3577 lines
90 KiB
C
3577 lines
90 KiB
C
/* $NetBSD: pmap.c,v 1.74 2002/03/25 22:11:12 thorpej Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 2002 Wasabi Systems, Inc.
|
|
* Copyright (c) 2001 Richard Earnshaw
|
|
* Copyright (c) 2001 Christopher Gilbert
|
|
* All rights reserved.
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. The name of the company nor the name of the author may be used to
|
|
* endorse or promote products derived from this software without specific
|
|
* prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
|
|
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*-
|
|
* Copyright (c) 1999 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Charles M. Hannum.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the NetBSD
|
|
* Foundation, Inc. and its contributors.
|
|
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1994-1998 Mark Brinicombe.
|
|
* Copyright (c) 1994 Brini.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software written for Brini by Mark Brinicombe
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Mark Brinicombe.
|
|
* 4. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
*
|
|
* RiscBSD kernel project
|
|
*
|
|
* pmap.c
|
|
*
|
|
* Machine dependant vm stuff
|
|
*
|
|
* Created : 20/09/94
|
|
*/
|
|
|
|
/*
|
|
* Performance improvements, UVM changes, overhauls and part-rewrites
|
|
* were contributed by Neil A. Carson <neil@causality.com>.
|
|
*/
|
|
|
|
/*
|
|
* The dram block info is currently referenced from the bootconfig.
|
|
* This should be placed in a separate structure.
|
|
*/
|
|
|
|
/*
|
|
* Special compilation symbols
|
|
* PMAP_DEBUG - Build in pmap_debug_level code
|
|
*/
|
|
|
|
/* Include header files */
|
|
|
|
#include "opt_pmap_debug.h"
|
|
#include "opt_ddb.h"
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/param.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/user.h>
|
|
#include <sys/pool.h>
|
|
#include <sys/cdefs.h>
|
|
|
|
#include <uvm/uvm.h>
|
|
|
|
#include <machine/bootconfig.h>
|
|
#include <machine/bus.h>
|
|
#include <machine/pmap.h>
|
|
#include <machine/pcb.h>
|
|
#include <machine/param.h>
|
|
#include <arm/arm32/katelib.h>
|
|
|
|
__KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.74 2002/03/25 22:11:12 thorpej Exp $");
|
|
#ifdef PMAP_DEBUG
|
|
#define PDEBUG(_lev_,_stat_) \
|
|
if (pmap_debug_level >= (_lev_)) \
|
|
((_stat_))
|
|
int pmap_debug_level = -2;
|
|
void pmap_dump_pvlist(vaddr_t phys, char *m);
|
|
|
|
/*
|
|
* for switching to potentially finer grained debugging
|
|
*/
|
|
#define PDB_FOLLOW 0x0001
|
|
#define PDB_INIT 0x0002
|
|
#define PDB_ENTER 0x0004
|
|
#define PDB_REMOVE 0x0008
|
|
#define PDB_CREATE 0x0010
|
|
#define PDB_PTPAGE 0x0020
|
|
#define PDB_GROWKERN 0x0040
|
|
#define PDB_BITS 0x0080
|
|
#define PDB_COLLECT 0x0100
|
|
#define PDB_PROTECT 0x0200
|
|
#define PDB_MAP_L1 0x0400
|
|
#define PDB_BOOTSTRAP 0x1000
|
|
#define PDB_PARANOIA 0x2000
|
|
#define PDB_WIRING 0x4000
|
|
#define PDB_PVDUMP 0x8000
|
|
|
|
int debugmap = 0;
|
|
int pmapdebug = PDB_PARANOIA | PDB_FOLLOW;
|
|
#define NPDEBUG(_lev_,_stat_) \
|
|
if (pmapdebug & (_lev_)) \
|
|
((_stat_))
|
|
|
|
#else /* PMAP_DEBUG */
|
|
#define PDEBUG(_lev_,_stat_) /* Nothing */
|
|
#define NPDEBUG(_lev_,_stat_) /* Nothing */
|
|
#endif /* PMAP_DEBUG */
|
|
|
|
struct pmap kernel_pmap_store;
|
|
|
|
/*
|
|
* linked list of all non-kernel pmaps
|
|
*/
|
|
|
|
static LIST_HEAD(, pmap) pmaps;
|
|
|
|
/*
|
|
* pool that pmap structures are allocated from
|
|
*/
|
|
|
|
struct pool pmap_pmap_pool;
|
|
|
|
static pt_entry_t *csrc_pte, *cdst_pte;
|
|
static vaddr_t csrcp, cdstp;
|
|
|
|
char *memhook;
|
|
extern caddr_t msgbufaddr;
|
|
|
|
boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
|
|
/*
|
|
* locking data structures
|
|
*/
|
|
|
|
static struct lock pmap_main_lock;
|
|
static struct simplelock pvalloc_lock;
|
|
static struct simplelock pmaps_lock;
|
|
#ifdef LOCKDEBUG
|
|
#define PMAP_MAP_TO_HEAD_LOCK() \
|
|
(void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
|
|
#define PMAP_MAP_TO_HEAD_UNLOCK() \
|
|
(void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
|
|
|
|
#define PMAP_HEAD_TO_MAP_LOCK() \
|
|
(void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
|
|
#define PMAP_HEAD_TO_MAP_UNLOCK() \
|
|
(void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
|
|
#else
|
|
#define PMAP_MAP_TO_HEAD_LOCK() /* nothing */
|
|
#define PMAP_MAP_TO_HEAD_UNLOCK() /* nothing */
|
|
#define PMAP_HEAD_TO_MAP_LOCK() /* nothing */
|
|
#define PMAP_HEAD_TO_MAP_UNLOCK() /* nothing */
|
|
#endif /* LOCKDEBUG */
|
|
|
|
/*
|
|
* pv_page management structures: locked by pvalloc_lock
|
|
*/
|
|
|
|
TAILQ_HEAD(pv_pagelist, pv_page);
|
|
static struct pv_pagelist pv_freepages; /* list of pv_pages with free entrys */
|
|
static struct pv_pagelist pv_unusedpgs; /* list of unused pv_pages */
|
|
static int pv_nfpvents; /* # of free pv entries */
|
|
static struct pv_page *pv_initpage; /* bootstrap page from kernel_map */
|
|
static vaddr_t pv_cachedva; /* cached VA for later use */
|
|
|
|
#define PVE_LOWAT (PVE_PER_PVPAGE / 2) /* free pv_entry low water mark */
|
|
#define PVE_HIWAT (PVE_LOWAT + (PVE_PER_PVPAGE * 2))
|
|
/* high water mark */
|
|
|
|
/*
|
|
* local prototypes
|
|
*/
|
|
|
|
static struct pv_entry *pmap_add_pvpage __P((struct pv_page *, boolean_t));
|
|
static struct pv_entry *pmap_alloc_pv __P((struct pmap *, int)); /* see codes below */
|
|
#define ALLOCPV_NEED 0 /* need PV now */
|
|
#define ALLOCPV_TRY 1 /* just try to allocate, don't steal */
|
|
#define ALLOCPV_NONEED 2 /* don't need PV, just growing cache */
|
|
static struct pv_entry *pmap_alloc_pvpage __P((struct pmap *, int));
|
|
static void pmap_enter_pv __P((struct vm_page *,
|
|
struct pv_entry *, struct pmap *,
|
|
vaddr_t, struct vm_page *, int));
|
|
static void pmap_free_pv __P((struct pmap *, struct pv_entry *));
|
|
static void pmap_free_pvs __P((struct pmap *, struct pv_entry *));
|
|
static void pmap_free_pv_doit __P((struct pv_entry *));
|
|
static void pmap_free_pvpage __P((void));
|
|
static boolean_t pmap_is_curpmap __P((struct pmap *));
|
|
static struct pv_entry *pmap_remove_pv __P((struct vm_page *, struct pmap *,
|
|
vaddr_t));
|
|
#define PMAP_REMOVE_ALL 0 /* remove all mappings */
|
|
#define PMAP_REMOVE_SKIPWIRED 1 /* skip wired mappings */
|
|
|
|
static u_int pmap_modify_pv __P((struct pmap *, vaddr_t, struct vm_page *,
|
|
u_int, u_int));
|
|
|
|
/*
|
|
* Structure that describes and L1 table.
|
|
*/
|
|
struct l1pt {
|
|
SIMPLEQ_ENTRY(l1pt) pt_queue; /* Queue pointers */
|
|
struct pglist pt_plist; /* Allocated page list */
|
|
vaddr_t pt_va; /* Allocated virtual address */
|
|
int pt_flags; /* Flags */
|
|
};
|
|
#define PTFLAG_STATIC 0x01 /* Statically allocated */
|
|
#define PTFLAG_KPT 0x02 /* Kernel pt's are mapped */
|
|
#define PTFLAG_CLEAN 0x04 /* L1 is clean */
|
|
|
|
static void pmap_free_l1pt __P((struct l1pt *));
|
|
static int pmap_allocpagedir __P((struct pmap *));
|
|
static int pmap_clean_page __P((struct pv_entry *, boolean_t));
|
|
static void pmap_remove_all __P((struct vm_page *));
|
|
|
|
static struct vm_page *pmap_alloc_ptp __P((struct pmap *, vaddr_t));
|
|
static struct vm_page *pmap_get_ptp __P((struct pmap *, vaddr_t));
|
|
__inline static void pmap_clearbit __P((struct vm_page *, unsigned int));
|
|
|
|
extern paddr_t physical_start;
|
|
extern paddr_t physical_freestart;
|
|
extern paddr_t physical_end;
|
|
extern paddr_t physical_freeend;
|
|
extern unsigned int free_pages;
|
|
extern int max_processes;
|
|
|
|
vaddr_t virtual_avail;
|
|
vaddr_t virtual_end;
|
|
vaddr_t pmap_curmaxkvaddr;
|
|
|
|
vaddr_t avail_start;
|
|
vaddr_t avail_end;
|
|
|
|
extern pv_addr_t systempage;
|
|
|
|
/* Variables used by the L1 page table queue code */
|
|
SIMPLEQ_HEAD(l1pt_queue, l1pt);
|
|
static struct l1pt_queue l1pt_static_queue; /* head of our static l1 queue */
|
|
static int l1pt_static_queue_count; /* items in the static l1 queue */
|
|
static int l1pt_static_create_count; /* static l1 items created */
|
|
static struct l1pt_queue l1pt_queue; /* head of our l1 queue */
|
|
static int l1pt_queue_count; /* items in the l1 queue */
|
|
static int l1pt_create_count; /* stat - L1's create count */
|
|
static int l1pt_reuse_count; /* stat - L1's reused count */
|
|
|
|
/* Local function prototypes (not used outside this file) */
|
|
void pmap_pinit __P((struct pmap *));
|
|
void pmap_freepagedir __P((struct pmap *));
|
|
|
|
/* Other function prototypes */
|
|
extern void bzero_page __P((vaddr_t));
|
|
extern void bcopy_page __P((vaddr_t, vaddr_t));
|
|
|
|
struct l1pt *pmap_alloc_l1pt __P((void));
|
|
static __inline void pmap_map_in_l1 __P((struct pmap *pmap, vaddr_t va,
|
|
vaddr_t l2pa, boolean_t));
|
|
|
|
static pt_entry_t *pmap_map_ptes __P((struct pmap *));
|
|
static void pmap_unmap_ptes __P((struct pmap *));
|
|
|
|
__inline static void pmap_vac_me_harder __P((struct pmap *, struct vm_page *,
|
|
pt_entry_t *, boolean_t));
|
|
static void pmap_vac_me_kpmap __P((struct pmap *, struct vm_page *,
|
|
pt_entry_t *, boolean_t));
|
|
static void pmap_vac_me_user __P((struct pmap *, struct vm_page *,
|
|
pt_entry_t *, boolean_t));
|
|
|
|
/*
|
|
* Cache enable bits in PTE to use on pages that are cacheable.
|
|
* On most machines this is cacheable/bufferable, but on some, eg arm10, we
|
|
* can chose between write-through and write-back cacheing.
|
|
*/
|
|
pt_entry_t pte_cache_mode = (PT_C | PT_B);
|
|
|
|
/*
|
|
* real definition of pv_entry.
|
|
*/
|
|
|
|
struct pv_entry {
|
|
struct pv_entry *pv_next; /* next pv_entry */
|
|
struct pmap *pv_pmap; /* pmap where mapping lies */
|
|
vaddr_t pv_va; /* virtual address for mapping */
|
|
int pv_flags; /* flags */
|
|
struct vm_page *pv_ptp; /* vm_page for the ptp */
|
|
};
|
|
|
|
/*
|
|
* pv_entrys are dynamically allocated in chunks from a single page.
|
|
* we keep track of how many pv_entrys are in use for each page and
|
|
* we can free pv_entry pages if needed. there is one lock for the
|
|
* entire allocation system.
|
|
*/
|
|
|
|
struct pv_page_info {
|
|
TAILQ_ENTRY(pv_page) pvpi_list;
|
|
struct pv_entry *pvpi_pvfree;
|
|
int pvpi_nfree;
|
|
};
|
|
|
|
/*
|
|
* number of pv_entry's in a pv_page
|
|
* (note: won't work on systems where NPBG isn't a constant)
|
|
*/
|
|
|
|
#define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
|
|
sizeof(struct pv_entry))
|
|
|
|
/*
|
|
* a pv_page: where pv_entrys are allocated from
|
|
*/
|
|
|
|
struct pv_page {
|
|
struct pv_page_info pvinfo;
|
|
struct pv_entry pvents[PVE_PER_PVPAGE];
|
|
};
|
|
|
|
#ifdef MYCROFT_HACK
|
|
int mycroft_hack = 0;
|
|
#endif
|
|
|
|
/* Function to set the debug level of the pmap code */
|
|
|
|
#ifdef PMAP_DEBUG
|
|
void
|
|
pmap_debug(int level)
|
|
{
|
|
pmap_debug_level = level;
|
|
printf("pmap_debug: level=%d\n", pmap_debug_level);
|
|
}
|
|
#endif /* PMAP_DEBUG */
|
|
|
|
__inline static boolean_t
|
|
pmap_is_curpmap(struct pmap *pmap)
|
|
{
|
|
|
|
if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap) ||
|
|
pmap == pmap_kernel())
|
|
return (TRUE);
|
|
|
|
return (FALSE);
|
|
}
|
|
|
|
#include "isadma.h"
|
|
|
|
#if NISADMA > 0
|
|
/*
|
|
* Used to protect memory for ISA DMA bounce buffers. If, when loading
|
|
* pages into the system, memory intersects with any of these ranges,
|
|
* the intersecting memory will be loaded into a lower-priority free list.
|
|
*/
|
|
bus_dma_segment_t *pmap_isa_dma_ranges;
|
|
int pmap_isa_dma_nranges;
|
|
|
|
/*
|
|
* Check if a memory range intersects with an ISA DMA range, and
|
|
* return the page-rounded intersection if it does. The intersection
|
|
* will be placed on a lower-priority free list.
|
|
*/
|
|
static boolean_t
|
|
pmap_isa_dma_range_intersect(paddr_t pa, psize_t size, paddr_t *pap,
|
|
psize_t *sizep)
|
|
{
|
|
bus_dma_segment_t *ds;
|
|
int i;
|
|
|
|
if (pmap_isa_dma_ranges == NULL)
|
|
return (FALSE);
|
|
|
|
for (i = 0, ds = pmap_isa_dma_ranges;
|
|
i < pmap_isa_dma_nranges; i++, ds++) {
|
|
if (ds->ds_addr <= pa && pa < (ds->ds_addr + ds->ds_len)) {
|
|
/*
|
|
* Beginning of region intersects with this range.
|
|
*/
|
|
*pap = trunc_page(pa);
|
|
*sizep = round_page(min(pa + size,
|
|
ds->ds_addr + ds->ds_len) - pa);
|
|
return (TRUE);
|
|
}
|
|
if (pa < ds->ds_addr && ds->ds_addr < (pa + size)) {
|
|
/*
|
|
* End of region intersects with this range.
|
|
*/
|
|
*pap = trunc_page(ds->ds_addr);
|
|
*sizep = round_page(min((pa + size) - ds->ds_addr,
|
|
ds->ds_len));
|
|
return (TRUE);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* No intersection found.
