sc_dev.dv_xname,
bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits)));
return (1);
}
int
gem_intr(v)
void *v;
{
struct gem_softc *sc = (struct gem_softc *)v;
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t seb = sc->sc_h;
u_int32_t status;
int r = 0;
#ifdef GEM_DEBUG
char bits[128];
#endif
sc->sc_ev_intr.ev_count++;
status = bus_space_read_4(t, seb, GEM_STATUS);
DPRINTF(sc, ("%s: gem_intr: cplt %xstatus %s\n",
sc->sc_dev.dv_xname, (status>>19),
bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits))));
if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
r |= gem_eint(sc, status);
if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
GEM_COUNTER_INCR(sc, sc_ev_txint);
r |= gem_tint(sc);
}
if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
GEM_COUNTER_INCR(sc, sc_ev_rxint);
r |= gem_rint(sc);
}
/* We should eventually do more than just print out error stats. */
if (status & GEM_INTR_TX_MAC) {
int txstat = bus_space_read_4(t, seb, GEM_MAC_TX_STATUS);
if (txstat & ~GEM_MAC_TX_XMIT_DONE)
printf("%s: MAC tx fault, status %x\n",
sc->sc_dev.dv_xname, txstat);
}
if (status & GEM_INTR_RX_MAC) {
int rxstat = bus_space_read_4(t, seb, GEM_MAC_RX_STATUS);
if (rxstat & ~GEM_MAC_RX_DONE)
printf("%s: MAC rx fault, status %x\n",
sc->sc_dev.dv_xname, rxstat);
}
return (r);
}
void
gem_watchdog(ifp)
struct ifnet *ifp;
{
struct gem_softc *sc = ifp->if_softc;
DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
"GEM_MAC_RX_CONFIG %x\n",
bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_CONFIG),
bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_STATUS),
bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_CONFIG)));
log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
++ifp->if_oerrors;
/* Try to get more packets going. */
gem_start(ifp);
}
/*
* Initialize the MII Management Interface
*/
void
gem_mifinit(sc)
struct gem_softc *sc;
{
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t mif = sc->sc_h;
/* Configure the MIF in frame mode */
sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
}
/*
* MII interface
*
* The GEM MII interface supports at least three different operating modes:
*
* Bitbang mode is implemented using data, clock and output enable registers.
*
* Frame mode is implemented by loading a complete frame into the frame
* register and polling the valid bit for completion.
*
* Polling mode uses the frame register but completion is indicated by
* an interrupt.
*
*/
static int
gem_mii_readreg(self, phy, reg)
struct device *self;
int phy, reg;
{
struct gem_softc *sc = (void *)self;
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t mif = sc->sc_h;
int n;
u_int32_t v;
#ifdef GEM_DEBUG1
if (sc->sc_debug)
printf("gem_mii_readreg: phy %d reg %d\n", phy, reg);
#endif
#if 0
/* Select the desired PHY in the MIF configuration register */
v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
/* Clear PHY select bit */
v &= ~GEM_MIF_CONFIG_PHY_SEL;
if (phy == GEM_PHYAD_EXTERNAL)
/* Set PHY select bit to get at external device */
v |= GEM_MIF_CONFIG_PHY_SEL;
bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
#endif
/* Construct the frame command */
v = (reg << GEM_MIF_REG_SHIFT) | (phy << GEM_MIF_PHY_SHIFT) |
GEM_MIF_FRAME_READ;
bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
for (n = 0; n < 100; n++) {
DELAY(1);
v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
if (v & GEM_MIF_FRAME_TA0)
return (v & GEM_MIF_FRAME_DATA);
}
printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
return (0);
}
static void
gem_mii_writereg(self, phy, reg, val)
struct device *self;
int phy, reg, val;
{
struct gem_softc *sc = (void *)self;
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t mif = sc->sc_h;
int n;
u_int32_t v;
#ifdef GEM_DEBUG1
if (sc->sc_debug)
printf("gem_mii_writereg: phy %d reg %d val %x\n",
phy, reg, val);
#endif
#if 0
/* Select the desired PHY in the MIF configuration register */
v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
/* Clear PHY select bit */
v &= ~GEM_MIF_CONFIG_PHY_SEL;
if (phy == GEM_PHYAD_EXTERNAL)
/* Set PHY select bit to get at external device */
v |= GEM_MIF_CONFIG_PHY_SEL;
bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
#endif
/* Construct the frame command */
v = GEM_MIF_FRAME_WRITE |
(phy << GEM_MIF_PHY_SHIFT) |
(reg << GEM_MIF_REG_SHIFT) |
(val & GEM_MIF_FRAME_DATA);
bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
for (n = 0; n < 100; n++) {
DELAY(1);
v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
if (v & GEM_MIF_FRAME_TA0)
return;
}
printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
}
static void
gem_mii_statchg(dev)
struct device *dev;
{
struct gem_softc *sc = (void *)dev;
#ifdef GEM_DEBUG
int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
#endif
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t mac = sc->sc_h;
u_int32_t v;
#ifdef GEM_DEBUG
if (sc->sc_debug)
printf("gem_mii_statchg: status change: phy = %d\n",
sc->sc_phys[instance];);
#endif
/* Set tx full duplex options */
bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
delay(10000); /* reg must be cleared and delay before changing. */
v = GEM_MAC_TX_ENA_IPG0|GEM_MAC_TX_NGU|GEM_MAC_TX_NGU_LIMIT|
GEM_MAC_TX_ENABLE;
if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
v |= GEM_MAC_TX_IGN_CARRIER|GEM_MAC_TX_IGN_COLLIS;
}
bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, v);
/* XIF Configuration */
/* We should really calculate all this rather than rely on defaults */
v = bus_space_read_4(t, mac, GEM_MAC_XIF_CONFIG);
v = GEM_MAC_XIF_LINK_LED;
v |= GEM_MAC_XIF_TX_MII_ENA;
/* If an external transceiver is connected, enable its MII drivers */
sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
/* External MII needs echo disable if half duplex. */
if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
/* turn on full duplex LED */
v |= GEM_MAC_XIF_FDPLX_LED;
else
/* half duplex -- disable echo */
v |= GEM_MAC_XIF_ECHO_DISABL;
if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
v |= GEM_MAC_XIF_GMII_MODE;
else
v &= ~GEM_MAC_XIF_GMII_MODE;
} else
/* Internal MII needs buf enable */
v |= GEM_MAC_XIF_MII_BUF_ENA;
bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
}
int
gem_mediachange(ifp)
struct ifnet *ifp;
{
struct gem_softc *sc = ifp->if_softc;
if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
return (EINVAL);
return (mii_mediachg(&sc->sc_mii));
}
void
gem_mediastatus(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct gem_softc *sc = ifp->if_softc;
if ((ifp->if_flags & IFF_UP) == 0)
return;
mii_pollstat(&sc->sc_mii);
ifmr->ifm_active = sc->sc_mii.mii_media_active;
ifmr->ifm_status = sc->sc_mii.mii_media_status;
}
int gem_ioctldebug = 0;
/*
* Process an ioctl request.
