NetBSD/sys/dev/midi.c
pooka 4e38160d4d Do not "return 1" from kqfilter for errors. That value is passed
directly to the userland caller and results in a mysterious EPERM.
Instead, return EINVAL or something else sensible depending on the
case.
2007-12-05 17:19:46 +00:00

1822 lines
48 KiB
C

/* $NetBSD: midi.c,v 1.58 2007/12/05 17:19:47 pooka Exp $ */
/*
* Copyright (c) 1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Lennart Augustsson (augustss@NetBSD.org) and (MIDI FST and Active
* Sense handling) Chapman Flack (chap@NetBSD.org).
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: midi.c,v 1.58 2007/12/05 17:19:47 pooka Exp $");
#include "midi.h"
#include "sequencer.h"
#include <sys/param.h>
#include <sys/ioctl.h>
#include <sys/fcntl.h>
#include <sys/vnode.h>
#include <sys/select.h>
#include <sys/poll.h>
#include <sys/malloc.h>
#include <sys/proc.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/syslog.h>
#include <sys/kernel.h>
#include <sys/signalvar.h>
#include <sys/conf.h>
#include <sys/audioio.h>
#include <sys/midiio.h>
#include <sys/intr.h>
#include <dev/audio_if.h>
#include <dev/midi_if.h>
#include <dev/midivar.h>
#if NMIDI > 0
#ifdef AUDIO_DEBUG
#define DPRINTF(x) if (mididebug) printf x
#define DPRINTFN(n,x) if (mididebug >= (n)) printf x
int mididebug = 0;
/*
* 1: detected protocol errors and buffer overflows
* 2: probe, attach, detach
* 3: open, close
* 4: data received except realtime
* 5: ioctl
* 6: read, write, poll
* 7: data transmitted
* 8: uiomoves, synchronization
* 9: realtime data received
*/
#else
#define DPRINTF(x)
#define DPRINTFN(n,x)
#endif
static struct simplelock hwif_register_lock = SIMPLELOCK_INITIALIZER;
static struct midi_softc *hwif_softc = NULL;
void midi_in(void *, int);
void midi_out(void *);
int midi_poll_out(struct midi_softc *);
int midi_intr_out(struct midi_softc *);
int midi_msg_out(struct midi_softc *,
u_char **, u_char **, u_char **, u_char **);
int midi_start_output(struct midi_softc *);
int midi_sleep_timo(int *, const char *, int, struct simplelock *);
int midi_sleep(int *, const char *, struct simplelock *);
void midi_wakeup(int *);
void midi_initbuf(struct midi_buffer *);
void midi_xmt_asense(void *);
void midi_rcv_asense(void *);
void midi_softintr_rd(void *);
void midi_softintr_wr(void *);
int midiprobe(struct device *, struct cfdata *, void *);
void midiattach(struct device *, struct device *, void *);
int mididetach(struct device *, int);
int midiactivate(struct device *, enum devact);
dev_type_open(midiopen);
dev_type_close(midiclose);
dev_type_read(midiread);
dev_type_write(midiwrite);
dev_type_ioctl(midiioctl);
dev_type_poll(midipoll);
dev_type_kqfilter(midikqfilter);
const struct cdevsw midi_cdevsw = {
midiopen, midiclose, midiread, midiwrite, midiioctl,
nostop, notty, midipoll, nommap, midikqfilter, D_OTHER,
};
CFATTACH_DECL(midi, sizeof(struct midi_softc),
midiprobe, midiattach, mididetach, midiactivate);
#define MIDI_XMT_ASENSE_PERIOD mstohz(275)
#define MIDI_RCV_ASENSE_PERIOD mstohz(300)
extern struct cfdriver midi_cd;
int
midiprobe(struct device *parent, struct cfdata *match,
void *aux)
{
struct audio_attach_args *sa = aux;
DPRINTFN(2,("midiprobe: type=%d sa=%p hw=%p\n",
sa->type, sa, sa->hwif));
return (sa->type == AUDIODEV_TYPE_MIDI);
}
void
midiattach(struct device *parent, struct device *self, void *aux)
{
struct midi_softc *sc = (void *)self;
struct audio_attach_args *sa = aux;
const struct midi_hw_if *hwp = sa->hwif;
void *hdlp = sa->hdl;
aprint_naive("\n");
DPRINTFN(2, ("MIDI attach\n"));
#ifdef DIAGNOSTIC
if (hwp == 0 ||
hwp->open == 0 ||
hwp->close == 0 ||
hwp->output == 0 ||
hwp->getinfo == 0) {
printf("midi: missing method\n");
return;
}
#endif
sc->hw_if = hwp;
sc->hw_hdl = hdlp;
midi_attach(sc, parent);
}
int
midiactivate(struct device *self, enum devact act)
{
struct midi_softc *sc = (struct midi_softc *)self;
switch (act) {
case DVACT_ACTIVATE:
return (EOPNOTSUPP);
case DVACT_DEACTIVATE:
sc->dying = 1;
break;
}
return (0);
}
int
mididetach(struct device *self, int flags)
{
struct midi_softc *sc = (struct midi_softc *)self;
int maj, mn;
DPRINTFN(2,("midi_detach: sc=%p flags=%d\n", sc, flags));
sc->dying = 1;
wakeup(&sc->wchan);
wakeup(&sc->rchan);
/* locate the major number */
maj = cdevsw_lookup_major(&midi_cdevsw);
/* Nuke the vnodes for any open instances (calls close). */
mn = device_unit(self);
vdevgone(maj, mn, mn, VCHR);
if ( !(sc->props & MIDI_PROP_NO_OUTPUT) ) {
evcnt_detach(&sc->xmt.bytesDiscarded);
evcnt_detach(&sc->xmt.incompleteMessages);
}
if ( sc->props & MIDI_PROP_CAN_INPUT ) {
evcnt_detach(&sc->rcv.bytesDiscarded);
evcnt_detach(&sc->rcv.incompleteMessages);
}
if (sc->sih_rd != NULL) {
softint_disestablish(sc->sih_rd);
sc->sih_rd = NULL;
}
if (sc->sih_wr != NULL) {
softint_disestablish(sc->sih_wr);
sc->sih_wr = NULL;
}
return (0);
}
void
midi_attach(struct midi_softc *sc, struct device *parent)
{
struct midi_info mi;
int s;
callout_init(&sc->xmt_asense_co, 0);
callout_init(&sc->rcv_asense_co, 0);
callout_setfunc(&sc->xmt_asense_co, midi_xmt_asense, sc);
callout_setfunc(&sc->rcv_asense_co, midi_rcv_asense, sc);
simple_lock_init(&sc->out_lock);
simple_lock_init(&sc->in_lock);
sc->dying = 0;
sc->isopen = 0;
sc->sc_dev = parent;
sc->sih_rd = softint_establish(SOFTINT_SERIAL, midi_softintr_rd, sc);
sc->sih_wr = softint_establish(SOFTINT_SERIAL, midi_softintr_wr, sc);
s = splaudio();
simple_lock(&hwif_register_lock);
hwif_softc = sc;
sc->hw_if->getinfo(sc->hw_hdl, &mi);
hwif_softc = NULL;
simple_unlock(&hwif_register_lock);
splx(s);
sc->props = mi.props;
if ( !(sc->props & MIDI_PROP_NO_OUTPUT) ) {
evcnt_attach_dynamic(&sc->xmt.bytesDiscarded,
EVCNT_TYPE_MISC, NULL,
sc->dev.dv_xname, "xmt bytes discarded");
evcnt_attach_dynamic(&sc->xmt.incompleteMessages,
EVCNT_TYPE_MISC, NULL,
sc->dev.dv_xname, "xmt incomplete msgs");
}
if ( sc->props & MIDI_PROP_CAN_INPUT ) {
evcnt_attach_dynamic(&sc->rcv.bytesDiscarded,
EVCNT_TYPE_MISC, NULL,
sc->dev.dv_xname, "rcv bytes discarded");
evcnt_attach_dynamic(&sc->rcv.incompleteMessages,
EVCNT_TYPE_MISC, NULL,
sc->dev.dv_xname, "rcv incomplete msgs");
}
aprint_normal(": %s%s\n", mi.name,
(sc->props & (MIDI_PROP_OUT_INTR|MIDI_PROP_NO_OUTPUT)) ?