|
|
*/
|
|
return (FALSE);
|
|
}
|
|
#endif /* NISADMA > 0 */
|
|
|
|
/*
|
|
* p v _ e n t r y f u n c t i o n s
|
|
*/
|
|
|
|
/*
|
|
* pv_entry allocation functions:
|
|
* the main pv_entry allocation functions are:
|
|
* pmap_alloc_pv: allocate a pv_entry structure
|
|
* pmap_free_pv: free one pv_entry
|
|
* pmap_free_pvs: free a list of pv_entrys
|
|
*
|
|
* the rest are helper functions
|
|
*/
|
|
|
|
/*
|
|
* pmap_alloc_pv: inline function to allocate a pv_entry structure
|
|
* => we lock pvalloc_lock
|
|
* => if we fail, we call out to pmap_alloc_pvpage
|
|
* => 3 modes:
|
|
* ALLOCPV_NEED = we really need a pv_entry, even if we have to steal it
|
|
* ALLOCPV_TRY = we want a pv_entry, but not enough to steal
|
|
* ALLOCPV_NONEED = we are trying to grow our free list, don't really need
|
|
* one now
|
|
*
|
|
* "try" is for optional functions like pmap_copy().
|
|
*/
|
|
|
|
__inline static struct pv_entry *
|
|
pmap_alloc_pv(struct pmap *pmap, int mode)
|
|
{
|
|
struct pv_page *pvpage;
|
|
struct pv_entry *pv;
|
|
|
|
simple_lock(&pvalloc_lock);
|
|
|
|
pvpage = TAILQ_FIRST(&pv_freepages);
|
|
|
|
if (pvpage != NULL) {
|
|
pvpage->pvinfo.pvpi_nfree--;
|
|
if (pvpage->pvinfo.pvpi_nfree == 0) {
|
|
/* nothing left in this one? */
|
|
TAILQ_REMOVE(&pv_freepages, pvpage, pvinfo.pvpi_list);
|
|
}
|
|
pv = pvpage->pvinfo.pvpi_pvfree;
|
|
KASSERT(pv);
|
|
pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
|
|
pv_nfpvents--; /* took one from pool */
|
|
} else {
|
|
pv = NULL; /* need more of them */
|
|
}
|
|
|
|
/*
|
|
* if below low water mark or we didn't get a pv_entry we try and
|
|
* create more pv_entrys ...
|
|
*/
|
|
|
|
if (pv_nfpvents < PVE_LOWAT || pv == NULL) {
|
|
if (pv == NULL)
|
|
pv = pmap_alloc_pvpage(pmap, (mode == ALLOCPV_TRY) ?
|
|
mode : ALLOCPV_NEED);
|
|
else
|
|
(void) pmap_alloc_pvpage(pmap, ALLOCPV_NONEED);
|
|
}
|
|
|
|
simple_unlock(&pvalloc_lock);
|
|
return(pv);
|
|
}
|
|
|
|
/*
|
|
* pmap_alloc_pvpage: maybe allocate a new pvpage
|
|
*
|
|
* if need_entry is false: try and allocate a new pv_page
|
|
* if need_entry is true: try and allocate a new pv_page and return a
|
|
* new pv_entry from it. if we are unable to allocate a pv_page
|
|
* we make a last ditch effort to steal a pv_page from some other
|
|
* mapping. if that fails, we panic...
|
|
*
|
|
* => we assume that the caller holds pvalloc_lock
|
|
*/
|
|
|
|
static struct pv_entry *
|
|
pmap_alloc_pvpage(struct pmap *pmap, int mode)
|
|
{
|
|
struct vm_page *pg;
|
|
struct pv_page *pvpage;
|
|
struct pv_entry *pv;
|
|
int s;
|
|
|
|
/*
|
|
* if we need_entry and we've got unused pv_pages, allocate from there
|
|
*/
|
|
|
|
pvpage = TAILQ_FIRST(&pv_unusedpgs);
|
|
if (mode != ALLOCPV_NONEED && pvpage != NULL) {
|
|
|
|
/* move it to pv_freepages list */
|
|
TAILQ_REMOVE(&pv_unusedpgs, pvpage, pvinfo.pvpi_list);
|
|
TAILQ_INSERT_HEAD(&pv_freepages, pvpage, pvinfo.pvpi_list);
|
|
|
|
/* allocate a pv_entry */
|
|
pvpage->pvinfo.pvpi_nfree--; /* can't go to zero */
|
|
pv = pvpage->pvinfo.pvpi_pvfree;
|
|
KASSERT(pv);
|
|
pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
|
|
|
|
pv_nfpvents--; /* took one from pool */
|
|
return(pv);
|
|
}
|
|
|
|
/*
|
|
* see if we've got a cached unmapped VA that we can map a page in.
|
|
* if not, try to allocate one.
|
|
*/
|
|
|
|
|
|
if (pv_cachedva == 0) {
|
|
s = splvm();
|
|
pv_cachedva = uvm_km_kmemalloc(kmem_map, NULL,
|
|
PAGE_SIZE, UVM_KMF_TRYLOCK|UVM_KMF_VALLOC);
|
|
splx(s);
|
|
if (pv_cachedva == 0) {
|
|
return (NULL);
|
|
}
|
|
}
|
|
|
|
pg = uvm_pagealloc(NULL, pv_cachedva - vm_map_min(kernel_map), NULL,
|
|
UVM_PGA_USERESERVE);
|
|
|
|
if (pg == NULL)
|
|
return (NULL);
|
|
pg->flags &= ~PG_BUSY; /* never busy */
|
|
|
|
/*
|
|
* add a mapping for our new pv_page and free its entrys (save one!)
|
|
*
|
|
* NOTE: If we are allocating a PV page for the kernel pmap, the
|
|
* pmap is already locked! (...but entering the mapping is safe...)
|
|
*/
|
|
|
|
pmap_kenter_pa(pv_cachedva, VM_PAGE_TO_PHYS(pg),
|
|
VM_PROT_READ|VM_PROT_WRITE);
|
|
pmap_update(pmap_kernel());
|
|
pvpage = (struct pv_page *) pv_cachedva;
|
|
pv_cachedva = 0;
|
|
return (pmap_add_pvpage(pvpage, mode != ALLOCPV_NONEED));
|
|
}
|
|
|
|
/*
|
|
* pmap_add_pvpage: add a pv_page's pv_entrys to the free list
|
|
*
|
|
* => caller must hold pvalloc_lock
|
|
* => if need_entry is true, we allocate and return one pv_entry
|
|
*/
|
|
|
|
static struct pv_entry *
|
|
pmap_add_pvpage(struct pv_page *pvp, boolean_t need_entry)
|
|
{
|
|
int tofree, lcv;
|
|
|
|
/* do we need to return one? */
|
|
tofree = (need_entry) ? PVE_PER_PVPAGE - 1 : PVE_PER_PVPAGE;
|
|
|
|
pvp->pvinfo.pvpi_pvfree = NULL;
|
|
pvp->pvinfo.pvpi_nfree = tofree;
|
|
for (lcv = 0 ; lcv < tofree ; lcv++) {
|
|
pvp->pvents[lcv].pv_next = pvp->pvinfo.pvpi_pvfree;
|
|
pvp->pvinfo.pvpi_pvfree = &pvp->pvents[lcv];
|
|
}
|
|
if (need_entry)
|
|
TAILQ_INSERT_TAIL(&pv_freepages, pvp, pvinfo.pvpi_list);
|
|
else
|
|
TAILQ_INSERT_TAIL(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
|
|
pv_nfpvents += tofree;
|
|
return((need_entry) ? &pvp->pvents[lcv] : NULL);
|
|
}
|
|
|
|
/*
|
|
* pmap_free_pv_doit: actually free a pv_entry
|
|
*
|
|
* => do not call this directly! instead use either
|
|
* 1. pmap_free_pv ==> free a single pv_entry
|
|
* 2. pmap_free_pvs => free a list of pv_entrys
|
|
* => we must be holding pvalloc_lock
|
|
*/
|
|
|
|
__inline static void
|
|
pmap_free_pv_doit(struct pv_entry *pv)
|
|
{
|
|
struct pv_page *pvp;
|
|
|
|
pvp = (struct pv_page *) arm_trunc_page((vaddr_t)pv);
|
|
pv_nfpvents++;
|
|
pvp->pvinfo.pvpi_nfree++;
|
|
|
|
/* nfree == 1 => fully allocated page just became partly allocated */
|
|
if (pvp->pvinfo.pvpi_nfree == 1) {
|
|
TAILQ_INSERT_HEAD(&pv_freepages, pvp, pvinfo.pvpi_list);
|
|
}
|
|
|
|
/* free it */
|
|
pv->pv_next = pvp->pvinfo.pvpi_pvfree;
|
|
pvp->pvinfo.pvpi_pvfree = pv;
|
|
|
|
/*
|
|
* are all pv_page's pv_entry's free? move it to unused queue.
|
|
*/
|
|
|
|
if (pvp->pvinfo.pvpi_nfree == PVE_PER_PVPAGE) {
|
|
TAILQ_REMOVE(&pv_freepages, pvp, pvinfo.pvpi_list);
|
|
TAILQ_INSERT_HEAD(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* pmap_free_pv: free a single pv_entry
|
|
*
|
|
* => we gain the pvalloc_lock
|
|
*/
|
|
|
|
__inline static void
|
|
pmap_free_pv(struct pmap *pmap, struct pv_entry *pv)
|
|
{
|
|
simple_lock(&pvalloc_lock);
|
|
pmap_free_pv_doit(pv);
|
|
|
|
/*
|
|
* Can't free the PV page if the PV entries were associated with
|
|
* the kernel pmap; the pmap is already locked.
|
|
*/
|
|
if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
|
|
pmap != pmap_kernel())
|
|
pmap_free_pvpage();
|
|
|
|
simple_unlock(&pvalloc_lock);
|
|
}
|
|
|
|
/*
|
|
* pmap_free_pvs: free a list of pv_entrys
|
|
*
|
|
* => we gain the pvalloc_lock
|
|
*/
|
|
|
|
__inline static void
|
|
pmap_free_pvs(struct pmap *pmap, struct pv_entry *pvs)
|
|
{
|
|
struct pv_entry *nextpv;
|
|
|
|
simple_lock(&pvalloc_lock);
|
|
|
|
for ( /* null */ ; pvs != NULL ; pvs = nextpv) {
|
|
nextpv = pvs->pv_next;
|
|
pmap_free_pv_doit(pvs);
|
|
}
|
|
|
|
/*
|
|
* Can't free the PV page if the PV entries were associated with
|
|
* the kernel pmap; the pmap is already locked.
|
|
*/
|
|
if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
|
|
pmap != pmap_kernel())
|
|
pmap_free_pvpage();
|
|
|
|
simple_unlock(&pvalloc_lock);
|
|
}
|
|
|
|
|
|
/*
|
|
* pmap_free_pvpage: try and free an unused pv_page structure
|
|
*
|
|
* => assume caller is holding the pvalloc_lock and that
|
|
* there is a page on the pv_unusedpgs list
|
|
* => if we can't get a lock on the kmem_map we try again later
|
|
*/
|
|
|
|
static void
|
|
pmap_free_pvpage(void)
|
|
{
|
|
int s;
|
|
struct vm_map *map;
|
|
struct vm_map_entry *dead_entries;
|
|
struct pv_page *pvp;
|
|
|
|
s = splvm(); /* protect kmem_map */
|
|
|
|
pvp = TAILQ_FIRST(&pv_unusedpgs);
|
|
|
|
/*
|
|
* note: watch out for pv_initpage which is allocated out of
|
|
* kernel_map rather than kmem_map.
|
|
*/
|
|
if (pvp == pv_initpage)
|
|
map = kernel_map;
|
|
else
|
|
map = kmem_map;
|
|
if (vm_map_lock_try(map)) {
|
|
|
|
/* remove pvp from pv_unusedpgs */
|
|
TAILQ_REMOVE(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
|
|
|
|
/* unmap the page */
|
|
dead_entries = NULL;
|
|
uvm_unmap_remove(map, (vaddr_t)pvp, ((vaddr_t)pvp) + PAGE_SIZE,
|
|
&dead_entries);
|
|
vm_map_unlock(map);
|
|
|
|
if (dead_entries != NULL)
|
|
uvm_unmap_detach(dead_entries, 0);
|
|
|
|
pv_nfpvents -= PVE_PER_PVPAGE; /* update free count */
|
|
}
|
|
if (pvp == pv_initpage)
|
|
/* no more initpage, we've freed it */
|
|
pv_initpage = NULL;
|
|
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* main pv_entry manipulation functions:
|
|
* pmap_enter_pv: enter a mapping onto a vm_page list
|
|
* pmap_remove_pv: remove a mappiing from a vm_page list
|
|
*
|
|
* NOTE: pmap_enter_pv expects to lock the pvh itself
|
|
* pmap_remove_pv expects te caller to lock the pvh before calling
|
|
*/
|
|
|
|
/*
|
|
* pmap_enter_pv: enter a mapping onto a vm_page lst
|
|
*
|
|
* => caller should hold the proper lock on pmap_main_lock
|
|
* => caller should have pmap locked
|
|
* => we will gain the lock on the vm_page and allocate the new pv_entry
|
|
* => caller should adjust ptp's wire_count before calling
|
|
* => caller should not adjust pmap's wire_count
|
|
*/
|
|
|
|
__inline static void
|
|
pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, struct pmap *pmap,
|
|
vaddr_t va, struct vm_page *ptp, int flags)
|
|
{
|
|
pve->pv_pmap = pmap;
|
|
pve->pv_va = va;
|
|
pve->pv_ptp = ptp; /* NULL for kernel pmap */
|
|
pve->pv_flags = flags;
|
|
simple_lock(&pg->mdpage.pvh_slock); /* lock vm_page */
|
|
pve->pv_next = pg->mdpage.pvh_list; /* add to ... */
|
|
pg->mdpage.pvh_list = pve; /* ... locked list */
|
|
simple_unlock(&pg->mdpage.pvh_slock); /* unlock, done! */
|
|
if (pve->pv_flags & PT_W)
|
|
++pmap->pm_stats.wired_count;
|
|
}
|
|
|
|
/*
|
|
* pmap_remove_pv: try to remove a mapping from a pv_list
|
|
*
|
|
* => caller should hold proper lock on pmap_main_lock
|
|
* => pmap should be locked
|
|
* => caller should hold lock on vm_page [so that attrs can be adjusted]
|
|
* => caller should adjust ptp's wire_count and free PTP if needed
|
|
* => caller should NOT adjust pmap's wire_count
|
|
* => we return the removed pve
|
|
*/
|
|
|
|
__inline static struct pv_entry *
|
|
pmap_remove_pv(struct vm_page *pg, struct pmap *pmap, vaddr_t va)
|
|
{
|
|
struct pv_entry *pve, **prevptr;
|
|
|
|
prevptr = &pg->mdpage.pvh_list; /* previous pv_entry pointer */
|
|
pve = *prevptr;
|
|
while (pve) {
|
|
if (pve->pv_pmap == pmap && pve->pv_va == va) { /* match? */
|
|
*prevptr = pve->pv_next; /* remove it! */
|
|
if (pve->pv_flags & PT_W)
|
|
--pmap->pm_stats.wired_count;
|
|
break;
|
|
}
|
|
prevptr = &pve->pv_next; /* previous pointer */
|
|
pve = pve->pv_next; /* advance */
|
|
}
|
|
return(pve); /* return removed pve */
|
|
}
|
|
|
|
/*
|
|
*
|
|
* pmap_modify_pv: Update pv flags
|
|
*
|
|
* => caller should hold lock on vm_page [so that attrs can be adjusted]
|
|
* => caller should NOT adjust pmap's wire_count
|
|
* => caller must call pmap_vac_me_harder() if writable status of a page
|
|
* may have changed.
|
|
* => we return the old flags
|
|
*
|
|
* Modify a physical-virtual mapping in the pv table
|
|
*/
|
|
|
|
static /* __inline */ u_int
|
|
pmap_modify_pv(struct pmap *pmap, vaddr_t va, struct vm_page *pg,
|
|
u_int bic_mask, u_int eor_mask)
|
|
{
|
|
struct pv_entry *npv;
|
|
u_int flags, oflags;
|
|
|
|
/*
|
|
* There is at least one VA mapping this page.
|
|
*/
|
|
|
|
for (npv = pg->mdpage.pvh_list; npv; npv = npv->pv_next) {
|
|
if (pmap == npv->pv_pmap && va == npv->pv_va) {
|
|
oflags = npv->pv_flags;
|
|
npv->pv_flags = flags =
|
|
((oflags & ~bic_mask) ^ eor_mask);
|
|
if ((flags ^ oflags) & PT_W) {
|
|
if (flags & PT_W)
|
|
++pmap->pm_stats.wired_count;
|
|
else
|
|
--pmap->pm_stats.wired_count;
|
|
}
|
|
return (oflags);
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Map the specified level 2 pagetable into the level 1 page table for
|
|
* the given pmap to cover a chunk of virtual address space starting from the
|
|
* address specified.