*/
int
gem_ioctl(ifp, cmd, data)
struct ifnet *ifp;
u_long cmd;
caddr_t data;
{
struct gem_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
int s, error = 0;
s = splnet();
switch (cmd) {
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
break;
default:
error = ether_ioctl(ifp, cmd, data);
if (error == ENETRESET) {
/*
* Multicast list has changed; set the hardware filter
* accordingly.
*/
if (gem_ioctldebug) printf("reset1\n");
gem_init(ifp);
delay(50000);
error = 0;
}
break;
}
/* Try to get things going again */
if (ifp->if_flags & IFF_UP) {
if (gem_ioctldebug) printf("start\n");
gem_start(ifp);
}
splx(s);
return (error);
}
void
gem_shutdown(arg)
void *arg;
{
struct gem_softc *sc = (struct gem_softc *)arg;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
gem_stop(ifp, 1);
}
/*
* Set up the logical address filter.
*/
void
gem_setladrf(sc)
struct gem_softc *sc;
{
struct ethercom *ec = &sc->sc_ethercom;
struct ifnet *ifp = &ec->ec_if;
struct ether_multi *enm;
struct ether_multistep step;
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t h = sc->sc_h;
u_int32_t crc;
u_int32_t hash[16];
u_int32_t v;
int i;
/* Get current RX configuration */
v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
/*
* Turn off promiscuous mode, promiscuous group mode (all multicast),
* and hash filter. Depending on the case, the right bit will be
* enabled.
*/
v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
GEM_MAC_RX_PROMISC_GRP);
if ((ifp->if_flags & IFF_PROMISC) != 0) {
/* Turn on promiscuous mode */
v |= GEM_MAC_RX_PROMISCUOUS;
ifp->if_flags |= IFF_ALLMULTI;
goto chipit;
}
/*
* Set up multicast address filter by passing all multicast addresses
* through a crc generator, and then using the high order 8 bits as an
* index into the 256 bit logical address filter. The high order 4
* bits select the word, while the other 4 bits select the bit within
* the word (where bit 0 is the MSB).
*/
/* Clear hash table */
memset(hash, 0, sizeof(hash));
ETHER_FIRST_MULTI(step, ec, enm);
while (enm != NULL) {
if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
/*
* We must listen to a range of multicast addresses.
* For now, just accept all multicasts, rather than
* trying to set only those filter bits needed to match
* the range. (At this time, the only use of address
* ranges is for IP multicast routing, for which the
* range is big enough to require all bits set.)
* XXX use the addr filter for this
*/
ifp->if_flags |= IFF_ALLMULTI;
v |= GEM_MAC_RX_PROMISC_GRP;
goto chipit;
}
/* Get the LE CRC32 of the address */
crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
/* Just want the 8 most significant bits. */
crc >>= 24;
/* Set the corresponding bit in the filter. */
hash[crc >> 4] |= 1 << (15 - (crc & 15));
ETHER_NEXT_MULTI(step, enm);
}
v |= GEM_MAC_RX_HASH_FILTER;
ifp->if_flags &= ~IFF_ALLMULTI;
/* Now load the hash table into the chip (if we are using it) */
for (i = 0; i < 16; i++) {
bus_space_write_4(t, h,
GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
hash[i]);
}
chipit:
bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
}
#if notyet
/*
* gem_power:
*
* Power management (suspend/resume) hook.
*/
void
gem_power(why, arg)
int why;
void *arg;
{
struct gem_softc *sc = arg;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
int s;
s = splnet();
switch (why) {
case PWR_SUSPEND:
case PWR_STANDBY:
gem_stop(ifp, 1);
if (sc->sc_power != NULL)
(*sc->sc_power)(sc, why);
break;
case PWR_RESUME:
if (ifp->if_flags & IFF_UP) {
if (sc->sc_power != NULL)
(*sc->sc_power)(sc, why);
gem_init(ifp);
}
break;
case PWR_SOFTSUSPEND:
case PWR_SOFTSTANDBY:
case PWR_SOFTRESUME:
break;
}
splx(s);
}
#endif