"" : " (CPU-intensive output)");
}
void midi_register_hw_if_ext(struct midi_hw_if_ext *exthw) {
if ( hwif_softc != NULL ) /* ignore calls resulting from non-init */
hwif_softc->hw_if_ext = exthw; /* uses of getinfo */
}
int
midi_unit_count(void)
{
int i;
for ( i = 0; i < midi_cd.cd_ndevs; ++i )
if ( NULL == midi_cd.cd_devs[i] )
break;
return i;
}
void
midi_initbuf(struct midi_buffer *mb)
{
mb->idx_producerp = mb->idx_consumerp = mb->idx;
mb->buf_producerp = mb->buf_consumerp = mb->buf;
}
#define PACK_MB_IDX(cat,len) (((cat)<<4)|(len))
#define MB_IDX_CAT(idx) ((idx)>>4)
#define MB_IDX_LEN(idx) ((idx)&0xf)
int
midi_sleep_timo(int *chan, const char *label, int timo, struct simplelock *lk)
{
int st;
if (!label)
label = "midi";
DPRINTFN(8, ("midi_sleep_timo: %p %s %d\n", chan, label, timo));
*chan = 1;
st = ltsleep(chan, PWAIT | PCATCH, label, timo, lk);
*chan = 0;
#ifdef MIDI_DEBUG
if (st != 0)
printf("midi_sleep: %d\n", st);
#endif
return st;
}
int
midi_sleep(int *chan, const char *label, struct simplelock *lk)
{
return midi_sleep_timo(chan, label, 0, lk);
}
void
midi_wakeup(int *chan)
{
if (*chan) {
DPRINTFN(8, ("midi_wakeup: %p\n", chan));
wakeup(chan);
*chan = 0;
}
}
/* in midivar.h:
#define MIDI_CAT_DATA 0
#define MIDI_CAT_STATUS1 1
#define MIDI_CAT_STATUS2 2
#define MIDI_CAT_COMMON 3
*/
static char const midi_cats[] = "\0\0\0\0\0\0\0\0\2\2\2\2\1\1\2\3";
#define MIDI_CAT(d) (midi_cats[((d)>>4)&15])
#define FST_RETURN(offp,endp,ret) \
return (s->pos=s->msg+(offp)), (s->end=s->msg+(endp)), (ret)
enum fst_ret { FST_CHN, FST_CHV, FST_COM, FST_SYX, FST_RT, FST_MORE, FST_ERR,
FST_HUH, FST_SXP };
enum fst_form { FST_CANON, FST_COMPR, FST_VCOMP };
static struct {
int off;
enum fst_ret tag;
} const midi_forms[] = {
[FST_CANON] = { .off=0, .tag=FST_CHN },
[FST_COMPR] = { .off=1, .tag=FST_CHN },
[FST_VCOMP] = { .off=0, .tag=FST_CHV }
};
#define FST_CRETURN(endp) \
FST_RETURN(midi_forms[form].off,endp,midi_forms[form].tag)
/*
* A MIDI finite state transducer suitable for receiving or transmitting. It
* will accept correct MIDI input that uses, doesn't use, or sometimes uses the
* 'running status' compression technique, and transduce it to fully expanded
* (form=FST_CANON) or fully compressed (form=FST_COMPR or FST_VCOMP) form.
*
* Returns FST_MORE if a complete message has not been parsed yet (SysEx
* messages are the exception), FST_ERR or FST_HUH if the input does not
* conform to the protocol, or FST_CHN (channel messages), FST_COM (System
* Common messages), FST_RT (System Real-Time messages), or FST_SYX (System
* Exclusive) to broadly categorize the message parsed. s->pos and s->end
* locate the parsed message; while (s->pos<s->end) putchar(*(s->pos++));
* would output it.
*
* FST_HUH means the character c wasn't valid in the original state, but the
* state has now been reset to START and the caller should try again passing
* the same c. FST_ERR means c isn't valid in the start state; the caller
* should kiss it goodbye and continue to try successive characters from the
* input until something other than FST_ERR or FST_HUH is returned, at which
* point things are resynchronized.
*
* A FST_SYX return means that between pos and end are from 1 to 3
* bytes of a system exclusive message. A SysEx message will be delivered in
* one or more chunks of that form, where the first begins with 0xf0 and the
* last (which is the only one that might have length < 3) ends with 0xf7.
*
* Messages corrupted by a protocol error are discarded and won't be seen at
* all; again SysEx is the exception, as one or more chunks of it may already
* have been parsed.
*
* For FST_CHN messages, s->msg[0] always contains the status byte even if
* FST_COMPR form was requested (pos then points to msg[1]). That way, the
* caller can always identify the exact message if there is a need to do so.
* For all other message types except FST_SYX, the status byte is at *pos
* (which may not necessarily be msg[0]!). There is only one SysEx status
* byte, so the return value FST_SYX is sufficient to identify it.
*
* To simplify some use cases, compression can also be requested with
* form=FST_VCOMP. In this form a compressible channel message is indicated
* by returning a classification of FST_CHV instead of FST_CHN, and pos points
* to the status byte rather than being advanced past it. If the caller in this
* case saves the bytes from pos to end, it will have saved the entire message,
* and can act on the FST_CHV tag to drop the first byte later. In this form,
* unlike FST_CANON, hidden note-off (i.e. note-on with velocity 0) may occur.
*
* Two obscure points in the MIDI protocol complicate things further, both to
* do with the EndSysEx code, 0xf7. First, this code is permitted (and
* meaningless) outside of a System Exclusive message, anywhere a status byte
* could appear. Second, it is allowed to be absent at the end of a System
* Exclusive message (!) - any status byte at all (non-realtime) is allowed to
* terminate the message. Both require accomodation in the interface to
* midi_fst's caller. A stray 0xf7 should be ignored BUT should count as a
* message received for purposes of Active Sense timeout; the case is
* represented by a return of FST_COM with a length of zero (pos == end). A
* status byte other than 0xf7 during a system exclusive message will cause an
* FST_SXP (sysex plus) return; the bytes from pos to end are the end of the
* system exclusive message, and after handling those the caller should call
* midi_fst again with the same input byte.
*
* midi(4) will never produce either such form of rubbish.