|
|
*/
|
|
static __inline void
|
|
pmap_map_in_l1(struct pmap *pmap, vaddr_t va, paddr_t l2pa, boolean_t selfref)
|
|
{
|
|
vaddr_t ptva;
|
|
|
|
/* Calculate the index into the L1 page table. */
|
|
ptva = (va >> PDSHIFT) & ~3;
|
|
|
|
/* Map page table into the L1. */
|
|
pmap->pm_pdir[ptva + 0] = L1_PTE(l2pa + 0x000);
|
|
pmap->pm_pdir[ptva + 1] = L1_PTE(l2pa + 0x400);
|
|
pmap->pm_pdir[ptva + 2] = L1_PTE(l2pa + 0x800);
|
|
pmap->pm_pdir[ptva + 3] = L1_PTE(l2pa + 0xc00);
|
|
|
|
/* Map the page table into the page table area. */
|
|
if (selfref)
|
|
*((pt_entry_t *)(pmap->pm_vptpt + ptva)) =
|
|
L2_PTE_NC_NB(l2pa, AP_KRW);
|
|
}
|
|
|
|
#if 0
|
|
static __inline void
|
|
pmap_unmap_in_l1(struct pmap *pmap, vaddr_t va)
|
|
{
|
|
vaddr_t ptva;
|
|
|
|
/* Calculate the index into the L1 page table. */
|
|
ptva = (va >> PDSHIFT) & ~3;
|
|
|
|
/* Unmap page table from the L1. */
|
|
pmap->pm_pdir[ptva + 0] = 0;
|
|
pmap->pm_pdir[ptva + 1] = 0;
|
|
pmap->pm_pdir[ptva + 2] = 0;
|
|
pmap->pm_pdir[ptva + 3] = 0;
|
|
|
|
/* Unmap the page table from the page table area. */
|
|
*((pt_entry_t *)(pmap->pm_vptpt + ptva)) = 0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Used to map a range of physical addresses into kernel
|
|
* virtual address space.
|
|
*
|
|
* For now, VM is already on, we only need to map the
|
|
* specified memory.
|
|
*/
|
|
vaddr_t
|
|
pmap_map(vaddr_t va, paddr_t spa, paddr_t epa, vm_prot_t prot)
|
|
{
|
|
while (spa < epa) {
|
|
pmap_kenter_pa(va, spa, prot);
|
|
va += NBPG;
|
|
spa += NBPG;
|
|
}
|
|
pmap_update(pmap_kernel());
|
|
return(va);
|
|
}
|
|
|
|
|
|
/*
|
|
* void pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
|
|
*
|
|
* bootstrap the pmap system. This is called from initarm and allows
|
|
* the pmap system to initailise any structures it requires.
|
|
*
|
|
* Currently this sets up the kernel_pmap that is statically allocated
|
|
* and also allocated virtual addresses for certain page hooks.
|
|
* Currently the only one page hook is allocated that is used
|
|
* to zero physical pages of memory.
|
|
* It also initialises the start and end address of the kernel data space.
|
|
*/
|
|
extern paddr_t physical_freestart;
|
|
extern paddr_t physical_freeend;
|
|
|
|
char *boot_head;
|
|
|
|
void
|
|
pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
|
|
{
|
|
pt_entry_t *pte;
|
|
int loop;
|
|
paddr_t start, end;
|
|
#if NISADMA > 0
|
|
paddr_t istart;
|
|
psize_t isize;
|
|
#endif
|
|
|
|
pmap_kernel()->pm_pdir = kernel_l1pt;
|
|
pmap_kernel()->pm_pptpt = kernel_ptpt.pv_pa;
|
|
pmap_kernel()->pm_vptpt = kernel_ptpt.pv_va;
|
|
simple_lock_init(&pmap_kernel()->pm_lock);
|
|
pmap_kernel()->pm_obj.pgops = NULL;
|
|
TAILQ_INIT(&(pmap_kernel()->pm_obj.memq));
|
|
pmap_kernel()->pm_obj.uo_npages = 0;
|
|
pmap_kernel()->pm_obj.uo_refs = 1;
|
|
|
|
/*
|
|
* Initialize PAGE_SIZE-dependent variables.
|
|
*/
|
|
uvm_setpagesize();
|
|
|
|
loop = 0;
|
|
while (loop < bootconfig.dramblocks) {
|
|
start = (paddr_t)bootconfig.dram[loop].address;
|
|
end = start + (bootconfig.dram[loop].pages * NBPG);
|
|
if (start < physical_freestart)
|
|
start = physical_freestart;
|
|
if (end > physical_freeend)
|
|
end = physical_freeend;
|
|
#if 0
|
|
printf("%d: %lx -> %lx\n", loop, start, end - 1);
|
|
#endif
|
|
#if NISADMA > 0
|
|
if (pmap_isa_dma_range_intersect(start, end - start,
|
|
&istart, &isize)) {
|
|
/*
|
|
* Place the pages that intersect with the
|
|
* ISA DMA range onto the ISA DMA free list.
|
|
*/
|
|
#if 0
|
|
printf(" ISADMA 0x%lx -> 0x%lx\n", istart,
|
|
istart + isize - 1);
|
|
#endif
|
|
uvm_page_physload(atop(istart),
|
|
atop(istart + isize), atop(istart),
|
|
atop(istart + isize), VM_FREELIST_ISADMA);
|
|
|
|
/*
|
|
* Load the pieces that come before
|
|
* the intersection into the default
|
|
* free list.
|
|
*/
|
|
if (start < istart) {
|
|
#if 0
|
|
printf(" BEFORE 0x%lx -> 0x%lx\n",
|
|
start, istart - 1);
|
|
#endif
|
|
uvm_page_physload(atop(start),
|
|
atop(istart), atop(start),
|
|
atop(istart), VM_FREELIST_DEFAULT);
|
|
}
|
|
|
|
/*
|
|
* Load the pieces that come after
|
|
* the intersection into the default
|
|
* free list.
|
|
*/
|
|
if ((istart + isize) < end) {
|
|
#if 0
|
|
printf(" AFTER 0x%lx -> 0x%lx\n",
|
|
(istart + isize), end - 1);
|
|
#endif
|
|
uvm_page_physload(atop(istart + isize),
|
|
atop(end), atop(istart + isize),
|
|
atop(end), VM_FREELIST_DEFAULT);
|
|
}
|
|
} else {
|
|
uvm_page_physload(atop(start), atop(end),
|
|
atop(start), atop(end), VM_FREELIST_DEFAULT);
|
|
}
|
|
#else /* NISADMA > 0 */
|
|
uvm_page_physload(atop(start), atop(end),
|
|
atop(start), atop(end), VM_FREELIST_DEFAULT);
|
|
#endif /* NISADMA > 0 */
|
|
++loop;
|
|
}
|
|
|
|
virtual_avail = KERNEL_VM_BASE;
|
|
virtual_end = KERNEL_VM_BASE + KERNEL_VM_SIZE;
|
|
|
|
/*
|
|
* now we allocate the "special" VAs which are used for tmp mappings
|
|
* by the pmap (and other modules). we allocate the VAs by advancing
|
|
* virtual_avail (note that there are no pages mapped at these VAs).
|
|
* we find the PTE that maps the allocated VA via the linear PTE
|
|
* mapping.
|
|
*/
|
|
|
|
pte = ((pt_entry_t *) PTE_BASE) + atop(virtual_avail);
|
|
|
|
csrcp = virtual_avail; csrc_pte = pte;
|
|
virtual_avail += PAGE_SIZE; pte++;
|
|
|
|
cdstp = virtual_avail; cdst_pte = pte;
|
|
virtual_avail += PAGE_SIZE; pte++;
|
|
|
|
memhook = (char *) virtual_avail; /* don't need pte */
|
|
virtual_avail += PAGE_SIZE; pte++;
|
|
|
|
msgbufaddr = (caddr_t) virtual_avail; /* don't need pte */
|
|
virtual_avail += round_page(MSGBUFSIZE);
|
|
pte += atop(round_page(MSGBUFSIZE));
|
|
|
|
/*
|
|
* init the static-global locks and global lists.
|
|
*/
|
|
spinlockinit(&pmap_main_lock, "pmaplk", 0);
|
|
simple_lock_init(&pvalloc_lock);
|
|
simple_lock_init(&pmaps_lock);
|
|
LIST_INIT(&pmaps);
|
|
TAILQ_INIT(&pv_freepages);
|
|
TAILQ_INIT(&pv_unusedpgs);
|
|
|
|
/*
|
|
* initialize the pmap pool.
|
|
*/
|
|
|
|
pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
|
|
&pool_allocator_nointr);
|
|
|
|
cpu_dcache_wbinv_all();
|
|
}
|
|
|
|
/*
|
|
* void pmap_init(void)
|
|
*
|
|
* Initialize the pmap module.
|
|
* Called by vm_init() in vm/vm_init.c in order to initialise
|
|
* any structures that the pmap system needs to map virtual memory.
|
|
*/
|
|
|
|
extern int physmem;
|
|
|
|
void
|
|
pmap_init(void)
|
|
{
|
|
|
|
/*
|
|
* Set the available memory vars - These do not map to real memory
|
|
* addresses and cannot as the physical memory is fragmented.
|
|
* They are used by ps for %mem calculations.
|
|
* One could argue whether this should be the entire memory or just
|
|
* the memory that is useable in a user process.
|
|
*/
|
|
avail_start = 0;
|
|
avail_end = physmem * NBPG;
|
|
|
|
/*
|
|
* now we need to free enough pv_entry structures to allow us to get
|
|
* the kmem_map/kmem_object allocated and inited (done after this
|
|
* function is finished). to do this we allocate one bootstrap page out
|
|
* of kernel_map and use it to provide an initial pool of pv_entry
|
|
* structures. we never free this page.
|
|
*/
|
|
|
|
pv_initpage = (struct pv_page *) uvm_km_alloc(kernel_map, PAGE_SIZE);
|
|
if (pv_initpage == NULL)
|
|
panic("pmap_init: pv_initpage");
|
|
pv_cachedva = 0; /* a VA we have allocated but not used yet */
|
|
pv_nfpvents = 0;
|
|
(void) pmap_add_pvpage(pv_initpage, FALSE);
|
|
|
|
pmap_initialized = TRUE;
|
|
|
|
/* Initialise our L1 page table queues and counters */
|
|
SIMPLEQ_INIT(&l1pt_static_queue);
|
|
l1pt_static_queue_count = 0;
|
|
l1pt_static_create_count = 0;
|
|
SIMPLEQ_INIT(&l1pt_queue);
|
|
l1pt_queue_count = 0;
|
|
l1pt_create_count = 0;
|
|
l1pt_reuse_count = 0;
|
|
}
|
|
|
|
/*
|
|
* pmap_postinit()
|
|
*
|
|
* This routine is called after the vm and kmem subsystems have been
|
|
* initialised. This allows the pmap code to perform any initialisation
|
|
* that can only be done one the memory allocation is in place.
|
|
*/
|
|
|
|
void
|
|
pmap_postinit(void)
|
|
{
|
|
int loop;
|
|
struct l1pt *pt;
|
|
|
|
#ifdef PMAP_STATIC_L1S
|
|
for (loop = 0; loop < PMAP_STATIC_L1S; ++loop) {
|
|
#else /* PMAP_STATIC_L1S */
|
|
for (loop = 0; loop < max_processes; ++loop) {
|
|
#endif /* PMAP_STATIC_L1S */
|
|
/* Allocate a L1 page table */
|
|
pt = pmap_alloc_l1pt();
|
|
if (!pt)
|
|
panic("Cannot allocate static L1 page tables\n");
|
|
|
|
/* Clean it */
|
|
bzero((void *)pt->pt_va, PD_SIZE);
|
|
pt->pt_flags |= (PTFLAG_STATIC | PTFLAG_CLEAN);
|
|
/* Add the page table to the queue */
|
|
SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pt, pt_queue);
|
|
++l1pt_static_queue_count;
|
|
++l1pt_static_create_count;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Create and return a physical map.
|
|
*
|
|
* If the size specified for the map is zero, the map is an actual physical
|
|
* map, and may be referenced by the hardware.
|
|
*
|
|
* If the size specified is non-zero, the map will be used in software only,
|
|
* and is bounded by that size.
|
|
*/
|
|
|
|
pmap_t
|
|
pmap_create(void)
|
|
{
|
|
struct pmap *pmap;
|
|
|
|
/*
|
|
* Fetch pmap entry from the pool
|
|
*/
|
|
|
|
pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
|
|
/* XXX is this really needed! */
|
|
memset(pmap, 0, sizeof(*pmap));
|
|
|
|
simple_lock_init(&pmap->pm_obj.vmobjlock);
|
|
pmap->pm_obj.pgops = NULL; /* currently not a mappable object */
|
|
TAILQ_INIT(&pmap->pm_obj.memq);
|
|
pmap->pm_obj.uo_npages = 0;
|
|
pmap->pm_obj.uo_refs = 1;
|
|
pmap->pm_stats.wired_count = 0;
|
|
pmap->pm_stats.resident_count = 1;
|
|
pmap->pm_ptphint = NULL;
|
|
|
|
/* Now init the machine part of the pmap */
|
|
pmap_pinit(pmap);
|
|
return(pmap);
|
|
}
|
|
|
|
/*
|
|
* pmap_alloc_l1pt()
|
|
*
|
|
* This routine allocates physical and virtual memory for a L1 page table
|
|
* and wires it.
|
|
* A l1pt structure is returned to describe the allocated page table.
|
|
*
|
|
* This routine is allowed to fail if the required memory cannot be allocated.
|
|
* In this case NULL is returned.
|
|
*/
|
|
|
|
struct l1pt *
|
|
pmap_alloc_l1pt(void)
|
|
{
|
|
paddr_t pa;
|
|
vaddr_t va;
|
|
struct l1pt *pt;
|
|
int error;
|
|
struct vm_page *m;
|
|
pt_entry_t *ptes;
|
|
|
|
/* Allocate virtual address space for the L1 page table */
|
|
va = uvm_km_valloc(kernel_map, PD_SIZE);
|
|
if (va == 0) {
|
|
#ifdef DIAGNOSTIC
|
|
PDEBUG(0,
|
|
printf("pmap: Cannot allocate pageable memory for L1\n"));
|
|
#endif /* DIAGNOSTIC */
|
|
return(NULL);
|
|
}
|
|
|
|
/* Allocate memory for the l1pt structure */
|
|
pt = (struct l1pt *)malloc(sizeof(struct l1pt), M_VMPMAP, M_WAITOK);
|
|
|
|
/*
|
|
* Allocate pages from the VM system.
|
|
*/
|
|
TAILQ_INIT(&pt->pt_plist);
|
|
error = uvm_pglistalloc(PD_SIZE, physical_start, physical_end,
|
|
PD_SIZE, 0, &pt->pt_plist, 1, M_WAITOK);
|
|
if (error) {
|
|
#ifdef DIAGNOSTIC
|
|
PDEBUG(0,
|
|
printf("pmap: Cannot allocate physical mem for L1 (%d)\n",
|
|
error));
|
|
#endif /* DIAGNOSTIC */
|
|
/* Release the resources we already have claimed */
|
|
free(pt, M_VMPMAP);
|
|
uvm_km_free(kernel_map, va, PD_SIZE);
|
|
return(NULL);
|
|
}
|
|
|
|
/* Map our physical pages into our virtual space */
|
|
pt->pt_va = va;
|
|
m = TAILQ_FIRST(&pt->pt_plist);
|
|
ptes = pmap_map_ptes(pmap_kernel());
|
|
while (m && va < (pt->pt_va + PD_SIZE)) {
|
|
pa = VM_PAGE_TO_PHYS(m);
|
|
|
|
pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE);
|
|
|
|
/* Revoke cacheability and bufferability */
|
|
/* XXX should be done better than this */
|
|
ptes[arm_btop(va)] &= ~(PT_C | PT_B);
|
|
|
|
va += NBPG;
|
|
m = m->pageq.tqe_next;
|
|
}
|
|
pmap_unmap_ptes(pmap_kernel());
|
|
pmap_update(pmap_kernel());
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (m)
|
|
panic("pmap_alloc_l1pt: pglist not empty\n");
|
|
#endif /* DIAGNOSTIC */
|
|
|
|
pt->pt_flags = 0;
|
|
return(pt);
|
|
}
|
|
|
|
/*
|
|
* Free a L1 page table previously allocated with pmap_alloc_l1pt().
|
|
*/
|
|
static void
|
|
pmap_free_l1pt(struct l1pt *pt)
|
|
{
|
|
/* Separate the physical memory for the virtual space */
|
|
pmap_kremove(pt->pt_va, PD_SIZE);
|
|
pmap_update(pmap_kernel());
|
|
|
|
/* Return the physical memory */
|
|
uvm_pglistfree(&pt->pt_plist);
|
|
|
|
/* Free the virtual space */
|
|
uvm_km_free(kernel_map, pt->pt_va, PD_SIZE);
|
|
|
|
/* Free the l1pt structure */
|
|
free(pt, M_VMPMAP);
|
|
}
|
|
|
|
/*
|
|
* Allocate a page directory.
|
|
* This routine will either allocate a new page directory from the pool
|
|
* of L1 page tables currently held by the kernel or it will allocate
|
|
* a new one via pmap_alloc_l1pt().
|
|
* It will then initialise the l1 page table for use.
|
|
*
|
|
* XXX must tidy up and fix this code, not happy about how it does the pmaps_locking
|
|
*/
|
|
static int
|
|
pmap_allocpagedir(struct pmap *pmap)
|
|
{
|
|
paddr_t pa;
|
|
struct l1pt *pt;
|
|
pt_entry_t *pte;
|
|
|
|
PDEBUG(0, printf("pmap_allocpagedir(%p)\n", pmap));
|
|
|
|
/* Do we have any spare L1's lying around ? */
|
|
if (l1pt_static_queue_count) {
|
|
--l1pt_static_queue_count;
|
|
pt = l1pt_static_queue.sqh_first;
|
|
SIMPLEQ_REMOVE_HEAD(&l1pt_static_queue, pt, pt_queue);
|
|
} else if (l1pt_queue_count) {
|
|
--l1pt_queue_count;
|
|
pt = l1pt_queue.sqh_first;
|
|
SIMPLEQ_REMOVE_HEAD(&l1pt_queue, pt, pt_queue);
|
|
++l1pt_reuse_count;
|
|
} else {
|
|
pt = pmap_alloc_l1pt();
|
|
if (!pt)
|
|
return(ENOMEM);
|
|
++l1pt_create_count;
|
|
}
|
|
|
|
/* Store the pointer to the l1 descriptor in the pmap. */
|
|
pmap->pm_l1pt = pt;
|
|
|
|
/* Get the physical address of the start of the l1 */
|
|
pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pt->pt_plist));
|
|
|
|
/* Store the virtual address of the l1 in the pmap. */
|
|
pmap->pm_pdir = (pd_entry_t *)pt->pt_va;
|
|
|
|
/* Clean the L1 if it is dirty */
|
|
if (!(pt->pt_flags & PTFLAG_CLEAN))
|
|
bzero((void *)pmap->pm_pdir, (PD_SIZE - KERNEL_PD_SIZE));
|
|
|
|
/* Allocate a page table to map all the page tables for this pmap */
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (pmap->pm_vptpt) {
|
|
/* XXX What if we have one already ? */
|
|
panic("pmap_allocpagedir: have pt already\n");
|
|
}
|
|
#endif /* DIAGNOSTIC */
|
|
pmap->pm_vptpt = uvm_km_zalloc(kernel_map, NBPG);
|
|
if (pmap->pm_vptpt == 0) {
|
|
pmap_freepagedir(pmap);
|
|
return(ENOMEM);
|
|
}
|
|
|
|
/* need to lock this all up for growkernel */
|
|
simple_lock(&pmaps_lock);
|
|
/* wish we didn't have to keep this locked... */
|
|
|
|
/* Duplicate the kernel mappings. */
|
|
bcopy((char *)pmap_kernel()->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
|
|
(char *)pmap->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
|
|
KERNEL_PD_SIZE);
|
|
|
|
pte = vtopte(pmap->pm_vptpt);
|
|
pmap->pm_pptpt = l2pte_pa(*pte);
|
|
|
|
/* Revoke cacheability and bufferability */
|
|
/* XXX should be done better than this */
|
|
*pte &= ~(PT_C | PT_B);
|
|
|
|
/* Wire in this page table */
|
|
pmap_map_in_l1(pmap, PTE_BASE, pmap->pm_pptpt, TRUE);
|
|
|
|
pt->pt_flags &= ~PTFLAG_CLEAN; /* L1 is dirty now */
|
|
|
|
/*
|
|
* Map the kernel page tables into the new PT map.
|
|
*/
|
|
bcopy((char *)(PTE_BASE
|
|
+ (PTE_BASE >> (PGSHIFT - 2))
|
|
+ ((PD_SIZE - KERNEL_PD_SIZE) >> 2)),
|
|
(char *)pmap->pm_vptpt + ((PD_SIZE - KERNEL_PD_SIZE) >> 2),
|
|
(KERNEL_PD_SIZE >> 2));
|
|
|
|
LIST_INSERT_HEAD(&pmaps, pmap, pm_list);
|
|
simple_unlock(&pmaps_lock);
|
|
|
|
return(0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Initialize a preallocated and zeroed pmap structure,
|
|
* such as one in a vmspace structure.
|
|
*/
|
|
|
|
void
|
|
pmap_pinit(struct pmap *pmap)
|
|
{
|
|
int backoff = 6;
|
|
int retry = 10;
|
|
|
|
PDEBUG(0, printf("pmap_pinit(%p)\n", pmap));
|
|
|
|
/* Keep looping until we succeed in allocating a page directory */
|
|
while (pmap_allocpagedir(pmap) != 0) {
|
|
/*
|
|
* Ok we failed to allocate a suitable block of memory for an
|
|
* L1 page table. This means that either:
|
|
* 1. 16KB of virtual address space could not be allocated
|
|
* 2. 16KB of physically contiguous memory on a 16KB boundary
|
|
* could not be allocated.
|
|
*
|
|
* Since we cannot fail we will sleep for a while and try
|
|
* again.
|
|
*
|
|
* Searching for a suitable L1 PT is expensive:
|
|
* to avoid hogging the system when memory is really
|
|
* scarce, use an exponential back-off so that
|
|
* eventually we won't retry more than once every 8
|
|
* seconds. This should allow other processes to run
|
|
* to completion and free up resources.
|
|
*/
|
|
(void) ltsleep(&lbolt, PVM, "l1ptwait", (hz << 3) >> backoff,
|
|
NULL);
|
|
if (--retry == 0) {
|
|
retry = 10;
|
|
if (backoff)
|
|
--backoff;
|
|
}
|
|
}
|
|
|
|
/* Map zero page for the pmap. This will also map the L2 for it */
|
|
pmap_enter(pmap, 0x00000000, systempage.pv_pa,
|
|
VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
|
|
pmap_update(pmap);
|
|
}
|
|
|
|
|
|
void
|
|
pmap_freepagedir(struct pmap *pmap)
|
|
{
|
|
/* Free the memory used for the page table mapping */
|
|
if (pmap->pm_vptpt != 0)
|
|
uvm_km_free(kernel_map, (vaddr_t)pmap->pm_vptpt, NBPG);
|
|
|
|
/* junk the L1 page table */
|
|
if (pmap->pm_l1pt->pt_flags & PTFLAG_STATIC) {
|
|
/* Add the page table to the queue */
|
|
SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pmap->pm_l1pt, pt_queue);
|
|
++l1pt_static_queue_count;
|
|
} else if (l1pt_queue_count < 8) {
|
|
/* Add the page table to the queue */
|
|
SIMPLEQ_INSERT_TAIL(&l1pt_queue, pmap->pm_l1pt, pt_queue);
|
|
++l1pt_queue_count;
|
|
} else
|
|
pmap_free_l1pt(pmap->pm_l1pt);
|
|
}
|
|
|
|
|
|
/*
|
|
* Retire the given physical map from service.
|
|
* Should only be called if the map contains no valid mappings.
|
|
*/
|
|
|
|
void
|
|
pmap_destroy(struct pmap *pmap)
|
|
{
|
|
struct vm_page *page;
|
|
int count;
|
|
|
|
if (pmap == NULL)
|
|
return;
|
|
|
|
PDEBUG(0, printf("pmap_destroy(%p)\n", pmap));
|
|
|
|
/*
|
|
* Drop reference count
|
|
*/
|
|
simple_lock(&pmap->pm_obj.vmobjlock);
|
|
count = --pmap->pm_obj.uo_refs;
|
|
simple_unlock(&pmap->pm_obj.vmobjlock);
|
|
if (count > 0) {
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* reference count is zero, free pmap resources and then free pmap.
|
|
*/
|
|
|
|
/*
|
|
* remove it from global list of pmaps
|
|
*/
|
|
|
|
simple_lock(&pmaps_lock);
|
|
LIST_REMOVE(pmap, pm_list);
|
|
simple_unlock(&pmaps_lock);
|
|
|
|
/* Remove the zero page mapping */
|
|
pmap_remove(pmap, 0x00000000, 0x00000000 + NBPG);
|
|
pmap_update(pmap);
|
|
|
|
/*
|
|
* Free any page tables still mapped
|
|
* This is only temporay until pmap_enter can count the number
|
|
* of mappings made in a page table. Then pmap_remove() can
|
|
* reduce the count and free the pagetable when the count
|
|
* reaches zero. Note that entries in this list should match the
|
|
* contents of the ptpt, however this is faster than walking a 1024
|
|
* entries looking for pt's
|
|
* taken from i386 pmap.c
|
|
*/
|
|
while ((page = TAILQ_FIRST(&pmap->pm_obj.memq)) != NULL) {
|
|
KASSERT((page->flags & PG_BUSY) == 0);
|
|
page->wire_count = 0;
|
|
uvm_pagefree(page);
|
|
}
|
|
|
|
/* Free the page dir */
|
|
pmap_freepagedir(pmap);
|
|
|
|
/* return the pmap to the pool */
|
|
pool_put(&pmap_pmap_pool, pmap);
|
|
}
|
|
|
|
|
|
/*
|
|
* void pmap_reference(struct pmap *pmap)
|
|
*
|
|
* Add a reference to the specified pmap.
|
|
*/
|
|
|
|
void
|
|
pmap_reference(struct pmap *pmap)
|
|
{
|
|
if (pmap == NULL)
|
|
return;
|
|
|
|
simple_lock(&pmap->pm_lock);
|
|
pmap->pm_obj.uo_refs++;
|
|
simple_unlock(&pmap->pm_lock);
|
|
}
|
|
|
|
/*
|
|
* void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
|
|
*
|
|
* Return the start and end addresses of the kernel's virtual space.
|
|
* These values are setup in pmap_bootstrap and are updated as pages
|
|
* are allocated.
|
|
*/
|
|
|
|
void
|
|
pmap_virtual_space(vaddr_t *start, vaddr_t *end)
|
|
{
|
|
*start = virtual_avail;
|
|
*end = virtual_end;
|
|
}
|
|
|
|
/*
|
|
* Activate the address space for the specified process. If the process
|
|
* is the current process, load the new MMU context.
|
|
*/
|
|
void
|
|
pmap_activate(struct proc *p)
|
|
{
|
|
struct pmap *pmap = p->p_vmspace->vm_map.pmap;
|
|
struct pcb *pcb = &p->p_addr->u_pcb;
|
|
|
|
(void) pmap_extract(pmap_kernel(), (vaddr_t)pmap->pm_pdir,
|
|
(paddr_t *)&pcb->pcb_pagedir);
|
|
|
|
PDEBUG(0, printf("pmap_activate: p=%p pmap=%p pcb=%p pdir=%p l1=%p\n",
|
|
p, pmap, pcb, pmap->pm_pdir, pcb->pcb_pagedir));
|
|
|
|
if (p == curproc) {
|
|
PDEBUG(0, printf("pmap_activate: setting TTB\n"));
|
|
setttb((u_int)pcb->pcb_pagedir);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Deactivate the address space of the specified process.
|
|
*/
|
|
void
|
|
pmap_deactivate(struct proc *p)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Perform any deferred pmap operations.
|
|
*/
|
|
void
|
|
pmap_update(struct pmap *pmap)
|
|
{
|
|
|
|
/*
|
|
* We haven't deferred any pmap operations, but we do need to
|
|
* make sure TLB/cache operations have completed.
|
|
*/
|
|
cpu_cpwait();
|
|
}
|
|
|
|
/*
|
|
* pmap_clean_page()
|
|
*
|
|
* This is a local function used to work out the best strategy to clean
|
|
* a single page referenced by its entry in the PV table. It's used by
|
|
* pmap_copy_page, pmap_zero page and maybe some others later on.
|
|
*
|
|
* Its policy is effectively:
|
|
* o If there are no mappings, we don't bother doing anything with the cache.
|
|
* o If there is one mapping, we clean just that page.
|
|
* o If there are multiple mappings, we clean the entire cache.
|
|
*
|
|
* So that some functions can be further optimised, it returns 0 if it didn't
|
|
* clean the entire cache, or 1 if it did.
|
|
*
|
|
* XXX One bug in this routine is that if the pv_entry has a single page
|
|
* mapped at 0x00000000 a whole cache clean will be performed rather than
|
|
* just the 1 page. Since this should not occur in everyday use and if it does
|
|
* it will just result in not the most efficient clean for the page.
|
|
*/
|
|
static int
|
|
pmap_clean_page(struct pv_entry *pv, boolean_t is_src)
|
|
{
|
|
struct pmap *pmap;
|
|
struct pv_entry *npv;
|
|
int cache_needs_cleaning = 0;
|
|
vaddr_t page_to_clean = 0;
|
|
|
|
if (pv == NULL)
|
|
/* nothing mapped in so nothing to flush */
|
|
return (0);
|
|
|
|
/* Since we flush the cache each time we change curproc, we
|
|
* only need to flush the page if it is in the current pmap.
|
|
*/
|
|
if (curproc)
|
|
pmap = curproc->p_vmspace->vm_map.pmap;
|
|
else
|
|
pmap = pmap_kernel();
|
|
|
|
for (npv = pv; npv; npv = npv->pv_next) {
|
|
if (npv->pv_pmap == pmap) {
|
|
/* The page is mapped non-cacheable in
|
|
* this map. No need to flush the cache.
|
|
*/
|
|
if (npv->pv_flags & PT_NC) {
|
|
#ifdef DIAGNOSTIC
|
|
if (cache_needs_cleaning)
|
|
panic("pmap_clean_page: "
|
|
"cache inconsistency");
|
|
#endif
|
|
break;
|
|
}
|
|
#if 0
|
|
/* This doesn't work, because pmap_protect
|
|
doesn't flush changes on pages that it
|
|
has write-protected. */
|
|
|
|
/* If the page is not writable and this
|
|
is the source, then there is no need
|
|
to flush it from the cache. */
|
|
else if (is_src && ! (npv->pv_flags & PT_Wr))
|
|
continue;
|
|
#endif
|
|
if (cache_needs_cleaning){
|
|
page_to_clean = 0;
|
|
break;
|
|
}
|
|
else
|
|
page_to_clean = npv->pv_va;
|
|
cache_needs_cleaning = 1;
|
|
}
|
|
}
|
|
|
|
if (page_to_clean)
|
|
cpu_idcache_wbinv_range(page_to_clean, NBPG);
|
|
else if (cache_needs_cleaning) {
|
|
cpu_idcache_wbinv_all();
|
|
return (1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* pmap_zero_page()
|
|
*
|
|
* Zero a given physical page by mapping it at a page hook point.
|
|
* In doing the zero page op, the page we zero is mapped cachable, as with
|
|
* StrongARM accesses to non-cached pages are non-burst making writing
|
|
* _any_ bulk data very slow.
|
|
*/
|
|
void
|
|
pmap_zero_page(paddr_t phys)
|
|
{
|
|
#ifdef DEBUG
|
|
struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
|
|
|
|
if (pg->mdpage.pvh_list != NULL)
|
|
panic("pmap_zero_page: page has mappings");
|
|
#endif
|
|
|
|
/*
|
|
* Hook in the page, zero it, and purge the cache for that
|
|
* zeroed page. Invalidate the TLB as needed.
|
|
*/
|
|
*cdst_pte = L2_PTE(phys & PG_FRAME, AP_KRW);
|
|
cpu_tlb_flushD_SE(cdstp);
|
|
cpu_cpwait();
|
|
bzero_page(cdstp);
|
|
cpu_dcache_wbinv_range(cdstp, NBPG);
|
|
}
|
|
|
|
/* pmap_pageidlezero()
|
|
*
|
|
* The same as above, except that we assume that the page is not
|
|
* mapped. This means we never have to flush the cache first. Called
|
|
* from the idle loop.
|
|
*/
|
|
boolean_t
|
|
pmap_pageidlezero(paddr_t phys)
|
|
{
|
|
int i, *ptr;
|
|
boolean_t rv = TRUE;
|
|
#ifdef DEBUG
|
|
struct vm_page *pg;
|
|
|
|
pg = PHYS_TO_VM_PAGE(phys);
|
|
if (pg->mdpage.pvh_list != NULL)
|
|
panic("pmap_pageidlezero: page has mappings");
|
|
#endif
|
|
|
|
/*
|
|
* Hook in the page, zero it, and purge the cache for that
|
|
* zeroed page. Invalidate the TLB as needed.