*/
static enum fst_ret
midi_fst(struct midi_state *s, u_char c, enum fst_form form)
{
int syxpos = 0;
if ( c >= 0xf8 ) { /* All realtime messages bypass state machine */
if ( c == 0xf9 || c == 0xfd ) {
DPRINTF( ("midi_fst: s=%p c=0x%02x undefined\n",
s, c));
s->bytesDiscarded.ev_count++;
return FST_ERR;
}
DPRINTFN(9, ("midi_fst: s=%p System Real-Time data=0x%02x\n",
s, c));
s->msg[2] = c;
FST_RETURN(2,3,FST_RT);
}
DPRINTFN(4, ("midi_fst: s=%p data=0x%02x state=%d\n",
s, c, s->state));
switch ( s->state | MIDI_CAT(c) ) { /* break ==> return FST_MORE */
case MIDI_IN_START | MIDI_CAT_COMMON:
case MIDI_IN_RUN1_1 | MIDI_CAT_COMMON:
case MIDI_IN_RUN2_2 | MIDI_CAT_COMMON:
case MIDI_IN_RXX2_2 | MIDI_CAT_COMMON:
s->msg[0] = c;
switch ( c ) {
case 0xf0: s->state = MIDI_IN_SYX1_3; break;
case 0xf1: s->state = MIDI_IN_COM0_1; break;
case 0xf2: s->state = MIDI_IN_COM0_2; break;
case 0xf3: s->state = MIDI_IN_COM0_1; break;
case 0xf6: s->state = MIDI_IN_START; FST_RETURN(0,1,FST_COM);
case 0xf7: s->state = MIDI_IN_START; FST_RETURN(0,0,FST_COM);
default: goto protocol_violation;
}
break;
case MIDI_IN_RUN1_1 | MIDI_CAT_STATUS1:
if ( c == s->msg[0] ) {
s->state = MIDI_IN_RNX0_1;
break;
}
/* FALLTHROUGH */
case MIDI_IN_RUN2_2 | MIDI_CAT_STATUS1:
case MIDI_IN_RXX2_2 | MIDI_CAT_STATUS1:
case MIDI_IN_START | MIDI_CAT_STATUS1:
s->state = MIDI_IN_RUN0_1;
s->msg[0] = c;
break;
case MIDI_IN_RUN2_2 | MIDI_CAT_STATUS2:
case MIDI_IN_RXX2_2 | MIDI_CAT_STATUS2:
if ( c == s->msg[0] ) {
s->state = MIDI_IN_RNX0_2;
break;
}
if ( (c ^ s->msg[0]) == 0x10 && (c & 0xe0) == 0x80 ) {
s->state = MIDI_IN_RXX0_2;
s->msg[0] = c;
break;
}
/* FALLTHROUGH */
case MIDI_IN_RUN1_1 | MIDI_CAT_STATUS2:
case MIDI_IN_START | MIDI_CAT_STATUS2:
s->state = MIDI_IN_RUN0_2;
s->msg[0] = c;
break;
case MIDI_IN_COM0_1 | MIDI_CAT_DATA:
s->state = MIDI_IN_START;
s->msg[1] = c;
FST_RETURN(0,2,FST_COM);
case MIDI_IN_COM0_2 | MIDI_CAT_DATA:
s->state = MIDI_IN_COM1_2;
s->msg[1] = c;
break;
case MIDI_IN_COM1_2 | MIDI_CAT_DATA:
s->state = MIDI_IN_START;
s->msg[2] = c;
FST_RETURN(0,3,FST_COM);
case MIDI_IN_RUN0_1 | MIDI_CAT_DATA:
s->state = MIDI_IN_RUN1_1;
s->msg[1] = c;
FST_RETURN(0,2,FST_CHN);
case MIDI_IN_RUN1_1 | MIDI_CAT_DATA:
case MIDI_IN_RNX0_1 | MIDI_CAT_DATA:
s->state = MIDI_IN_RUN1_1;
s->msg[1] = c;
FST_CRETURN(2);
case MIDI_IN_RUN0_2 | MIDI_CAT_DATA:
s->state = MIDI_IN_RUN1_2;
s->msg[1] = c;
break;
case MIDI_IN_RUN1_2 | MIDI_CAT_DATA:
if ( FST_CANON == form && 0 == c && (s->msg[0]&0xf0) == 0x90 ) {
s->state = MIDI_IN_RXX2_2;
s->msg[0] ^= 0x10;
s->msg[2] = 64;
} else {
s->state = MIDI_IN_RUN2_2;
s->msg[2] = c;
}
FST_RETURN(0,3,FST_CHN);
case MIDI_IN_RUN2_2 | MIDI_CAT_DATA:
s->state = MIDI_IN_RNX1_2;
s->msg[1] = c;
break;
case MIDI_IN_RXX2_2 | MIDI_CAT_DATA:
s->state = MIDI_IN_RXX1_2;
s->msg[0] ^= 0x10;
s->msg[1] = c;
break;
case MIDI_IN_RNX0_2 | MIDI_CAT_DATA:
s->state = MIDI_IN_RNY1_2;
s->msg[1] = c;
break;
case MIDI_IN_RXX0_2 | MIDI_CAT_DATA:
s->state = MIDI_IN_RXY1_2;
s->msg[1] = c;
break;
case MIDI_IN_RNX1_2 | MIDI_CAT_DATA:
case MIDI_IN_RNY1_2 | MIDI_CAT_DATA:
if ( FST_CANON == form && 0 == c && (s->msg[0]&0xf0) == 0x90 ) {
s->state = MIDI_IN_RXX2_2;
s->msg[0] ^= 0x10;
s->msg[2] = 64;
FST_RETURN(0,3,FST_CHN);
}
s->state = MIDI_IN_RUN2_2;
s->msg[2] = c;
FST_CRETURN(3);
case MIDI_IN_RXX1_2 | MIDI_CAT_DATA:
case MIDI_IN_RXY1_2 | MIDI_CAT_DATA:
if ( ( 0 == c && (s->msg[0]&0xf0) == 0x90)
|| (64 == c && (s->msg[0]&0xf0) == 0x80
&& FST_CANON != form) ) {
s->state = MIDI_IN_RXX2_2;
s->msg[0] ^= 0x10;
s->msg[2] = 64 - c;
FST_CRETURN(3);
}
s->state = MIDI_IN_RUN2_2;
s->msg[2] = c;
FST_RETURN(0,3,FST_CHN);
case MIDI_IN_SYX1_3 | MIDI_CAT_DATA:
s->state = MIDI_IN_SYX2_3;
s->msg[1] = c;
break;
case MIDI_IN_SYX2_3 | MIDI_CAT_DATA:
s->state = MIDI_IN_SYX0_3;
s->msg[2] = c;
FST_RETURN(0,3,FST_SYX);
case MIDI_IN_SYX0_3 | MIDI_CAT_DATA:
s->state = MIDI_IN_SYX1_3;
s->msg[0] = c;
break;
case MIDI_IN_SYX2_3 | MIDI_CAT_COMMON:
case MIDI_IN_SYX2_3 | MIDI_CAT_STATUS1:
case MIDI_IN_SYX2_3 | MIDI_CAT_STATUS2:
++ syxpos;
/* FALLTHROUGH */
case MIDI_IN_SYX1_3 | MIDI_CAT_COMMON:
case MIDI_IN_SYX1_3 | MIDI_CAT_STATUS1:
case MIDI_IN_SYX1_3 | MIDI_CAT_STATUS2:
++ syxpos;
/* FALLTHROUGH */
case MIDI_IN_SYX0_3 | MIDI_CAT_COMMON:
case MIDI_IN_SYX0_3 | MIDI_CAT_STATUS1:
case MIDI_IN_SYX0_3 | MIDI_CAT_STATUS2:
s->state = MIDI_IN_START;
if ( c == 0xf7 ) {
s->msg[syxpos] = c;
FST_RETURN(0,1+syxpos,FST_SYX);
}
s->msg[syxpos] = 0xf7;
FST_RETURN(0,1+syxpos,FST_SXP);
default:
protocol_violation:
DPRINTF(("midi_fst: unexpected %#02x in state %u\n",
c, s->state));
switch ( s->state ) {
case MIDI_IN_RUN1_1: /* can only get here by seeing an */
case MIDI_IN_RUN2_2: /* INVALID System Common message */
case MIDI_IN_RXX2_2:
s->state = MIDI_IN_START;
/* FALLTHROUGH */
case MIDI_IN_START:
s->bytesDiscarded.ev_count++;
return FST_ERR;
case MIDI_IN_COM1_2:
case MIDI_IN_RUN1_2:
case MIDI_IN_RNY1_2:
case MIDI_IN_RXY1_2:
s->bytesDiscarded.ev_count++;
/* FALLTHROUGH */
case MIDI_IN_COM0_1:
case MIDI_IN_RUN0_1:
case MIDI_IN_RNX0_1:
case MIDI_IN_COM0_2:
case MIDI_IN_RUN0_2:
case MIDI_IN_RNX0_2:
case MIDI_IN_RXX0_2:
case MIDI_IN_RNX1_2:
case MIDI_IN_RXX1_2:
s->bytesDiscarded.ev_count++;
s->incompleteMessages.ev_count++;
break;
#if defined(AUDIO_DEBUG) || defined(DIAGNOSTIC)
default:
printf("midi_fst: mishandled %#02x(%u) in state %u?!\n",
c, MIDI_CAT(c), s->state);
#endif
}
s->state = MIDI_IN_START;
return FST_HUH;
}
return FST_MORE;
}
void
midi_softintr_rd(void *cookie)
{
struct midi_softc *sc = cookie;
struct proc *p;
if (sc->async != NULL) {
mutex_enter(&proclist_mutex);
if ((p = sc->async) != NULL)
psignal(p, SIGIO);