|
|
*/
|
|
*cdst_pte = L2_PTE(phys & PG_FRAME, AP_KRW);
|
|
cpu_tlb_flushD_SE(cdstp);
|
|
cpu_cpwait();
|
|
|
|
for (i = 0, ptr = (int *)cdstp;
|
|
i < (NBPG / sizeof(int)); i++) {
|
|
if (sched_whichqs != 0) {
|
|
/*
|
|
* A process has become ready. Abort now,
|
|
* so we don't keep it waiting while we
|
|
* do slow memory access to finish this
|
|
* page.
|
|
*/
|
|
rv = FALSE;
|
|
break;
|
|
}
|
|
*ptr++ = 0;
|
|
}
|
|
|
|
if (rv)
|
|
/*
|
|
* if we aborted we'll rezero this page again later so don't
|
|
* purge it unless we finished it
|
|
*/
|
|
cpu_dcache_wbinv_range(cdstp, NBPG);
|
|
return (rv);
|
|
}
|
|
|
|
/*
|
|
* pmap_copy_page()
|
|
*
|
|
* Copy one physical page into another, by mapping the pages into
|
|
* hook points. The same comment regarding cachability as in
|
|
* pmap_zero_page also applies here.
|
|
*/
|
|
void
|
|
pmap_copy_page(paddr_t src, paddr_t dst)
|
|
{
|
|
struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
|
|
#ifdef DEBUG
|
|
struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
|
|
|
|
if (dst_pg->mdpage.pvh_list != NULL)
|
|
panic("pmap_copy_page: dst page has mappings");
|
|
#endif
|
|
|
|
/*
|
|
* Clean the source page. Hold the source page's lock for
|
|
* the duration of the copy so that no other mappings can
|
|
* be created while we have a potentially aliased mapping.
|
|
*/
|
|
simple_lock(&src_pg->mdpage.pvh_slock);
|
|
(void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
|
|
|
|
/*
|
|
* Map the pages into the page hook points, copy them, and purge
|
|
* the cache for the appropriate page. Invalidate the TLB
|
|
* as required.
|
|
*/
|
|
*csrc_pte = L2_PTE(src & PG_FRAME, AP_KR);
|
|
*cdst_pte = L2_PTE(dst & PG_FRAME, AP_KRW);
|
|
cpu_tlb_flushD_SE(csrcp);
|
|
cpu_tlb_flushD_SE(cdstp);
|
|
cpu_cpwait();
|
|
bcopy_page(csrcp, cdstp);
|
|
cpu_dcache_inv_range(csrcp, NBPG);
|
|
simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
|
|
cpu_dcache_wbinv_range(cdstp, NBPG);
|
|
}
|
|
|
|
#if 0
|
|
void
|
|
pmap_pte_addref(struct pmap *pmap, vaddr_t va)
|
|
{
|
|
pd_entry_t *pde;
|
|
paddr_t pa;
|
|
struct vm_page *m;
|
|
|
|
if (pmap == pmap_kernel())
|
|
return;
|
|
|
|
pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
|
|
pa = pmap_pte_pa(pde);
|
|
m = PHYS_TO_VM_PAGE(pa);
|
|
++m->wire_count;
|
|
#ifdef MYCROFT_HACK
|
|
printf("addref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
|
|
pmap, va, pde, pa, m, m->wire_count);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
pmap_pte_delref(struct pmap *pmap, vaddr_t va)
|
|
{
|
|
pd_entry_t *pde;
|
|
paddr_t pa;
|
|
struct vm_page *m;
|
|
|
|
if (pmap == pmap_kernel())
|
|
return;
|
|
|
|
pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
|
|
pa = pmap_pte_pa(pde);
|
|
m = PHYS_TO_VM_PAGE(pa);
|
|
--m->wire_count;
|
|
#ifdef MYCROFT_HACK
|
|
printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
|
|
pmap, va, pde, pa, m, m->wire_count);
|
|
#endif
|
|
if (m->wire_count == 0) {
|
|
#ifdef MYCROFT_HACK
|
|
printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p\n",
|
|
pmap, va, pde, pa, m);
|
|
#endif
|
|
pmap_unmap_in_l1(pmap, va);
|
|
uvm_pagefree(m);
|
|
--pmap->pm_stats.resident_count;
|
|
}
|
|
}
|
|
#else
|
|
#define pmap_pte_addref(pmap, va)
|
|
#define pmap_pte_delref(pmap, va)
|
|
#endif
|
|
|
|
/*
|
|
* Since we have a virtually indexed cache, we may need to inhibit caching if
|
|
* there is more than one mapping and at least one of them is writable.
|
|
* Since we purge the cache on every context switch, we only need to check for
|
|
* other mappings within the same pmap, or kernel_pmap.
|
|
* This function is also called when a page is unmapped, to possibly reenable
|
|
* caching on any remaining mappings.
|
|
*
|
|
* The code implements the following logic, where:
|
|
*
|
|
* KW = # of kernel read/write pages
|
|
* KR = # of kernel read only pages
|
|
* UW = # of user read/write pages
|
|
* UR = # of user read only pages
|
|
* OW = # of user read/write pages in another pmap, then
|
|
*
|
|
* KC = kernel mapping is cacheable
|
|
* UC = user mapping is cacheable
|
|
*
|
|
* KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
|
|
* +---------------------------------------------
|
|
* UW=0,UR=0,OW=0 | --- KC=1 KC=1 KC=0
|
|
* UW=0,UR>0,OW=0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
|
|
* UW=0,UR>0,OW>0 | UC=1 KC=0,UC=1 KC=0,UC=0 KC=0,UC=0
|
|
* UW=1,UR=0,OW=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
|
|
* UW>1,UR>=0,OW>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
|
|
*
|
|
* Note that the pmap must have it's ptes mapped in, and passed with ptes.
|
|
*/
|
|
__inline static void
|
|
pmap_vac_me_harder(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
|
|
boolean_t clear_cache)
|
|
{
|
|
if (pmap == pmap_kernel())
|
|
pmap_vac_me_kpmap(pmap, pg, ptes, clear_cache);
|
|
else
|
|
pmap_vac_me_user(pmap, pg, ptes, clear_cache);
|
|
}
|
|
|
|
static void
|
|
pmap_vac_me_kpmap(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
|
|
boolean_t clear_cache)
|
|
{
|
|
int user_entries = 0;
|
|
int user_writable = 0;
|
|
int user_cacheable = 0;
|
|
int kernel_entries = 0;
|
|
int kernel_writable = 0;
|
|
int kernel_cacheable = 0;
|
|
struct pv_entry *pv;
|
|
struct pmap *last_pmap = pmap;
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (pmap != pmap_kernel())
|
|
panic("pmap_vac_me_kpmap: pmap != pmap_kernel()");
|
|
#endif
|
|
|
|
/*
|
|
* Pass one, see if there are both kernel and user pmaps for
|
|
* this page. Calculate whether there are user-writable or
|
|
* kernel-writable pages.
|
|
*/
|
|
for (pv = pg->mdpage.pvh_list; pv != NULL; pv = pv->pv_next) {
|
|
if (pv->pv_pmap != pmap) {
|
|
user_entries++;
|
|
if (pv->pv_flags & PT_Wr)
|
|
user_writable++;
|
|
if ((pv->pv_flags & PT_NC) == 0)
|
|
user_cacheable++;
|
|
} else {
|
|
kernel_entries++;
|
|
if (pv->pv_flags & PT_Wr)
|
|
kernel_writable++;
|
|
if ((pv->pv_flags & PT_NC) == 0)
|
|
kernel_cacheable++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We know we have just been updating a kernel entry, so if
|
|
* all user pages are already cacheable, then there is nothing
|
|
* further to do.
|
|
*/
|
|
if (kernel_entries == 0 &&
|
|
user_cacheable == user_entries)
|
|
return;
|
|
|
|
if (user_entries) {
|
|
/*
|
|
* Scan over the list again, for each entry, if it
|
|
* might not be set correctly, call pmap_vac_me_user
|
|
* to recalculate the settings.
|
|
*/
|
|
for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
|
|
/*
|
|
* We know kernel mappings will get set
|
|
* correctly in other calls. We also know
|
|
* that if the pmap is the same as last_pmap
|
|
* then we've just handled this entry.
|
|
*/
|
|
if (pv->pv_pmap == pmap || pv->pv_pmap == last_pmap)
|
|
continue;
|
|
/*
|
|
* If there are kernel entries and this page
|
|
* is writable but non-cacheable, then we can
|
|
* skip this entry also.
|
|
*/
|
|
if (kernel_entries > 0 &&
|
|
(pv->pv_flags & (PT_NC | PT_Wr)) ==
|
|
(PT_NC | PT_Wr))
|
|
continue;
|
|
/*
|
|
* Similarly if there are no kernel-writable
|
|
* entries and the page is already
|
|
* read-only/cacheable.
|
|
*/
|
|
if (kernel_writable == 0 &&
|
|
(pv->pv_flags & (PT_NC | PT_Wr)) == 0)
|
|
continue;
|
|
/*
|
|
* For some of the remaining cases, we know
|
|
* that we must recalculate, but for others we
|
|
* can't tell if they are correct or not, so
|
|
* we recalculate anyway.
|
|
*/
|
|
pmap_unmap_ptes(last_pmap);
|
|
last_pmap = pv->pv_pmap;
|
|
ptes = pmap_map_ptes(last_pmap);
|
|
pmap_vac_me_user(last_pmap, pg, ptes,
|
|
pmap_is_curpmap(last_pmap));
|
|
}
|
|
/* Restore the pte mapping that was passed to us. */
|
|
if (last_pmap != pmap) {
|
|
pmap_unmap_ptes(last_pmap);
|
|
ptes = pmap_map_ptes(pmap);
|
|
}
|
|
if (kernel_entries == 0)
|
|
return;
|
|
}
|
|
|
|
pmap_vac_me_user(pmap, pg, ptes, clear_cache);
|
|
return;
|
|
}
|
|
|
|
static void
|
|
pmap_vac_me_user(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
|
|
boolean_t clear_cache)
|
|
{
|
|
struct pmap *kpmap = pmap_kernel();
|
|
struct pv_entry *pv, *npv;
|
|
int entries = 0;
|
|
int writable = 0;
|
|
int cacheable_entries = 0;
|
|
int kern_cacheable = 0;
|
|
int other_writable = 0;
|
|
|
|
pv = pg->mdpage.pvh_list;
|
|
KASSERT(ptes != NULL);
|
|
|
|
/*
|
|
* Count mappings and writable mappings in this pmap.
|
|
* Include kernel mappings as part of our own.
|
|
* Keep a pointer to the first one.
|
|
*/
|
|
for (npv = pv; npv; npv = npv->pv_next) {
|
|
/* Count mappings in the same pmap */
|
|
if (pmap == npv->pv_pmap ||
|
|
kpmap == npv->pv_pmap) {
|
|
if (entries++ == 0)
|
|
pv = npv;
|
|
/* Cacheable mappings */
|
|
if ((npv->pv_flags & PT_NC) == 0) {
|
|
cacheable_entries++;
|
|
if (kpmap == npv->pv_pmap)
|
|
kern_cacheable++;
|
|
}
|
|
/* Writable mappings */
|
|
if (npv->pv_flags & PT_Wr)
|
|
++writable;
|
|
} else if (npv->pv_flags & PT_Wr)
|
|
other_writable = 1;
|
|
}
|
|
|
|
PDEBUG(3,printf("pmap_vac_me_harder: pmap %p Entries %d, "
|
|
"writable %d cacheable %d %s\n", pmap, entries, writable,
|
|
cacheable_entries, clear_cache ? "clean" : "no clean"));
|
|
|
|
/*
|
|
* Enable or disable caching as necessary.
|
|
* Note: the first entry might be part of the kernel pmap,
|
|
* so we can't assume this is indicative of the state of the
|
|
* other (maybe non-kpmap) entries.
|
|
*/
|
|
if ((entries > 1 && writable) ||
|
|
(entries > 0 && pmap == kpmap && other_writable)) {
|
|
if (cacheable_entries == 0)
|
|
return;
|
|
for (npv = pv; npv; npv = npv->pv_next) {
|
|
if ((pmap == npv->pv_pmap
|
|
|| kpmap == npv->pv_pmap) &&
|
|
(npv->pv_flags & PT_NC) == 0) {
|
|
ptes[arm_btop(npv->pv_va)] &= ~(PT_C | PT_B);
|
|
npv->pv_flags |= PT_NC;
|
|
/*
|
|
* If this page needs flushing from the
|
|
* cache, and we aren't going to do it
|
|
* below, do it now.
|
|
*/
|
|
if ((cacheable_entries < 4 &&
|
|
(clear_cache || npv->pv_pmap == kpmap)) ||
|
|
(npv->pv_pmap == kpmap &&
|
|
!clear_cache && kern_cacheable < 4)) {
|
|
cpu_idcache_wbinv_range(npv->pv_va,
|
|
NBPG);
|
|
cpu_tlb_flushID_SE(npv->pv_va);
|
|
}
|
|
}
|
|
}
|
|
if ((clear_cache && cacheable_entries >= 4) ||
|
|
kern_cacheable >= 4) {
|
|
cpu_idcache_wbinv_all();
|
|
cpu_tlb_flushID();
|
|
}
|
|
cpu_cpwait();
|
|
} else if (entries > 0) {
|
|
/*
|
|
* Turn cacheing back on for some pages. If it is a kernel
|
|
* page, only do so if there are no other writable pages.
|
|
*/
|
|
for (npv = pv; npv; npv = npv->pv_next) {
|
|
if ((pmap == npv->pv_pmap ||
|
|
(kpmap == npv->pv_pmap && other_writable == 0)) &&
|
|
(npv->pv_flags & PT_NC)) {
|
|
ptes[arm_btop(npv->pv_va)] |= pte_cache_mode;
|
|
npv->pv_flags &= ~PT_NC;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* pmap_remove()
|
|
*
|
|
* pmap_remove is responsible for nuking a number of mappings for a range
|
|
* of virtual address space in the current pmap. To do this efficiently
|
|
* is interesting, because in a number of cases a wide virtual address
|
|
* range may be supplied that contains few actual mappings. So, the
|
|
* optimisations are:
|
|
* 1. Try and skip over hunks of address space for which an L1 entry
|
|
* does not exist.
|
|
* 2. Build up a list of pages we've hit, up to a maximum, so we can
|
|
* maybe do just a partial cache clean. This path of execution is
|
|
* complicated by the fact that the cache must be flushed _before_
|
|
* the PTE is nuked, being a VAC :-)
|
|
* 3. Maybe later fast-case a single page, but I don't think this is
|
|
* going to make _that_ much difference overall.
|
|
*/
|
|
|
|
#define PMAP_REMOVE_CLEAN_LIST_SIZE 3
|
|
|
|
void
|
|
pmap_remove(struct pmap *pmap, vaddr_t sva, vaddr_t eva)
|
|
{
|
|
int cleanlist_idx = 0;
|
|
struct pagelist {
|
|
vaddr_t va;
|
|
pt_entry_t *pte;
|
|
} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
|
|
pt_entry_t *pte = 0, *ptes;
|
|
paddr_t pa;
|
|
int pmap_active;
|
|
struct vm_page *pg;
|
|
|
|
/* Exit quick if there is no pmap */
|
|
if (!pmap)
|
|
return;
|
|
|
|
PDEBUG(0, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n", pmap, sva, eva));
|
|
|
|
sva &= PG_FRAME;
|
|
eva &= PG_FRAME;
|
|
|
|
/*
|
|
* we lock in the pmap => vm_page direction
|
|
*/
|
|
PMAP_MAP_TO_HEAD_LOCK();
|
|
|
|
ptes = pmap_map_ptes(pmap);
|
|
/* Get a page table pointer */
|
|
while (sva < eva) {
|
|
if (pmap_pde_page(pmap_pde(pmap, sva)))
|
|
break;
|
|
sva = (sva & PD_MASK) + NBPD;
|
|
}
|
|
|
|
pte = &ptes[arm_btop(sva)];
|
|
/* Note if the pmap is active thus require cache and tlb cleans */
|
|
pmap_active = pmap_is_curpmap(pmap);
|
|
|
|
/* Now loop along */
|
|
while (sva < eva) {
|
|
/* Check if we can move to the next PDE (l1 chunk) */
|
|
if (!(sva & PT_MASK))
|
|
if (!pmap_pde_page(pmap_pde(pmap, sva))) {
|
|
sva += NBPD;
|
|
pte += arm_btop(NBPD);
|
|
continue;
|
|
}
|
|
|
|
/* We've found a valid PTE, so this page of PTEs has to go. */
|
|
if (pmap_pte_v(pte)) {
|
|
/* Update statistics */
|
|
--pmap->pm_stats.resident_count;
|
|
|
|
/*
|
|
* Add this page to our cache remove list, if we can.