mutex_exit(&proclist_mutex);
}
midi_wakeup(&sc->rchan);
selnotify(&sc->rsel, 0); /* filter will spin if locked */
}
void
midi_softintr_wr(void *cookie)
{
struct midi_softc *sc = cookie;
struct proc *p;
if (sc->async != NULL) {
mutex_enter(&proclist_mutex);
if ((p = sc->async) != NULL)
psignal(p, SIGIO);
mutex_exit(&proclist_mutex);
}
midi_wakeup(&sc->wchan);
selnotify(&sc->wsel, 0); /* filter will spin if locked */
}
void
midi_in(void *addr, int data)
{
struct midi_softc *sc = addr;
struct midi_buffer *mb = &sc->inbuf;
int i;
int count;
enum fst_ret got;
int s; /* hw may have various spls so impose our own */
MIDI_BUF_DECLARE(idx);
MIDI_BUF_DECLARE(buf);
if (!sc->isopen)
return;
if (!(sc->flags & FREAD))
return; /* discard data if not reading */
sxp_again:
do
got = midi_fst(&sc->rcv, data, FST_CANON);
while ( got == FST_HUH );
switch ( got ) {
case FST_MORE:
case FST_ERR:
return;
case FST_CHN:
case FST_COM:
case FST_RT:
#if NSEQUENCER > 0
if (sc->seqopen) {
extern void midiseq_in(struct midi_dev *,u_char *,int);
count = sc->rcv.end - sc->rcv.pos;
midiseq_in(sc->seq_md, sc->rcv.pos, count);
return;
}
#endif
/*
* Pass Active Sense to the sequencer if it's open, but not to
* a raw reader. (Really should do something intelligent with
* it then, though....)
*/
if ( got == FST_RT && MIDI_ACK == sc->rcv.pos[0] ) {
if ( !sc->rcv_expect_asense ) {
sc->rcv_expect_asense = 1;
callout_schedule(&sc->rcv_asense_co,
MIDI_RCV_ASENSE_PERIOD);
}
sc->rcv_quiescent = 0;
sc->rcv_eof = 0;
return;
}
/* FALLTHROUGH */
/*
* Ultimately SysEx msgs should be offered to the sequencer also; the
* sequencer API addresses them - but maybe our sequencer can't handle
* them yet, so offer only to raw reader. (Which means, ultimately,
* discard them if the sequencer's open, as it's not doing reads!)
* -> When SysEx support is added to the sequencer, be sure to handle
* FST_SXP there too.
*/
case FST_SYX:
case FST_SXP:
count = sc->rcv.end - sc->rcv.pos;
MIDI_IN_LOCK(sc,s);
sc->rcv_quiescent = 0;
sc->rcv_eof = 0;
if ( 0 == count ) {
MIDI_IN_UNLOCK(sc,s);
break;
}
MIDI_BUF_PRODUCER_INIT(mb,idx);
MIDI_BUF_PRODUCER_INIT(mb,buf);
if (count > buf_lim - buf_cur
|| 1 > idx_lim - idx_cur) {
sc->rcv.bytesDiscarded.ev_count += count;
MIDI_IN_UNLOCK(sc,s);
DPRINTF(("midi_in: buffer full, discard data=0x%02x\n",
sc->rcv.pos[0]));
return;
}
for (i = 0; i < count; i++) {
*buf_cur++ = sc->rcv.pos[i];
MIDI_BUF_WRAP(buf);
}
*idx_cur++ = PACK_MB_IDX(got,count);
MIDI_BUF_WRAP(idx);
MIDI_BUF_PRODUCER_WBACK(mb,buf);
MIDI_BUF_PRODUCER_WBACK(mb,idx);
MIDI_IN_UNLOCK(sc,s);
softint_schedule(sc->sih_rd);
break;
default: /* don't #ifdef this away, gcc will say FST_HUH not handled */
printf("midi_in: midi_fst returned %d?!\n", got);
}
if ( FST_SXP == got )
goto sxp_again;
}
void
midi_out(void *addr)
{
struct midi_softc *sc = addr;
if (!sc->isopen)
return;
DPRINTFN(8, ("midi_out: %p\n", sc));
midi_intr_out(sc);
}
int
midiopen(dev_t dev, int flags, int ifmt, struct lwp *l)
{
struct midi_softc *sc;
const struct midi_hw_if *hw;
int error;
sc = device_lookup(&midi_cd, MIDIUNIT(dev));
if (sc == NULL)
return (ENXIO);
if (sc->dying)
return (EIO);
DPRINTFN(3,("midiopen %p\n", sc));
hw = sc->hw_if;
if (!hw)
return ENXIO;
if (sc->isopen)
return EBUSY;
/* put both state machines into known states */
sc->rcv.state = MIDI_IN_START;
sc->rcv.pos = sc->rcv.msg;
sc->rcv.end = sc->rcv.msg;
sc->xmt.state = MIDI_IN_START;
sc->xmt.pos = sc->xmt.msg;
sc->xmt.end = sc->xmt.msg;
/* copy error counters so an ioctl (TBA) can give since-open stats */
sc->rcv.atOpen.bytesDiscarded = sc->rcv.bytesDiscarded.ev_count;
sc->rcv.atQuery.bytesDiscarded = sc->rcv.bytesDiscarded.ev_count;
sc->xmt.atOpen.bytesDiscarded = sc->xmt.bytesDiscarded.ev_count;
sc->xmt.atQuery.bytesDiscarded = sc->xmt.bytesDiscarded.ev_count;
/* and the buffers */
midi_initbuf(&sc->outbuf);
midi_initbuf(&sc->inbuf);
/* and the receive flags */
sc->rcv_expect_asense = 0;
sc->rcv_quiescent = 0;
sc->rcv_eof = 0;
error = hw->open(sc->hw_hdl, flags, midi_in, midi_out, sc);
if (error)
return error;
sc->isopen++;
sc->flags = flags;
sc->rchan = 0;
sc->wchan = 0;
sc->pbus = 0;
sc->async = 0;
#ifdef MIDI_SAVE
if (midicnt != 0) {
midisave.cnt = midicnt;
midicnt = 0;
}
#endif
return 0;
}
int
midiclose(dev_t dev, int flags, int ifmt,
struct lwp *l)
{
int unit = MIDIUNIT(dev);
struct midi_softc *sc = midi_cd.cd_devs[unit];
const struct midi_hw_if *hw = sc->hw_if;
int s, error;
DPRINTFN(3,("midiclose %p\n", sc));
/* midi_start_output(sc); anything buffered => pbus already set! */
error = 0;
MIDI_OUT_LOCK(sc,s);
while (sc->pbus) {
DPRINTFN(8,("midiclose sleep ...\n"));
error =
midi_sleep_timo(&sc->wchan, "mid_dr", 30*hz, &sc->out_lock);
}
sc->isopen = 0;
MIDI_OUT_UNLOCK(sc,s);
callout_stop(&sc->xmt_asense_co); /* xxx fix this - sleep? */
callout_stop(&sc->rcv_asense_co);
hw->close(sc->hw_hdl);
#if NSEQUENCER > 0
sc->seqopen = 0;
sc->seq_md = 0;
#endif
return 0;
}
int
midiread(dev_t dev, struct uio *uio, int ioflag)
{
int unit = MIDIUNIT(dev);
struct midi_softc *sc = midi_cd.cd_devs[unit];
struct midi_buffer *mb = &sc->inbuf;
int error;
int s;
MIDI_BUF_DECLARE(idx);
MIDI_BUF_DECLARE(buf);
int appetite;
int first = 1;
DPRINTFN(6,("midiread: %p, count=%lu\n", sc,
(unsigned long)uio->uio_resid));
if (sc->dying)
return EIO;
if ( !(sc->props & MIDI_PROP_CAN_INPUT) )
return ENXIO;
MIDI_IN_LOCK(sc,s);
MIDI_BUF_CONSUMER_INIT(mb,idx);
MIDI_BUF_CONSUMER_INIT(mb,buf);
MIDI_IN_UNLOCK(sc,s);
error = 0;
for ( ;; ) {
/*
* If the used portion of idx wraps around the end, just take
* the first part on this iteration, and we'll get the rest on
* the next.
*/
if ( idx_lim > idx_end )
idx_lim = idx_end;
/*
* Count bytes through the last complete message that will
* fit in the requested read.
*/
for (appetite = uio->uio_resid; idx_cur < idx_lim; ++idx_cur) {
if ( appetite < MB_IDX_LEN(*idx_cur) )
break;
appetite -= MB_IDX_LEN(*idx_cur);
}
appetite = uio->uio_resid - appetite;
/*
* Only if the read is too small to hold even the first
* complete message will we return a partial one (updating idx
* to reflect the remaining length of the message).
*/
if ( appetite == 0 && idx_cur < idx_lim ) {
if ( !first )
goto unlocked_exit; /* idx_cur not advanced */
appetite = uio->uio_resid;
*idx_cur = PACK_MB_IDX(MB_IDX_CAT(*idx_cur),
MB_IDX_LEN(*idx_cur) - appetite);
}
KASSERT(buf_cur + appetite <= buf_lim);
/* move the bytes */
if ( appetite > 0 ) {
first = 0; /* we know we won't return empty-handed */
/* do two uiomoves if data wrap around end of buf */
if ( buf_cur + appetite > buf_end ) {
DPRINTFN(8,
("midiread: uiomove cc=%td (prewrap)\n",
buf_end - buf_cur));
error = uiomove(buf_cur, buf_end-buf_cur, uio);
if ( error )
goto unlocked_exit;
appetite -= buf_end - buf_cur;
buf_cur = mb->buf;
}
DPRINTFN(8, ("midiread: uiomove cc=%d\n", appetite));
error = uiomove(buf_cur, appetite, uio);
if ( error )
goto unlocked_exit;
buf_cur += appetite;
}
MIDI_BUF_WRAP(idx);
MIDI_BUF_WRAP(buf);
MIDI_IN_LOCK(sc,s);
MIDI_BUF_CONSUMER_WBACK(mb,idx);
MIDI_BUF_CONSUMER_WBACK(mb,buf);
if ( 0 == uio->uio_resid ) /* if read satisfied, we're done */
break;
MIDI_BUF_CONSUMER_REFRESH(mb,idx);
if ( idx_cur == idx_lim ) { /* need to wait for data? */
if ( !first || sc->rcv_eof ) /* never block reader if */
break; /* any data already in hand */
if (ioflag & IO_NDELAY) {
error = EWOULDBLOCK;
break;
}
error = midi_sleep(&sc->rchan, "mid rd", &sc->in_lock);
if ( error )
break;
MIDI_BUF_CONSUMER_REFRESH(mb,idx); /* what'd we get? */
}
MIDI_BUF_CONSUMER_REFRESH(mb,buf);
MIDI_IN_UNLOCK(sc,s);
if ( sc->dying )
return EIO;
}
MIDI_IN_UNLOCK(sc,s);
unlocked_exit:
return error;
}
void
midi_rcv_asense(void *arg)
{
struct midi_softc *sc = arg;
int s;
if ( sc->dying || !sc->isopen )
return;
if ( sc->rcv_quiescent ) {
MIDI_IN_LOCK(sc,s);
sc->rcv_eof = 1;
sc->rcv_quiescent = 0;
sc->rcv_expect_asense = 0;
MIDI_IN_UNLOCK(sc,s);
softint_schedule(sc->sih_rd);
return;
}
sc->rcv_quiescent = 1;
callout_schedule(&sc->rcv_asense_co, MIDI_RCV_ASENSE_PERIOD);
}
void
midi_xmt_asense(void *arg)
{
struct midi_softc *sc = arg;
int s;
int error;
int armed;
if ( sc->dying || !sc->isopen )
return;
MIDI_OUT_LOCK(sc,s);
if ( sc->pbus || sc->dying || !sc->isopen ) {
MIDI_OUT_UNLOCK(sc,s);
return;
}
sc->pbus = 1;
DPRINTFN(8,("midi_xmt_asense: %p\n", sc));
if ( sc->props & MIDI_PROP_OUT_INTR ) {
error = sc->hw_if->output(sc->hw_hdl, MIDI_ACK);
armed = (error == 0);
} else { /* polled output, do with interrupts unmasked */
MIDI_OUT_UNLOCK(sc,s);
/* running from softclock, so top half won't sneak in here */
error = sc->hw_if->output(sc->hw_hdl, MIDI_ACK);
MIDI_OUT_LOCK(sc,s);
armed = 0;
}
if ( !armed ) {
sc->pbus = 0;
callout_schedule(&sc->xmt_asense_co, MIDI_XMT_ASENSE_PERIOD);
}
MIDI_OUT_UNLOCK(sc,s);
}
/*
* The way this function was hacked up to plug into poll_out and intr_out
* after they were written won't win it any beauty contests, but it'll work
* (code in haste, refactor at leisure). This may be called with the lock
* (by intr_out) or without the lock (by poll_out) so it only does what could
* be safe either way.