|
|
* If, however the cache remove list is totally full,
|
|
* then do a complete cache invalidation taking note
|
|
* to backtrack the PTE table beforehand, and ignore
|
|
* the lists in future because there's no longer any
|
|
* point in bothering with them (we've paid the
|
|
* penalty, so will carry on unhindered). Otherwise,
|
|
* when we fall out, we just clean the list.
|
|
*/
|
|
PDEBUG(10, printf("remove: inv pte at %p(%x) ", pte, *pte));
|
|
pa = pmap_pte_pa(pte);
|
|
|
|
if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
|
|
/* Add to the clean list. */
|
|
cleanlist[cleanlist_idx].pte = pte;
|
|
cleanlist[cleanlist_idx].va = sva;
|
|
cleanlist_idx++;
|
|
} else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
|
|
int cnt;
|
|
|
|
/* Nuke everything if needed. */
|
|
if (pmap_active) {
|
|
cpu_idcache_wbinv_all();
|
|
cpu_tlb_flushID();
|
|
}
|
|
|
|
/*
|
|
* Roll back the previous PTE list,
|
|
* and zero out the current PTE.
|
|
*/
|
|
for (cnt = 0; cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
|
|
*cleanlist[cnt].pte = 0;
|
|
pmap_pte_delref(pmap, cleanlist[cnt].va);
|
|
}
|
|
*pte = 0;
|
|
pmap_pte_delref(pmap, sva);
|
|
cleanlist_idx++;
|
|
} else {
|
|
/*
|
|
* We've already nuked the cache and
|
|
* TLB, so just carry on regardless,
|
|
* and we won't need to do it again
|
|
*/
|
|
*pte = 0;
|
|
pmap_pte_delref(pmap, sva);
|
|
}
|
|
|
|
/*
|
|
* Update flags. In a number of circumstances,
|
|
* we could cluster a lot of these and do a
|
|
* number of sequential pages in one go.
|
|
*/
|
|
if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
|
|
struct pv_entry *pve;
|
|
simple_lock(&pg->mdpage.pvh_slock);
|
|
pve = pmap_remove_pv(pg, pmap, sva);
|
|
pmap_free_pv(pmap, pve);
|
|
pmap_vac_me_harder(pmap, pg, ptes, FALSE);
|
|
simple_unlock(&pg->mdpage.pvh_slock);
|
|
}
|
|
}
|
|
sva += NBPG;
|
|
pte++;
|
|
}
|
|
|
|
pmap_unmap_ptes(pmap);
|
|
/*
|
|
* Now, if we've fallen through down to here, chances are that there
|
|
* are less than PMAP_REMOVE_CLEAN_LIST_SIZE mappings left.
|
|
*/
|
|
if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
|
|
u_int cnt;
|
|
|
|
for (cnt = 0; cnt < cleanlist_idx; cnt++) {
|
|
if (pmap_active) {
|
|
cpu_idcache_wbinv_range(cleanlist[cnt].va,
|
|
NBPG);
|
|
*cleanlist[cnt].pte = 0;
|
|
cpu_tlb_flushID_SE(cleanlist[cnt].va);
|
|
} else
|
|
*cleanlist[cnt].pte = 0;
|
|
pmap_pte_delref(pmap, cleanlist[cnt].va);
|
|
}
|
|
}
|
|
PMAP_MAP_TO_HEAD_UNLOCK();
|
|
}
|
|
|
|
/*
|
|
* Routine: pmap_remove_all
|
|
* Function:
|
|
* Removes this physical page from
|
|
* all physical maps in which it resides.
|
|
* Reflects back modify bits to the pager.
|
|
*/
|
|
|
|
static void
|
|
pmap_remove_all(struct vm_page *pg)
|
|
{
|
|
struct pv_entry *pv, *npv;
|
|
struct pmap *pmap;
|
|
pt_entry_t *pte, *ptes;
|
|
|
|
PDEBUG(0, printf("pmap_remove_all: pa=%lx ", VM_PAGE_TO_PHYS(pg)));
|
|
|
|
/* set vm_page => pmap locking */
|
|
PMAP_HEAD_TO_MAP_LOCK();
|
|
|
|
simple_lock(&pg->mdpage.pvh_slock);
|
|
|
|
pv = pg->mdpage.pvh_list;
|
|
if (pv == NULL) {
|
|
PDEBUG(0, printf("free page\n"));
|
|
simple_unlock(&pg->mdpage.pvh_slock);
|
|
PMAP_HEAD_TO_MAP_UNLOCK();
|
|
return;
|
|
}
|
|
pmap_clean_page(pv, FALSE);
|
|
|
|
while (pv) {
|
|
pmap = pv->pv_pmap;
|
|
ptes = pmap_map_ptes(pmap);
|
|
pte = &ptes[arm_btop(pv->pv_va)];
|
|
|
|
PDEBUG(0, printf("[%p,%08x,%08lx,%08x] ", pmap, *pte,
|
|
pv->pv_va, pv->pv_flags));
|
|
#ifdef DEBUG
|
|
if (!pmap_pde_page(pmap_pde(pmap, pv->pv_va)) ||
|
|
!pmap_pte_v(pte) || pmap_pte_pa(pte) != pa)
|
|
panic("pmap_remove_all: bad mapping");
|
|
#endif /* DEBUG */
|
|
|
|
/*
|
|
* Update statistics
|
|
*/
|
|
--pmap->pm_stats.resident_count;
|
|
|
|
/* Wired bit */
|
|
if (pv->pv_flags & PT_W)
|
|
--pmap->pm_stats.wired_count;
|
|
|
|
/*
|
|
* Invalidate the PTEs.
|
|
* XXX: should cluster them up and invalidate as many
|
|
* as possible at once.
|
|
*/
|
|
|
|
#ifdef needednotdone
|
|
reduce wiring count on page table pages as references drop
|
|
#endif
|
|
|
|
*pte = 0;
|
|
pmap_pte_delref(pmap, pv->pv_va);
|
|
|
|
npv = pv->pv_next;
|
|
pmap_free_pv(pmap, pv);
|
|
pv = npv;
|
|
pmap_unmap_ptes(pmap);
|
|
}
|
|
pg->mdpage.pvh_list = NULL;
|
|
simple_unlock(&pg->mdpage.pvh_slock);
|
|
PMAP_HEAD_TO_MAP_UNLOCK();
|
|
|
|
PDEBUG(0, printf("done\n"));
|
|
cpu_tlb_flushID();
|
|
cpu_cpwait();
|
|
}
|
|
|
|
|
|
/*
|
|
* Set the physical protection on the specified range of this map as requested.
|
|
*/
|
|
|
|
void
|
|
pmap_protect(struct pmap *pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
|
|
{
|
|
pt_entry_t *pte = NULL, *ptes;
|
|
struct vm_page *pg;
|
|
int armprot;
|
|
int flush = 0;
|
|
paddr_t pa;
|
|
|
|
PDEBUG(0, printf("pmap_protect: pmap=%p %08lx->%08lx %x\n",
|
|
pmap, sva, eva, prot));
|
|
|
|
if (~prot & VM_PROT_READ) {
|
|
/* Just remove the mappings. */
|
|
pmap_remove(pmap, sva, eva);
|
|
/* pmap_update not needed as it should be called by the caller
|
|
* of pmap_protect */
|
|
return;
|
|
}
|
|
if (prot & VM_PROT_WRITE) {
|
|
/*
|
|
* If this is a read->write transition, just ignore it and let
|
|
* uvm_fault() take care of it later.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
sva &= PG_FRAME;
|
|
eva &= PG_FRAME;
|
|
|
|
/* Need to lock map->head */
|
|
PMAP_MAP_TO_HEAD_LOCK();
|
|
|
|
ptes = pmap_map_ptes(pmap);
|
|
/*
|
|
* We need to acquire a pointer to a page table page before entering
|
|
* the following loop.
|
|
*/
|
|
while (sva < eva) {
|
|
if (pmap_pde_page(pmap_pde(pmap, sva)))
|
|
break;
|
|
sva = (sva & PD_MASK) + NBPD;
|
|
}
|
|
|
|
pte = &ptes[arm_btop(sva)];
|
|
|
|
while (sva < eva) {
|
|
/* only check once in a while */
|
|
if ((sva & PT_MASK) == 0) {
|
|
if (!pmap_pde_page(pmap_pde(pmap, sva))) {
|
|
/* We can race ahead here, to the next pde. */
|
|
sva += NBPD;
|
|
pte += arm_btop(NBPD);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (!pmap_pte_v(pte))
|
|
goto next;
|
|
|
|
flush = 1;
|
|
|
|
armprot = 0;
|
|
if (sva < VM_MAXUSER_ADDRESS)
|
|
armprot |= PT_AP(AP_U);
|
|
else if (sva < VM_MAX_ADDRESS)
|
|
armprot |= PT_AP(AP_W); /* XXX Ekk what is this ? */
|
|
*pte = (*pte & 0xfffff00f) | armprot;
|
|
|
|
pa = pmap_pte_pa(pte);
|
|
|
|
/* Get the physical page index */
|
|
|
|
/* Clear write flag */
|
|
if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
|
|
simple_lock(&pg->mdpage.pvh_slock);
|
|
(void) pmap_modify_pv(pmap, sva, pg, PT_Wr, 0);
|
|
pmap_vac_me_harder(pmap, pg, ptes, FALSE);
|
|
simple_unlock(&pg->mdpage.pvh_slock);
|
|
}
|
|
|
|
next:
|
|
sva += NBPG;
|
|
pte++;
|
|
}
|
|
pmap_unmap_ptes(pmap);
|
|
PMAP_MAP_TO_HEAD_UNLOCK();
|
|
if (flush)
|
|
cpu_tlb_flushID();
|
|
}
|
|
|
|
/*
|
|
* void pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
|
|
* int flags)
|
|
*
|
|
* Insert the given physical page (p) at
|
|
* the specified virtual address (v) in the
|
|
* target physical map with the protection requested.
|
|
*
|
|
* If specified, the page will be wired down, meaning
|
|
* that the related pte can not be reclaimed.
|
|
*
|
|
* NB: This is the only routine which MAY NOT lazy-evaluate
|
|
* or lose information. That is, this routine must actually
|
|
* insert this page into the given map NOW.
|
|
*/
|
|
|
|
int
|
|
pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
|
|
int flags)
|
|
{
|
|
pt_entry_t *ptes, opte, npte;
|
|
paddr_t opa;
|
|
boolean_t wired = (flags & PMAP_WIRED) != 0;
|
|
struct vm_page *pg;
|
|
struct pv_entry *pve;
|
|
int error, nflags;
|
|
|
|
PDEBUG(5, printf("pmap_enter: V%08lx P%08lx in pmap %p prot=%08x, wired = %d\n",
|
|
va, pa, pmap, prot, wired));
|
|
|
|
#ifdef DIAGNOSTIC
|
|
/* Valid address ? */
|
|
if (va >= (pmap_curmaxkvaddr))
|
|
panic("pmap_enter: too big");
|
|
if (pmap != pmap_kernel() && va != 0) {
|
|
if (va < VM_MIN_ADDRESS || va >= VM_MAXUSER_ADDRESS)
|
|
panic("pmap_enter: kernel page in user map");
|
|
} else {
|
|
if (va >= VM_MIN_ADDRESS && va < VM_MAXUSER_ADDRESS)
|
|
panic("pmap_enter: user page in kernel map");
|
|
if (va >= VM_MAXUSER_ADDRESS && va < VM_MAX_ADDRESS)
|
|
panic("pmap_enter: entering PT page");
|
|
}
|
|
#endif
|
|
/*
|
|
* Get a pointer to the page. Later on in this function, we
|
|
* test for a managed page by checking pg != NULL.
|
|
*/
|
|
pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
|
|
|
|
/* get lock */
|
|
PMAP_MAP_TO_HEAD_LOCK();
|
|
|
|
/*
|
|
* map the ptes. If there's not already an L2 table for this
|
|
* address, allocate one.
|
|
*/
|
|
ptes = pmap_map_ptes(pmap); /* locks pmap */
|
|
if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
|
|
struct vm_page *ptp;
|
|
|
|
/* kernel should be pre-grown */
|
|
KASSERT(pmap != pmap_kernel());
|
|
|
|
/* if failure is allowed then don't try too hard */
|
|
ptp = pmap_get_ptp(pmap, va & PD_MASK);
|
|
if (ptp == NULL) {
|
|
if (flags & PMAP_CANFAIL) {
|
|
error = ENOMEM;
|
|
goto out;
|
|
}
|
|
panic("pmap_enter: get ptp failed");
|
|
}
|
|
}
|
|
opte = ptes[arm_btop(va)];
|
|
|
|
nflags = 0;
|
|
if (prot & VM_PROT_WRITE)
|
|
nflags |= PT_Wr;
|
|
if (wired)
|
|
nflags |= PT_W;
|
|
|
|
/* Is the pte valid ? If so then this page is already mapped */
|
|
if (l2pte_valid(opte)) {
|
|
/* Get the physical address of the current page mapped */
|
|
opa = l2pte_pa(opte);
|
|
|
|
/* Are we mapping the same page ? */
|
|
if (opa == pa) {
|
|
/* Has the wiring changed ? */
|
|
if (pg != NULL) {
|
|
simple_lock(&pg->mdpage.pvh_slock);
|
|
(void) pmap_modify_pv(pmap, va, pg,
|
|
PT_Wr | PT_W, nflags);
|
|
simple_unlock(&pg->mdpage.pvh_slock);
|
|
}
|
|
} else {
|
|
struct vm_page *opg;
|
|
|
|
/* We are replacing the page with a new one. */
|
|
cpu_idcache_wbinv_range(va, NBPG);
|
|
|
|
/*
|
|
* If it is part of our managed memory then we
|
|
* must remove it from the PV list
|
|
*/
|
|
if ((opg = PHYS_TO_VM_PAGE(opa)) != NULL) {
|
|
simple_lock(&opg->mdpage.pvh_slock);
|
|
pve = pmap_remove_pv(opg, pmap, va);
|
|
simple_unlock(&opg->mdpage.pvh_slock);
|
|
} else {
|
|
pve = NULL;
|
|
}
|
|
|
|
goto enter;
|
|
}
|
|
} else {
|
|
opa = 0;
|
|
pve = NULL;
|
|
pmap_pte_addref(pmap, va);
|
|
|
|
/* pte is not valid so we must be hooking in a new page */
|
|
++pmap->pm_stats.resident_count;
|
|
|
|
enter:
|
|
/*
|
|
* Enter on the PV list if part of our managed memory
|
|
*/
|
|
if (pg != NULL) {
|
|
if (pve == NULL) {
|
|
pve = pmap_alloc_pv(pmap, ALLOCPV_NEED);
|
|
if (pve == NULL) {
|
|
if (flags & PMAP_CANFAIL) {
|
|
error = ENOMEM;
|
|
goto out;
|
|
}
|
|
panic("pmap_enter: no pv entries "
|
|
"available");
|
|
}
|
|
}
|
|
/* enter_pv locks pvh when adding */
|
|
pmap_enter_pv(pg, pve, pmap, va, NULL, nflags);
|
|
} else {
|
|
if (pve != NULL)
|
|
pmap_free_pv(pmap, pve);
|
|
}
|
|
}
|
|
|
|
/* Construct the pte, giving the correct access. */
|
|
npte = (pa & PG_FRAME);
|
|
|
|
/* VA 0 is magic. */
|
|
if (pmap != pmap_kernel() && va != 0)
|
|
npte |= PT_AP(AP_U);
|
|
|
|
if (pg != NULL) {
|
|
#ifdef DIAGNOSTIC
|
|
if ((flags & VM_PROT_ALL) & ~prot)
|
|
panic("pmap_enter: access_type exceeds prot");
|
|
#endif
|
|
npte |= pte_cache_mode;
|
|
if (flags & VM_PROT_WRITE) {
|
|
npte |= L2_SPAGE | PT_AP(AP_W);
|
|
pg->mdpage.pvh_attrs |= PT_H | PT_M;
|
|
} else if (flags & VM_PROT_ALL) {
|
|
npte |= L2_SPAGE;
|
|
pg->mdpage.pvh_attrs |= PT_H;
|
|
} else
|
|
npte |= L2_INVAL;
|
|
} else {
|
|
if (prot & VM_PROT_WRITE)
|
|
npte |= L2_SPAGE | PT_AP(AP_W);
|
|
else if (prot & VM_PROT_ALL)
|
|
npte |= L2_SPAGE;
|
|
else
|
|
npte |= L2_INVAL;
|
|
}
|
|
|
|
ptes[arm_btop(va)] = npte;
|
|
|
|
if (pg != NULL) {
|
|
simple_lock(&pg->mdpage.pvh_slock);
|
|
pmap_vac_me_harder(pmap, pg, ptes, pmap_is_curpmap(pmap));
|
|
simple_unlock(&pg->mdpage.pvh_slock);
|
|
}
|
|
|
|
/* Better flush the TLB ... */
|
|
cpu_tlb_flushID_SE(va);
|
|
error = 0;
|
|
out:
|
|
pmap_unmap_ptes(pmap); /* unlocks pmap */
|
|
PMAP_MAP_TO_HEAD_UNLOCK();
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* pmap_kenter_pa: enter a kernel mapping
|
|
*
|
|
* => no need to lock anything assume va is already allocated
|
|
* => should be faster than normal pmap enter function
|
|
*/
|
|
void
|
|
pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
|
|
{
|
|
pt_entry_t *pte;
|
|
|
|
pte = vtopte(va);
|
|
KASSERT(!pmap_pte_v(pte));
|
|
*pte = L2_PTE(pa, AP_KRW);
|
|
}
|
|
|
|
void
|
|
pmap_kremove(vaddr_t va, vsize_t len)
|
|
{
|
|
pt_entry_t *pte;
|
|
|
|
for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
|
|
|
|
/*
|
|
* We assume that we will only be called with small
|
|
* regions of memory.