*/
int midi_msg_out(struct midi_softc *sc,
u_char **idx, u_char **idxl, u_char **buf, u_char **bufl) {
MIDI_BUF_DECLARE(idx);
MIDI_BUF_DECLARE(buf);
MIDI_BUF_EXTENT_INIT(&sc->outbuf,idx);
MIDI_BUF_EXTENT_INIT(&sc->outbuf,buf);
int length;
int error;
u_char contig[3];
u_char *cp;
u_char *ep;
idx_cur = *idx;
idx_lim = *idxl;
buf_cur = *buf;
buf_lim = *bufl;
length = MB_IDX_LEN(*idx_cur);
for ( cp = contig, ep = cp + length; cp < ep; ) {
*cp++ = *buf_cur++;
MIDI_BUF_WRAP(buf);
}
cp = contig;
switch ( MB_IDX_CAT(*idx_cur) ) {
case FST_CHV: /* chnmsg to be compressed (for device that wants it) */
++ cp;
-- length;
/* FALLTHROUGH */
case FST_CHN:
error = sc->hw_if_ext->channel(sc->hw_hdl,
MIDI_GET_STATUS(contig[0]),
MIDI_GET_CHAN(contig[0]),
cp, length);
break;
case FST_COM:
error = sc->hw_if_ext->common(sc->hw_hdl,
MIDI_GET_STATUS(contig[0]),
cp, length);
break;
case FST_SYX:
case FST_SXP:
error = sc->hw_if_ext->sysex(sc->hw_hdl,
cp, length);
break;
case FST_RT:
error = sc->hw_if->output(sc->hw_hdl, *cp);
break;
default:
error = EIO;
}
if ( !error ) {
++ idx_cur;
MIDI_BUF_WRAP(idx);
*idx = idx_cur;
*idxl = idx_lim;
*buf = buf_cur;
*bufl = buf_lim;
}
return error;
}
/*
* midi_poll_out is intended for the midi hw (the vast majority of MIDI UARTs
* on sound cards, apparently) that _do not have transmit-ready interrupts_.
* Every call to hw_if->output for one of these may busy-wait to output the
* byte; at the standard midi data rate that'll be 320us per byte. The
* technique of writing only MIDI_MAX_WRITE bytes in a row and then waiting
* for MIDI_WAIT does not reduce the total time spent busy-waiting, and it
* adds arbitrary delays in transmission (and, since MIDI_WAIT is roughly the
* same as the time to send MIDI_MAX_WRITE bytes, it effectively halves the
* data rate). Here, a somewhat bolder approach is taken. Since midi traffic
* is bursty but time-sensitive--most of the time there will be none at all,
* but when there is it should go out ASAP--the strategy is to just get it
* over with, and empty the buffer in one go. The effect this can have on
* the rest of the system will be limited by the size of the buffer and the
* sparseness of the traffic. But some precautions are in order. Interrupts
* should all be unmasked when this is called, and midiwrite should not fill
* the buffer more than once (when MIDI_PROP_CAN_INTR is false) without a
* yield() so some other process can get scheduled. If the write is nonblocking,
* midiwrite should return a short count rather than yield.
*
* Someday when there is fine-grained MP support, this should be reworked to
* run in a callout so the writing process really could proceed concurrently.
* But obviously where performance is a concern, interrupt-driven hardware
* such as USB midi or (apparently) clcs will always be preferable. And it
* seems (kern/32651) that many of the devices currently working in poll mode
* may really have tx interrupt capability and want only implementation; that
* ought to happen.
*/
int
midi_poll_out(struct midi_softc *sc)
{
struct midi_buffer *mb = &sc->outbuf;
int error;
int msglen;
int s;
MIDI_BUF_DECLARE(idx);
MIDI_BUF_DECLARE(buf);
error = 0;
MIDI_OUT_LOCK(sc,s);
MIDI_BUF_CONSUMER_INIT(mb,idx);
MIDI_BUF_CONSUMER_INIT(mb,buf);
MIDI_OUT_UNLOCK(sc,s);
for ( ;; ) {
while ( idx_cur != idx_lim ) {
if ( sc->hw_if_ext ) {
error = midi_msg_out(sc, &idx_cur, &idx_lim,
&buf_cur, &buf_lim);
if ( error )
goto ioerror;
continue;
}
/* or, lacking hw_if_ext ... */
msglen = MB_IDX_LEN(*idx_cur);
DPRINTFN(7,("midi_poll_out: %p <- %#02x\n",
sc->hw_hdl, *buf_cur));
error = sc->hw_if->output(sc->hw_hdl, *buf_cur);
if ( error )
goto ioerror;
++ buf_cur;
MIDI_BUF_WRAP(buf);
-- msglen;
if ( msglen )
*idx_cur = PACK_MB_IDX(MB_IDX_CAT(*idx_cur),
msglen);
else {
++ idx_cur;
MIDI_BUF_WRAP(idx);
}
}
KASSERT(buf_cur == buf_lim);
MIDI_OUT_LOCK(sc,s);
MIDI_BUF_CONSUMER_WBACK(mb,idx);
MIDI_BUF_CONSUMER_WBACK(mb,buf);
MIDI_BUF_CONSUMER_REFRESH(mb,idx); /* any more to transmit? */
MIDI_BUF_CONSUMER_REFRESH(mb,buf);
if ( idx_lim == idx_cur )
break; /* still holding lock */
MIDI_OUT_UNLOCK(sc,s);
}
goto disarm; /* lock held */
ioerror:
#if defined(AUDIO_DEBUG) || defined(DIAGNOSTIC)
printf("%s: midi_poll_output error %d\n",
sc->dev.dv_xname, error);
#endif
MIDI_OUT_LOCK(sc,s);
MIDI_BUF_CONSUMER_WBACK(mb,idx);
MIDI_BUF_CONSUMER_WBACK(mb,buf);
disarm:
sc->pbus = 0;
callout_schedule(&sc->xmt_asense_co, MIDI_XMT_ASENSE_PERIOD);
MIDI_OUT_UNLOCK(sc,s);
return error;
}
/*
* The interrupt flavor acquires spl and lock once and releases at the end,
* as it expects to write only one byte or message. The interface convention
* is that if hw_if->output returns 0, it has initiated transmission and the
* completion interrupt WILL be forthcoming; if it has not returned 0, NO
* interrupt will be forthcoming, and if it returns EINPROGRESS it wants
* another byte right away.
*/
int
midi_intr_out(struct midi_softc *sc)
{
struct midi_buffer *mb = &sc->outbuf;
int error;
int msglen;
int s;
MIDI_BUF_DECLARE(idx);
MIDI_BUF_DECLARE(buf);
int armed = 0;
error = 0;
MIDI_OUT_LOCK(sc,s);
MIDI_BUF_CONSUMER_INIT(mb,idx);
MIDI_BUF_CONSUMER_INIT(mb,buf);
while ( idx_cur != idx_lim ) {
if ( sc->hw_if_ext ) {
error = midi_msg_out(sc, &idx_cur, &idx_lim,
&buf_cur, &buf_lim);
if ( !error ) /* no EINPROGRESS from extended hw_if */
armed = 1;
break;
}
/* or, lacking hw_if_ext ... */
msglen = MB_IDX_LEN(*idx_cur);
error = sc->hw_if->output(sc->hw_hdl, *buf_cur);
if ( error && error != EINPROGRESS )
break;
++ buf_cur;
MIDI_BUF_WRAP(buf);
-- msglen;
if ( msglen )
*idx_cur = PACK_MB_IDX(MB_IDX_CAT(*idx_cur),msglen);
else {
++ idx_cur;
MIDI_BUF_WRAP(idx);
}
if ( !error ) {
armed = 1;
break;
}
}
MIDI_BUF_CONSUMER_WBACK(mb,idx);
MIDI_BUF_CONSUMER_WBACK(mb,buf);
if ( !armed ) {
sc->pbus = 0;
callout_schedule(&sc->xmt_asense_co, MIDI_XMT_ASENSE_PERIOD);
}
MIDI_OUT_UNLOCK(sc,s);
softint_schedule(sc->sih_wr);
#if defined(AUDIO_DEBUG) || defined(DIAGNOSTIC)
if ( error )
printf("%s: midi_intr_output error %d\n",
sc->dev.dv_xname, error);
#endif
return error;
}
int
midi_start_output(struct midi_softc *sc)
{
if (sc->dying)
return EIO;
if ( sc->props & MIDI_PROP_OUT_INTR )
return midi_intr_out(sc);
return midi_poll_out(sc);
}
static int
real_writebytes(struct midi_softc *sc, u_char *ibuf, int cc)
{
u_char *iend = ibuf + cc;
struct midi_buffer *mb = &sc->outbuf;
int arming = 0;
int count;
int s;
int got;
enum fst_form form;
MIDI_BUF_DECLARE(idx);
MIDI_BUF_DECLARE(buf);
/*
* If the hardware uses the extended hw_if, pass it canonicalized
* messages (or compressed ones if it specifically requests, using
* VCOMP form so the bottom half can still pass the op and chan along);
* if it does not, send it compressed messages (using COMPR form as
* there is no need to preserve the status for the bottom half).