|
|
*/
|
|
|
|
KASSERT(pmap_pde_page(pmap_pde(pmap_kernel(), va)));
|
|
pte = vtopte(va);
|
|
cpu_idcache_wbinv_range(va, PAGE_SIZE);
|
|
*pte = 0;
|
|
cpu_tlb_flushID_SE(va);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* pmap_page_protect:
|
|
*
|
|
* Lower the permission for all mappings to a given page.
|
|
*/
|
|
|
|
void
|
|
pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
|
|
{
|
|
|
|
PDEBUG(0, printf("pmap_page_protect(pa=%lx, prot=%d)\n",
|
|
VM_PAGE_TO_PHYS(pg), prot));
|
|
|
|
switch(prot) {
|
|
case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
|
|
case VM_PROT_READ|VM_PROT_WRITE:
|
|
return;
|
|
|
|
case VM_PROT_READ:
|
|
case VM_PROT_READ|VM_PROT_EXECUTE:
|
|
pmap_clearbit(pg, PT_Wr);
|
|
break;
|
|
|
|
default:
|
|
pmap_remove_all(pg);
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Routine: pmap_unwire
|
|
* Function: Clear the wired attribute for a map/virtual-address
|
|
* pair.
|
|
* In/out conditions:
|
|
* The mapping must already exist in the pmap.
|
|
*/
|
|
|
|
void
|
|
pmap_unwire(struct pmap *pmap, vaddr_t va)
|
|
{
|
|
pt_entry_t *ptes;
|
|
struct vm_page *pg;
|
|
paddr_t pa;
|
|
|
|
PMAP_MAP_TO_HEAD_LOCK();
|
|
ptes = pmap_map_ptes(pmap); /* locks pmap */
|
|
|
|
if (pmap_pde_v(pmap_pde(pmap, va))) {
|
|
#ifdef DIAGNOSTIC
|
|
if (l2pte_valid(ptes[arm_btop(va)]) == 0)
|
|
panic("pmap_unwire: invalid L2 PTE");
|
|
#endif
|
|
/* Extract the physical address of the page */
|
|
pa = l2pte_pa(ptes[arm_btop(va)]);
|
|
|
|
if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
|
|
goto out;
|
|
|
|
/* Update the wired bit in the pv entry for this page. */
|
|
simple_lock(&pg->mdpage.pvh_slock);
|
|
(void) pmap_modify_pv(pmap, va, pg, PT_W, 0);
|
|
simple_unlock(&pg->mdpage.pvh_slock);
|
|
}
|
|
#ifdef DIAGNOSTIC
|
|
else {
|
|
panic("pmap_unwire: invalid L1 PTE");
|
|
}
|
|
#endif
|
|
out:
|
|
pmap_unmap_ptes(pmap); /* unlocks pmap */
|
|
PMAP_MAP_TO_HEAD_UNLOCK();
|
|
}
|
|
|
|
/*
|
|
* Routine: pmap_extract
|
|
* Function:
|
|
* Extract the physical page address associated
|
|
* with the given map/virtual_address pair.
|
|
*/
|
|
boolean_t
|
|
pmap_extract(struct pmap *pmap, vaddr_t va, paddr_t *pap)
|
|
{
|
|
pd_entry_t *pde;
|
|
pt_entry_t *pte, *ptes;
|
|
paddr_t pa;
|
|
boolean_t rv = TRUE;
|
|
|
|
PDEBUG(5, printf("pmap_extract: pmap=%p, va=V%08lx\n", pmap, va));
|
|
|
|
/*
|
|
* Get the pte for this virtual address.
|
|
*/
|
|
pde = pmap_pde(pmap, va);
|
|
ptes = pmap_map_ptes(pmap);
|
|
pte = &ptes[arm_btop(va)];
|
|
|
|
if (pmap_pde_section(pde)) {
|
|
pa = (*pde & PD_MASK) | (va & (L1_SEC_SIZE - 1));
|
|
goto out;
|
|
} else if (pmap_pde_page(pde) == 0 || pmap_pte_v(pte) == 0) {
|
|
rv = FALSE;
|
|
goto out;
|
|
}
|
|
|
|
if ((*pte & L2_MASK) == L2_LPAGE) {
|
|
/* Extract the physical address from the pte */
|
|
pa = *pte & ~(L2_LPAGE_SIZE - 1);
|
|
|
|
PDEBUG(5, printf("pmap_extract: LPAGE pa = P%08lx\n",
|
|
(pa | (va & (L2_LPAGE_SIZE - 1)))));
|
|
|
|
if (pap != NULL)
|
|
*pap = pa | (va & (L2_LPAGE_SIZE - 1));
|
|
goto out;
|
|
}
|
|
|
|
/* Extract the physical address from the pte */
|
|
pa = pmap_pte_pa(pte);
|
|
|
|
PDEBUG(5, printf("pmap_extract: SPAGE pa = P%08lx\n",
|
|
(pa | (va & ~PG_FRAME))));
|
|
|
|
if (pap != NULL)
|
|
*pap = pa | (va & ~PG_FRAME);
|
|
out:
|
|
pmap_unmap_ptes(pmap);
|
|
return (rv);
|
|
}
|
|
|
|
|
|
/*
|
|
* pmap_copy:
|
|
*
|
|
* Copy the range specified by src_addr/len from the source map to the
|
|
* range dst_addr/len in the destination map.
|
|
*
|
|
* This routine is only advisory and need not do anything.
|
|
*/
|
|
/* Call deleted in <arm/arm32/pmap.h> */
|
|
|
|
#if defined(PMAP_DEBUG)
|
|
void
|
|
pmap_dump_pvlist(phys, m)
|
|
vaddr_t phys;
|
|
char *m;
|
|
{
|
|
struct vm_page *pg;
|
|
struct pv_entry *pv;
|
|
|
|
if ((pg = PHYS_TO_VM_PAGE(phys)) == NULL) {
|
|
printf("INVALID PA\n");
|
|
return;
|
|
}
|
|
simple_lock(&pg->mdpage.pvh_slock);
|
|
printf("%s %08lx:", m, phys);
|
|
if (pg->mdpage.pvh_list == NULL) {
|
|
printf(" no mappings\n");
|
|
return;
|
|
}
|
|
|
|
for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next)
|
|
printf(" pmap %p va %08lx flags %08x", pv->pv_pmap,
|
|
pv->pv_va, pv->pv_flags);
|
|
|
|
printf("\n");
|
|
simple_unlock(&pg->mdpage.pvh_slock);
|
|
}
|
|
|
|
#endif /* PMAP_DEBUG */
|
|
|
|
static pt_entry_t *
|
|
pmap_map_ptes(struct pmap *pmap)
|
|
{
|
|
struct proc *p;
|
|
|
|
/* the kernel's pmap is always accessible */
|
|
if (pmap == pmap_kernel()) {
|
|
return (pt_entry_t *)PTE_BASE;
|
|
}
|
|
|
|
if (pmap_is_curpmap(pmap)) {
|
|
simple_lock(&pmap->pm_obj.vmobjlock);
|
|
return (pt_entry_t *)PTE_BASE;
|
|
}
|
|
|
|
p = curproc;
|
|
KDASSERT(p != NULL);
|
|
|
|
/* need to lock both curpmap and pmap: use ordered locking */
|
|
if ((vaddr_t) pmap < (vaddr_t) p->p_vmspace->vm_map.pmap) {
|
|
simple_lock(&pmap->pm_obj.vmobjlock);
|
|
simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
|
|
} else {
|
|
simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
|
|
simple_lock(&pmap->pm_obj.vmobjlock);
|
|
}
|
|
|
|
pmap_map_in_l1(p->p_vmspace->vm_map.pmap, APTE_BASE, pmap->pm_pptpt,
|
|
FALSE);
|
|
cpu_tlb_flushD();
|
|
cpu_cpwait();
|
|
return (pt_entry_t *)APTE_BASE;
|
|
}
|
|
|
|
/*
|
|
* pmap_unmap_ptes: unlock the PTE mapping of "pmap"
|
|
*/
|
|
|
|
static void
|
|
pmap_unmap_ptes(struct pmap *pmap)
|
|
{
|
|
|
|
if (pmap == pmap_kernel()) {
|
|
return;
|
|
}
|
|
if (pmap_is_curpmap(pmap)) {
|
|
simple_unlock(&pmap->pm_obj.vmobjlock);
|
|
} else {
|
|
KDASSERT(curproc != NULL);
|
|
simple_unlock(&pmap->pm_obj.vmobjlock);
|
|
simple_unlock(
|
|
&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Modify pte bits for all ptes corresponding to the given physical address.
|
|
* We use `maskbits' rather than `clearbits' because we're always passing
|
|
* constants and the latter would require an extra inversion at run-time.
|
|
*/
|
|
|
|
static void
|
|
pmap_clearbit(struct vm_page *pg, u_int maskbits)
|
|
{
|
|
struct pv_entry *pv;
|
|
pt_entry_t *ptes;
|
|
vaddr_t va;
|
|
int tlbentry;
|
|
|
|
PDEBUG(1, printf("pmap_clearbit: pa=%08lx mask=%08x\n",
|
|
VM_PAGE_TO_PHYS(pg), maskbits));
|
|
|
|
tlbentry = 0;
|
|
|
|
PMAP_HEAD_TO_MAP_LOCK();
|
|
simple_lock(&pg->mdpage.pvh_slock);
|
|
|
|
/*
|
|
* Clear saved attributes (modify, reference)
|
|
*/
|
|
pg->mdpage.pvh_attrs &= ~maskbits;
|
|
|
|
if (pg->mdpage.pvh_list == NULL) {
|
|
simple_unlock(&pg->mdpage.pvh_slock);
|
|
PMAP_HEAD_TO_MAP_UNLOCK();
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Loop over all current mappings setting/clearing as appropos
|
|
*/
|
|
for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
|
|
va = pv->pv_va;
|
|
pv->pv_flags &= ~maskbits;
|
|
ptes = pmap_map_ptes(pv->pv_pmap); /* locks pmap */
|
|
KASSERT(pmap_pde_v(pmap_pde(pv->pv_pmap, va)));
|
|
if (maskbits & (PT_Wr|PT_M)) {
|
|
if ((pv->pv_flags & PT_NC)) {
|
|
/*
|
|
* Entry is not cacheable: reenable
|
|
* the cache, nothing to flush
|
|
*
|
|
* Don't turn caching on again if this
|
|
* is a modified emulation. This
|
|
* would be inconsitent with the
|
|
* settings created by
|
|
* pmap_vac_me_harder().
|
|
*
|
|
* There's no need to call
|
|
* pmap_vac_me_harder() here: all
|
|
* pages are loosing their write
|
|
* permission.
|
|
*
|
|
*/
|
|
if (maskbits & PT_Wr) {
|
|
ptes[arm_btop(va)] |= pte_cache_mode;
|
|
pv->pv_flags &= ~PT_NC;
|
|
}
|
|
} else if (pmap_is_curpmap(pv->pv_pmap)) {
|
|
/*
|
|
* Entry is cacheable: check if pmap is
|
|
* current if it is flush it,
|
|
* otherwise it won't be in the cache
|
|
*/
|
|
cpu_idcache_wbinv_range(pv->pv_va, NBPG);
|
|
}
|
|
|
|
/* make the pte read only */
|
|
ptes[arm_btop(va)] &= ~PT_AP(AP_W);
|
|
}
|
|
|
|
if (maskbits & PT_H)
|
|
ptes[arm_btop(va)] =
|
|
(ptes[arm_btop(va)] & ~L2_MASK) | L2_INVAL;
|
|
|
|
if (pmap_is_curpmap(pv->pv_pmap)) {
|
|
/*
|
|
* if we had cacheable pte's we'd clean the
|
|
* pte out to memory here
|
|
*
|
|
* flush tlb entry as it's in the current pmap
|
|
*/
|
|
cpu_tlb_flushID_SE(pv->pv_va);
|
|
}
|
|
pmap_unmap_ptes(pv->pv_pmap); /* unlocks pmap */
|
|
}
|
|
cpu_cpwait();
|
|
|
|
simple_unlock(&pg->mdpage.pvh_slock);
|
|
PMAP_HEAD_TO_MAP_UNLOCK();
|
|
}
|
|
|
|
/*
|
|
* pmap_clear_modify:
|
|
*
|
|
* Clear the "modified" attribute for a page.
|
|
*/
|
|
boolean_t
|
|
pmap_clear_modify(struct vm_page *pg)
|
|
{
|
|
boolean_t rv;
|
|
|
|
if (pg->mdpage.pvh_attrs & PT_M) {
|
|
rv = TRUE;
|
|
pmap_clearbit(pg, PT_M);
|
|
} else
|
|
rv = FALSE;
|
|
|
|
PDEBUG(0, printf("pmap_clear_modify pa=%08lx -> %d\n",
|
|
VM_PAGE_TO_PHYS(pg), rv));
|
|
|
|
return (rv);
|
|
}
|
|
|
|
/*
|
|
* pmap_clear_reference:
|
|
*
|
|
* Clear the "referenced" attribute for a page.
|
|
*/
|
|
boolean_t
|
|
pmap_clear_reference(struct vm_page *pg)
|
|
{
|
|
boolean_t rv;
|
|
|
|
if (pg->mdpage.pvh_attrs & PT_H) {
|
|
rv = TRUE;
|
|
pmap_clearbit(pg, PT_H);
|
|
} else
|
|
rv = FALSE;
|
|
|
|
PDEBUG(0, printf("pmap_clear_reference pa=%08lx -> %d\n",
|
|
VM_PAGE_TO_PHYS(pg), rv));
|
|
|
|
return (rv);
|
|
}
|
|
|
|
/*
|
|
* pmap_is_modified:
|
|
*
|
|
* Test if a page has the "modified" attribute.
|
|
*/
|
|
/* See <arm/arm32/pmap.h> */
|
|
|
|
/*
|
|
* pmap_is_referenced:
|
|
*
|
|
* Test if a page has the "referenced" attribute.
|
|
*/
|
|
/* See <arm/arm32/pmap.h> */
|
|
|
|
int
|
|
pmap_modified_emulation(struct pmap *pmap, vaddr_t va)
|
|
{
|
|
pt_entry_t *ptes;
|
|
struct vm_page *pg;
|
|
paddr_t pa;
|
|
u_int flags;
|
|
int rv = 0;
|
|
|
|
PDEBUG(2, printf("pmap_modified_emulation\n"));
|
|
|
|
PMAP_MAP_TO_HEAD_LOCK();
|
|
ptes = pmap_map_ptes(pmap); /* locks pmap */
|
|
|
|
if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
|
|
PDEBUG(2, printf("L1 PTE invalid\n"));
|
|
goto out;
|
|
}
|
|
|
|
PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
|
|
|
|
/* Check for a invalid pte */
|
|
if (l2pte_valid(ptes[arm_btop(va)]) == 0)
|
|
goto out;
|
|
|
|
/* This can happen if user code tries to access kernel memory. */
|
|
if ((ptes[arm_btop(va)] & PT_AP(AP_W)) != 0)
|
|
goto out;
|
|
|
|
/* Extract the physical address of the page */
|
|
pa = l2pte_pa(ptes[arm_btop(va)]);
|
|
if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
|
|
goto out;
|
|
|
|
/* Get the current flags for this page. */
|
|
simple_lock(&pg->mdpage.pvh_slock);
|
|
|
|
flags = pmap_modify_pv(pmap, va, pg, 0, 0);
|
|
PDEBUG(2, printf("pmap_modified_emulation: flags = %08x\n", flags));
|
|
|
|
/*
|
|
* Do the flags say this page is writable ? If not then it is a
|
|
* genuine write fault. If yes then the write fault is our fault
|
|
* as we did not reflect the write access in the PTE. Now we know
|
|
* a write has occurred we can correct this and also set the
|
|
* modified bit
|
|
*/
|
|
if (~flags & PT_Wr) {
|
|
simple_unlock(&pg->mdpage.pvh_slock);
|
|
goto out;
|
|
}
|
|
|
|
PDEBUG(0,
|
|
printf("pmap_modified_emulation: Got a hit va=%08lx, pte = %08x\n",
|
|
va, ptes[arm_btop(va)]));
|
|
pg->mdpage.pvh_attrs |= PT_H | PT_M;
|
|
|
|
/*
|
|
* Re-enable write permissions for the page. No need to call
|
|
* pmap_vac_me_harder(), since this is just a
|
|
* modified-emulation fault, and the PT_Wr bit isn't changing. We've
|
|
* already set the cacheable bits based on the assumption that we
|
|
* can write to this page.