*/
if ( NULL == sc->hw_if_ext )
form = FST_COMPR;
else if ( sc->hw_if_ext->compress )
form = FST_VCOMP;
else
form = FST_CANON;
MIDI_OUT_LOCK(sc,s);
MIDI_BUF_PRODUCER_INIT(mb,idx);
MIDI_BUF_PRODUCER_INIT(mb,buf);
MIDI_OUT_UNLOCK(sc,s);
if (sc->dying)
return EIO;
while ( ibuf < iend ) {
got = midi_fst(&sc->xmt, *ibuf, form);
++ ibuf;
switch ( got ) {
case FST_MORE:
continue;
case FST_ERR:
case FST_HUH:
return EPROTO;
case FST_CHN:
case FST_CHV: /* only occurs in VCOMP form */
case FST_COM:
case FST_RT:
case FST_SYX:
case FST_SXP:
break; /* go add to buffer */
#if defined(AUDIO_DEBUG) || defined(DIAGNOSTIC)
default:
printf("midi_wr: midi_fst returned %d?!\n", got);
#endif
}
count = sc->xmt.end - sc->xmt.pos;
if ( 0 == count ) /* can happen with stray 0xf7; see midi_fst */
continue;
/*
* return EWOULDBLOCK if the data passed will not fit in
* the buffer; the caller should have taken steps to avoid that.
* If got==FST_SXP we lose the new status byte, but we're losing
* anyway, so c'est la vie.
*/
if ( idx_cur == idx_lim || count > buf_lim - buf_cur ) {
MIDI_OUT_LOCK(sc,s);
MIDI_BUF_PRODUCER_REFRESH(mb,idx); /* get the most */
MIDI_BUF_PRODUCER_REFRESH(mb,buf); /* current facts */
MIDI_OUT_UNLOCK(sc,s);
if ( idx_cur == idx_lim || count > buf_lim - buf_cur )
return EWOULDBLOCK; /* caller's problem */
}
*idx_cur++ = PACK_MB_IDX(got,count);
MIDI_BUF_WRAP(idx);
while ( count ) {
*buf_cur++ = *(sc->xmt.pos)++;
MIDI_BUF_WRAP(buf);
-- count;
}
if ( FST_SXP == got )
-- ibuf; /* again with same status byte */
}
MIDI_OUT_LOCK(sc,s);
MIDI_BUF_PRODUCER_WBACK(mb,buf);
MIDI_BUF_PRODUCER_WBACK(mb,idx);
/*
* If the output transfer is not already busy, and there is a message
* buffered, mark it busy, stop the Active Sense callout (what if we're
* too late and it's expired already? No big deal, an extra Active Sense
* never hurt anybody) and start the output transfer once we're out of
* the critical section (pbus==1 will stop anyone else doing the same).
*/
MIDI_BUF_CONSUMER_INIT(mb,idx); /* check what consumer's got to read */
if ( !sc->pbus && idx_cur < idx_lim ) {
sc->pbus = 1;
callout_stop(&sc->xmt_asense_co);
arming = 1;
}
MIDI_OUT_UNLOCK(sc,s);
return arming ? midi_start_output(sc) : 0;
}
int
midiwrite(dev_t dev, struct uio *uio, int ioflag)
{
int unit = MIDIUNIT(dev);
struct midi_softc *sc = midi_cd.cd_devs[unit];
struct midi_buffer *mb = &sc->outbuf;
int error;
u_char inp[256];
int s;
MIDI_BUF_DECLARE(idx);
MIDI_BUF_DECLARE(buf);
size_t idxspace;
size_t bufspace;
size_t xfrcount;
int pollout = 0;
DPRINTFN(6, ("midiwrite: %p, unit=%d, count=%lu\n", sc, unit,
(unsigned long)uio->uio_resid));
if (sc->dying)
return EIO;
error = 0;
while (uio->uio_resid > 0 && !error) {
/*
* block if necessary for the minimum buffer space to guarantee
* we can write something.
*/
MIDI_OUT_LOCK(sc,s);
MIDI_BUF_PRODUCER_INIT(mb,idx); /* init can't go above loop; */
MIDI_BUF_PRODUCER_INIT(mb,buf); /* real_writebytes moves cur */
for ( ;; ) {
idxspace = MIDI_BUF_PRODUCER_REFRESH(mb,idx) - idx_cur;
bufspace = MIDI_BUF_PRODUCER_REFRESH(mb,buf) - buf_cur;
if ( idxspace >= 1 && bufspace >= 3 && !pollout )
break;
DPRINTFN(8,("midi_write: sleep idx=%zd buf=%zd\n",
idxspace, bufspace));
if (ioflag & IO_NDELAY) {
error = EWOULDBLOCK;
/*
* If some amount has already been transferred,
* the common syscall code will automagically
* convert this to success with a short count.
*/
goto locked_exit;
}
if ( pollout ) {
preempt(); /* see midi_poll_output */
pollout = 0;
} else
error = midi_sleep(&sc->wchan, "mid wr",
&sc->out_lock);
if (error)
/*
* Similarly, the common code will handle
* EINTR and ERESTART properly here, changing to
* a short count if something transferred.
*/
goto locked_exit;
}
MIDI_OUT_UNLOCK(sc,s);
/*
* The number of bytes we can safely extract from the uio
* depends on the available idx and buf space. Worst case,
* every byte is a message so 1 idx is required per byte.
* Worst case, the first byte completes a 3-byte msg in prior
* state, and every subsequent byte is a Program Change or
* Channel Pressure msg with running status and expands to 2
* bytes, so the buf space reqd is 3+2(n-1) or 2n+1. So limit
* the transfer to the min of idxspace and (bufspace-1)>>1.
*/
xfrcount = (bufspace - 1) >> 1;
if ( xfrcount > idxspace )
xfrcount = idxspace;
if ( xfrcount > sizeof inp )
xfrcount = sizeof inp;
if ( xfrcount > uio->uio_resid )
xfrcount = uio->uio_resid;
error = uiomove(inp, xfrcount, uio);
#ifdef MIDI_DEBUG
if (error)
printf("midi_write:(1) uiomove failed %d; "
"xfrcount=%d inp=%p\n",
error, xfrcount, inp);
#endif
if ( error )
break;
/*
* The number of bytes we extracted being calculated to
* definitely fit in the buffer even with canonicalization,
* there is no excuse for real_writebytes to return EWOULDBLOCK.
*/
error = real_writebytes(sc, inp, xfrcount);
KASSERT(error != EWOULDBLOCK);
if ( error )
break;
/*
* If this is a polling device and we just sent a buffer, let's
* not send another without giving some other process a chance.
*/
if ( ! (sc->props & MIDI_PROP_OUT_INTR) )
pollout = 1;
DPRINTFN(8,("midiwrite: uio_resid now %zu, props=%d\n",
uio->uio_resid, sc->props));
}
return error;
locked_exit:
MIDI_OUT_UNLOCK(sc,s);
return error;
}
/*
* This write routine is only called from sequencer code and expects
* a write that is smaller than the MIDI buffer.