|
|
*/
|
|
ptes[arm_btop(va)] =
|
|
(ptes[arm_btop(va)] & ~L2_MASK) | L2_SPAGE | PT_AP(AP_W);
|
|
PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
|
|
|
|
simple_unlock(&pg->mdpage.pvh_slock);
|
|
|
|
cpu_tlb_flushID_SE(va);
|
|
cpu_cpwait();
|
|
rv = 1;
|
|
out:
|
|
pmap_unmap_ptes(pmap); /* unlocks pmap */
|
|
PMAP_MAP_TO_HEAD_UNLOCK();
|
|
return (rv);
|
|
}
|
|
|
|
int
|
|
pmap_handled_emulation(struct pmap *pmap, vaddr_t va)
|
|
{
|
|
pt_entry_t *ptes;
|
|
struct vm_page *pg;
|
|
paddr_t pa;
|
|
int rv = 0;
|
|
|
|
PDEBUG(2, printf("pmap_handled_emulation\n"));
|
|
|
|
PMAP_MAP_TO_HEAD_LOCK();
|
|
ptes = pmap_map_ptes(pmap); /* locks pmap */
|
|
|
|
if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
|
|
PDEBUG(2, printf("L1 PTE invalid\n"));
|
|
goto out;
|
|
}
|
|
|
|
PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
|
|
|
|
/* Check for invalid pte */
|
|
if (l2pte_valid(ptes[arm_btop(va)]) == 0)
|
|
goto out;
|
|
|
|
/* This can happen if user code tries to access kernel memory. */
|
|
if ((ptes[arm_btop(va)] & L2_MASK) != L2_INVAL)
|
|
goto out;
|
|
|
|
/* Extract the physical address of the page */
|
|
pa = l2pte_pa(ptes[arm_btop(va)]);
|
|
if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
|
|
goto out;
|
|
|
|
simple_lock(&pg->mdpage.pvh_slock);
|
|
|
|
/*
|
|
* Ok we just enable the pte and mark the attibs as handled
|
|
* XXX Should we traverse the PV list and enable all PTEs?
|
|
*/
|
|
PDEBUG(0,
|
|
printf("pmap_handled_emulation: Got a hit va=%08lx pte = %08x\n",
|
|
va, ptes[arm_btop(va)]));
|
|
pg->mdpage.pvh_attrs |= PT_H;
|
|
|
|
ptes[arm_btop(va)] = (ptes[arm_btop(va)] & ~L2_MASK) | L2_SPAGE;
|
|
PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
|
|
|
|
simple_unlock(&pg->mdpage.pvh_slock);
|
|
|
|
cpu_tlb_flushID_SE(va);
|
|
cpu_cpwait();
|
|
rv = 1;
|
|
out:
|
|
pmap_unmap_ptes(pmap); /* unlocks pmap */
|
|
PMAP_MAP_TO_HEAD_UNLOCK();
|
|
return (rv);
|
|
}
|
|
|
|
/*
|
|
* pmap_collect: free resources held by a pmap
|
|
*
|
|
* => optional function.
|
|
* => called when a process is swapped out to free memory.
|
|
*/
|
|
|
|
void
|
|
pmap_collect(struct pmap *pmap)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Routine: pmap_procwr
|
|
*
|
|
* Function:
|
|
* Synchronize caches corresponding to [addr, addr+len) in p.
|
|
*
|
|
*/
|
|
void
|
|
pmap_procwr(struct proc *p, vaddr_t va, int len)
|
|
{
|
|
/* We only need to do anything if it is the current process. */
|
|
if (p == curproc)
|
|
cpu_icache_sync_range(va, len);
|
|
}
|
|
/*
|
|
* PTP functions
|
|
*/
|
|
|
|
/*
|
|
* pmap_get_ptp: get a PTP (if there isn't one, allocate a new one)
|
|
*
|
|
* => pmap should NOT be pmap_kernel()
|
|
* => pmap should be locked
|
|
*/
|
|
|
|
static struct vm_page *
|
|
pmap_get_ptp(struct pmap *pmap, vaddr_t va)
|
|
{
|
|
struct vm_page *ptp;
|
|
|
|
if (pmap_pde_page(pmap_pde(pmap, va))) {
|
|
|
|
/* valid... check hint (saves us a PA->PG lookup) */
|
|
if (pmap->pm_ptphint &&
|
|
(pmap->pm_pdir[pmap_pdei(va)] & PG_FRAME) ==
|
|
VM_PAGE_TO_PHYS(pmap->pm_ptphint))
|
|
return (pmap->pm_ptphint);
|
|
ptp = uvm_pagelookup(&pmap->pm_obj, va);
|
|
#ifdef DIAGNOSTIC
|
|
if (ptp == NULL)
|
|
panic("pmap_get_ptp: unmanaged user PTP");
|
|
#endif
|
|
pmap->pm_ptphint = ptp;
|
|
return(ptp);
|
|
}
|
|
|
|
/* allocate a new PTP (updates ptphint) */
|
|
return(pmap_alloc_ptp(pmap, va));
|
|
}
|
|
|
|
/*
|
|
* pmap_alloc_ptp: allocate a PTP for a PMAP
|
|
*
|
|
* => pmap should already be locked by caller
|
|
* => we use the ptp's wire_count to count the number of active mappings
|
|
* in the PTP (we start it at one to prevent any chance this PTP
|
|
* will ever leak onto the active/inactive queues)
|
|
*/
|
|
|
|
/*__inline */ static struct vm_page *
|
|
pmap_alloc_ptp(struct pmap *pmap, vaddr_t va)
|
|
{
|
|
struct vm_page *ptp;
|
|
|
|
ptp = uvm_pagealloc(&pmap->pm_obj, va, NULL,
|
|
UVM_PGA_USERESERVE|UVM_PGA_ZERO);
|
|
if (ptp == NULL)
|
|
return (NULL);
|
|
|
|
/* got one! */
|
|
ptp->flags &= ~PG_BUSY; /* never busy */
|
|
ptp->wire_count = 1; /* no mappings yet */
|
|
pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(ptp), TRUE);
|
|
pmap->pm_stats.resident_count++; /* count PTP as resident */
|
|
pmap->pm_ptphint = ptp;
|
|
return (ptp);
|
|
}
|
|
|
|
vaddr_t
|
|
pmap_growkernel(vaddr_t maxkvaddr)
|
|
{
|
|
struct pmap *kpm = pmap_kernel(), *pm;
|
|
int s;
|
|
paddr_t ptaddr;
|
|
struct vm_page *ptp;
|
|
|
|
if (maxkvaddr <= pmap_curmaxkvaddr)
|
|
goto out; /* we are OK */
|
|
NPDEBUG(PDB_GROWKERN, printf("pmap_growkernel: growing kernel from %lx to %lx\n",
|
|
pmap_curmaxkvaddr, maxkvaddr));
|
|
|
|
/*
|
|
* whoops! we need to add kernel PTPs
|
|
*/
|
|
|
|
s = splhigh(); /* to be safe */
|
|
simple_lock(&kpm->pm_obj.vmobjlock);
|
|
/* due to the way the arm pmap works we map 4MB at a time */
|
|
for (/*null*/ ; pmap_curmaxkvaddr < maxkvaddr;
|
|
pmap_curmaxkvaddr += 4 * NBPD) {
|
|
|
|
if (uvm.page_init_done == FALSE) {
|
|
|
|
/*
|
|
* we're growing the kernel pmap early (from
|
|
* uvm_pageboot_alloc()). this case must be
|
|
* handled a little differently.
|
|
*/
|
|
|
|
if (uvm_page_physget(&ptaddr) == FALSE)
|
|
panic("pmap_growkernel: out of memory");
|
|
pmap_zero_page(ptaddr);
|
|
|
|
/* map this page in */
|
|
pmap_map_in_l1(kpm, pmap_curmaxkvaddr, ptaddr, TRUE);
|
|
|
|
/* count PTP as resident */
|
|
kpm->pm_stats.resident_count++;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* THIS *MUST* BE CODED SO AS TO WORK IN THE
|
|
* pmap_initialized == FALSE CASE! WE MAY BE
|
|
* INVOKED WHILE pmap_init() IS RUNNING!
|
|
*/
|
|
|
|
if ((ptp = pmap_alloc_ptp(kpm, pmap_curmaxkvaddr)) == NULL)
|
|
panic("pmap_growkernel: alloc ptp failed");
|
|
|
|
/* distribute new kernel PTP to all active pmaps */
|
|
simple_lock(&pmaps_lock);
|
|
LIST_FOREACH(pm, &pmaps, pm_list) {
|
|
pmap_map_in_l1(pm, pmap_curmaxkvaddr,
|
|
VM_PAGE_TO_PHYS(ptp), TRUE);
|
|
}
|
|
|
|
simple_unlock(&pmaps_lock);
|
|
}
|
|
|
|
/*
|
|
* flush out the cache, expensive but growkernel will happen so
|
|
* rarely
|
|
*/
|
|
cpu_tlb_flushD();
|
|
cpu_cpwait();
|
|
|
|
simple_unlock(&kpm->pm_obj.vmobjlock);
|
|
splx(s);
|
|
|
|
out:
|
|
return (pmap_curmaxkvaddr);
|
|
}
|
|
|
|
|
|
|
|
/************************ Bootstrapping routines ****************************/
|
|
|
|
/*
|
|
* This list exists for the benefit of pmap_map_chunk(). It keeps track
|
|
* of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
|
|
* find them as necessary.
|
|
*
|
|
* Note that the data on this list is not valid after initarm() returns.
|
|
*/
|
|
SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
|
|
|
|
static vaddr_t
|
|
kernel_pt_lookup(paddr_t pa)
|
|
{
|
|
pv_addr_t *pv;
|
|
|
|
SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
|
|
if (pv->pv_pa == pa)
|
|
return (pv->pv_va);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* pmap_map_section:
|
|
*
|
|
* Create a single section mapping.
|
|
*/
|
|
void
|
|
pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
|
|
{
|
|
pd_entry_t *pde = (pd_entry_t *) l1pt;
|
|
pd_entry_t ap = (prot & VM_PROT_WRITE) ? AP_KRW : AP_KR;
|
|
pd_entry_t fl = (cache == PTE_CACHE) ? pte_cache_mode : 0;
|
|
|
|
KASSERT(((va | pa) & (L1_SEC_SIZE - 1)) == 0);
|
|
|
|
pde[va >> PDSHIFT] = L1_SECPTE(pa & PD_MASK, ap, fl);
|
|
}
|
|
|
|
/*
|
|
* pmap_map_entry:
|
|
*
|
|
* Create a single page mapping.
|
|
*/
|
|
void
|
|
pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
|
|
{
|
|
pd_entry_t *pde = (pd_entry_t *) l1pt;
|
|
pt_entry_t ap = (prot & VM_PROT_WRITE) ? AP_KRW : AP_KR;
|
|
pt_entry_t fl = (cache == PTE_CACHE) ? pte_cache_mode : 0;
|
|
pt_entry_t *pte;
|
|
|
|
KASSERT(((va | pa) & PGOFSET) == 0);
|
|
|
|
if ((pde[va >> PDSHIFT] & L1_MASK) != L1_PAGE)
|
|
panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
|
|
|
|
pte = (pt_entry_t *)
|
|
kernel_pt_lookup(pde[va >> PDSHIFT] & PG_FRAME);
|
|
if (pte == NULL)
|
|
panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
|
|
|
|
pte[(va >> PGSHIFT) & 0x3ff] = L2_SPTE(pa & PG_FRAME, ap, fl);
|
|
}
|
|
|
|
/*
|
|
* pmap_link_l2pt:
|
|
*
|
|
* Link the L2 page table specified by "pa" into the L1
|
|
* page table at the slot for "va".
|
|
*/
|
|
void
|
|
pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
|
|
{
|
|
pd_entry_t *pde = (pd_entry_t *) l1pt;
|
|
u_int slot = va >> PDSHIFT;
|
|
|
|
KASSERT((l2pv->pv_pa & PGOFSET) == 0);
|
|
|
|
pde[slot + 0] = L1_PTE(l2pv->pv_pa + 0x000);
|
|
pde[slot + 1] = L1_PTE(l2pv->pv_pa + 0x400);
|
|
pde[slot + 2] = L1_PTE(l2pv->pv_pa + 0x800);
|
|
pde[slot + 3] = L1_PTE(l2pv->pv_pa + 0xc00);
|
|
|
|
SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
|
|
}
|
|
|
|
/*
|
|
* pmap_map_chunk:
|
|
*
|
|
* Map a chunk of memory using the most efficient mappings
|
|
* possible (section, large page, small page) into the
|
|
* provided L1 and L2 tables at the specified virtual address.
|
|
*/
|
|
vsize_t
|
|
pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
|
|
int prot, int cache)
|
|
{
|
|
pd_entry_t *pde = (pd_entry_t *) l1pt;
|
|
pt_entry_t ap = (prot & VM_PROT_WRITE) ? AP_KRW : AP_KR;
|
|
pt_entry_t fl = (cache == PTE_CACHE) ? pte_cache_mode : 0;
|
|
pt_entry_t *pte;
|
|
vsize_t resid;
|
|
int i;
|
|
|
|
resid = (size + (NBPG - 1)) & ~(NBPG - 1);
|
|
|
|
if (l1pt == 0)
|
|
panic("pmap_map_chunk: no L1 table provided");
|
|
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
|
|
"prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
|
|
#endif
|
|
|
|
size = resid;
|
|
|
|
while (resid > 0) {
|
|
/* See if we can use a section mapping. */
|
|
if (((pa | va) & (L1_SEC_SIZE - 1)) == 0 &&
|
|
resid >= L1_SEC_SIZE) {
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("S");
|
|
#endif
|
|
pde[va >> PDSHIFT] = L1_SECPTE(pa, ap, fl);
|
|
va += L1_SEC_SIZE;
|
|
pa += L1_SEC_SIZE;
|
|
resid -= L1_SEC_SIZE;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Ok, we're going to use an L2 table. Make sure
|
|
* one is actually in the corresponding L1 slot
|
|
* for the current VA.
|
|
*/
|
|
if ((pde[va >> PDSHIFT] & L1_MASK) != L1_PAGE)
|
|
panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
|
|
|
|
pte = (pt_entry_t *)
|
|
kernel_pt_lookup(pde[va >> PDSHIFT] & PG_FRAME);
|
|
if (pte == NULL)
|
|
panic("pmap_map_chunk: can't find L2 table for VA"
|
|
"0x%08lx", va);
|
|
|
|
/* See if we can use a L2 large page mapping. */
|
|
if (((pa | va) & (L2_LPAGE_SIZE - 1)) == 0 &&
|
|
resid >= L2_LPAGE_SIZE) {
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("L");
|
|
#endif
|
|
for (i = 0; i < 16; i++) {
|
|
pte[((va >> PGSHIFT) & 0x3f0) + i] =
|
|
L2_LPTE(pa, ap, fl);
|
|
}
|
|
va += L2_LPAGE_SIZE;
|
|
pa += L2_LPAGE_SIZE;
|
|
resid -= L2_LPAGE_SIZE;
|
|
continue;
|
|
}
|
|
|
|
/* Use a small page mapping. */
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("P");
|
|
#endif
|
|
pte[(va >> PGSHIFT) & 0x3ff] = L2_SPTE(pa, ap, fl);
|
|
va += NBPG;
|
|
pa += NBPG;
|
|
resid -= NBPG;
|
|
}
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("\n");
|
|
#endif
|
|
return (size);
|
|
}
|