*/
int
midi_writebytes(int unit, u_char *bf, int cc)
{
struct midi_softc *sc = midi_cd.cd_devs[unit];
DPRINTFN(7, ("midi_writebytes: %p, unit=%d, cc=%d %#02x %#02x %#02x\n",
sc, unit, cc, bf[0], bf[1], bf[2]));
return real_writebytes(sc, bf, cc);
}
int
midiioctl(dev_t dev, u_long cmd, void *addr, int flag, struct lwp *l)
{
int unit = MIDIUNIT(dev);
struct midi_softc *sc = midi_cd.cd_devs[unit];
const struct midi_hw_if *hw = sc->hw_if;
int error;
int s;
MIDI_BUF_DECLARE(buf);
DPRINTFN(5,("midiioctl: %p cmd=0x%08lx\n", sc, cmd));
if (sc->dying)
return EIO;
error = 0;
switch (cmd) {
case FIONBIO:
/* All handled in the upper FS layer. */
break;
case FIONREAD:
/*
* This code relies on the current implementation of midi_in
* always updating buf and idx together in a critical section,
* so buf always ends at a message boundary. Document this
* ioctl as always returning a value such that the last message
* included is complete (SysEx the only exception), and then
* make sure the implementation doesn't regress. NB that
* means if this ioctl returns n and the proc then issues a
* read of n, n bytes will be read, but if the proc issues a
* read of m < n, fewer than m bytes may be read to ensure the
* read ends at a message boundary.
*/
MIDI_IN_LOCK(sc,s);
MIDI_BUF_CONSUMER_INIT(&sc->inbuf,buf);
MIDI_IN_UNLOCK(sc,s);
*(int *)addr = buf_lim - buf_cur;
break;
case FIOASYNC:
if (*(int *)addr) {
if (sc->async)
return EBUSY;
sc->async = l->l_proc;
DPRINTFN(5,("midi_ioctl: FIOASYNC %p\n", l->l_proc));
} else
sc->async = 0;
break;
#if 0
case MIDI_PRETIME:
/* XXX OSS
* This should set up a read timeout, but that's
* why we have poll(), so there's nothing yet. */
error = EINVAL;
break;
#endif
#ifdef MIDI_SAVE
case MIDI_GETSAVE:
error = copyout(&midisave, *(void **)addr, sizeof midisave);
break;
#endif
default:
if (hw->ioctl)
error = hw->ioctl(sc->hw_hdl, cmd, addr, flag, l);
else
error = EINVAL;
break;
}
return error;
}
int
midipoll(dev_t dev, int events, struct lwp *l)
{
int unit = MIDIUNIT(dev);
struct midi_softc *sc = midi_cd.cd_devs[unit];
int revents = 0;
int s;
MIDI_BUF_DECLARE(idx);
MIDI_BUF_DECLARE(buf);
DPRINTFN(6,("midipoll: %p events=0x%x\n", sc, events));
if (sc->dying)
return POLLHUP;
s = splaudio();
if ((sc->flags&FREAD) && (events & (POLLIN | POLLRDNORM))) {
simple_lock(&sc->in_lock);
MIDI_BUF_CONSUMER_INIT(&sc->inbuf,idx);
if (idx_cur < idx_lim)
revents |= events & (POLLIN | POLLRDNORM);
else
selrecord(l, &sc->rsel);
simple_unlock(&sc->in_lock);
}
if ((sc->flags&FWRITE) && (events & (POLLOUT | POLLWRNORM))) {
simple_lock(&sc->out_lock);
MIDI_BUF_PRODUCER_INIT(&sc->outbuf,idx);
MIDI_BUF_PRODUCER_INIT(&sc->outbuf,buf);
if ( idx_lim - idx_cur >= 1 && buf_lim - buf_cur >= 3 )
revents |= events & (POLLOUT | POLLWRNORM);
else
selrecord(l, &sc->wsel);
simple_unlock(&sc->out_lock);
}
splx(s);
return revents;
}
static void
filt_midirdetach(struct knote *kn)
{
struct midi_softc *sc = kn->kn_hook;
int s;
s = splaudio();
SLIST_REMOVE(&sc->rsel.sel_klist, kn, knote, kn_selnext);
splx(s);
}
static int
filt_midiread(struct knote *kn, long hint)
{
struct midi_softc *sc = kn->kn_hook;
int s;
MIDI_BUF_DECLARE(buf);
/* XXXLUKEM (thorpej): please make sure this is correct. */
MIDI_IN_LOCK(sc,s);
MIDI_BUF_CONSUMER_INIT(&sc->inbuf,buf);
kn->kn_data = buf_lim - buf_cur;
MIDI_IN_UNLOCK(sc,s);
return (kn->kn_data > 0);
}
static const struct filterops midiread_filtops =
{ 1, NULL, filt_midirdetach, filt_midiread };
static void
filt_midiwdetach(struct knote *kn)
{
struct midi_softc *sc = kn->kn_hook;
int s;
s = splaudio();
SLIST_REMOVE(&sc->wsel.sel_klist, kn, knote, kn_selnext);
splx(s);
}
static int
filt_midiwrite(struct knote *kn, long hint)
{
struct midi_softc *sc = kn->kn_hook;
int s;
MIDI_BUF_DECLARE(idx);
MIDI_BUF_DECLARE(buf);
/* XXXLUKEM (thorpej): please make sure this is correct. */
MIDI_OUT_LOCK(sc,s);
MIDI_BUF_PRODUCER_INIT(&sc->outbuf,idx);
MIDI_BUF_PRODUCER_INIT(&sc->outbuf,buf);
kn->kn_data = ((buf_lim - buf_cur)-1)>>1;
if ( kn->kn_data > idx_lim - idx_cur )
kn->kn_data = idx_lim - idx_cur;
MIDI_OUT_UNLOCK(sc,s);
return (kn->kn_data > 0);
}
static const struct filterops midiwrite_filtops =
{ 1, NULL, filt_midiwdetach, filt_midiwrite };
int
midikqfilter(dev_t dev, struct knote *kn)
{
int unit = MIDIUNIT(dev);
struct midi_softc *sc = midi_cd.cd_devs[unit];
struct klist *klist;
int s;
switch (kn->kn_filter) {
case EVFILT_READ:
klist = &sc->rsel.sel_klist;
kn->kn_fop = &midiread_filtops;
break;
case EVFILT_WRITE:
klist = &sc->wsel.sel_klist;
kn->kn_fop = &midiwrite_filtops;
break;
default:
return (EINVAL);
}
kn->kn_hook = sc;
s = splaudio();
SLIST_INSERT_HEAD(klist, kn, kn_selnext);
splx(s);
return (0);
}
void
midi_getinfo(dev_t dev, struct midi_info *mi)
{
struct midi_softc *sc;
sc = device_lookup(&midi_cd, MIDIUNIT(dev));
if (sc == NULL)
return;
if (sc->dying)
return;
sc->hw_if->getinfo(sc->hw_hdl, mi);
}
#elif NMIDIBUS > 0 /* but NMIDI == 0 */
void midi_register_hw_if_ext(struct midi_hw_if_ext *exthw) { /* stub */
}
#endif /* NMIDI > 0 */
#if NMIDI > 0 || NMIDIBUS > 0
int audioprint(void *, const char *);
struct device *
midi_attach_mi(const struct midi_hw_if *mhwp, void *hdlp, struct device *dev)
{
struct audio_attach_args arg;
#ifdef DIAGNOSTIC
if (mhwp == NULL) {
aprint_error("midi_attach_mi: NULL\n");
return (0);
}
#endif
arg.type = AUDIODEV_TYPE_MIDI;
arg.hwif = mhwp;
arg.hdl = hdlp;
return (config_found(dev, &arg, audioprint));
}
#endif /* NMIDI > 0 || NMIDIBUS > 0 */