NetBSD/sys/arch/sun3/sun3x/dvma.c

244 lines
7.2 KiB
C

/* $NetBSD: dvma.c,v 1.1.1.1 1997/01/14 20:57:07 gwr Exp $ */
/*-
* Copyright (c) 1996 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Gordon W. Ross and Jeremy Cooper.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* DVMA (Direct Virtual Memory Access - like DMA)
*
* In the Sun3 architecture, memory cycles initiated by secondary bus
* masters (DVMA devices) passed through the same MMU that governed CPU
* accesses. All DVMA devices were wired in such a way so that an offset
* was added to the addresses they issued, causing them to access virtual
* memory starting at address 0x0FF00000 - the offset. The task of
* enabling a DVMA device to access main memory only involved creating
* valid mapping in the MMU that translated these high addresses into the
* appropriate physical addresses.
*
* The Sun3x presents a challenge to programming DVMA because the MMU is no
* longer shared by both secondary bus masters and the CPU. The MC68030's
* built-in MMU serves only to manage virtual memory accesses initiated by
* the CPU. Secondary bus master bus accesses pass through a different MMU,
* aptly named the 'I/O Mapper'. To enable every device driver that uses
* DVMA to understand that these two address spaces are disconnected would
* require a tremendous amount of code re-writing. To avoid this, we will
* ensure that the I/O Mapper and the MC68030 MMU are programmed together,
* so that DVMA mappings are consistent in both the CPU virtual address
* space and secondary bus master address space - creating an environment
* just like the Sun3 system.
*
* The maximum address space that any DVMA device in the Sun3x architecture
* is capable of addressing is 24 bits wide (16 Megabytes.) We can alias
* all of the mappings that exist in the I/O mapper by duplicating them in
* a specially reserved section of the CPU's virtual address space, 16
* Megabytes in size. Whenever a DVMA buffer is allocated, the allocation
* code will enter in a mapping both in the MC68030 MMU page tables and the
* I/O mapper.
*
* The address returned by the allocation routine is a virtual address that
* the requesting driver must use to access the buffer. It is up to the
* device driver to convert this virtual address into the appropriate slave
* address that its device should issue to access the buffer. (The will be
* routines that will assist the driver in doing so.)
*
* XXX - This needs work. The address from dvma_malloc() faults!
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/proc.h>
#include <sys/malloc.h>
#include <sys/map.h>
#include <sys/buf.h>
#include <sys/vnode.h>
#include <sys/user.h>
#include <sys/core.h>
#include <sys/exec.h>
#include <vm/vm.h>
#include <vm/vm_kern.h>
#include <vm/vm_map.h>
#include <machine/autoconf.h>
#include <machine/cpu.h>
#include <machine/enable.h>
#include <machine/reg.h>
#include <machine/pmap.h>
#include <machine/dvma.h>
#include "machdep.h"
#include "iommu.h"
/*
* Use a resource map to manage DVMA scratch-memory pages.
*/
/* Number of slots in dvmamap. */
int dvma_max_segs = 256;
struct map *dvmamap;
void
dvma_init()
{
/*
* Create the resource map for DVMA pages.
*/
dvmamap = malloc((sizeof(struct map) * dvma_max_segs),
M_DEVBUF, M_WAITOK);
rminit(dvmamap, btoc(DVMA_SPACE_LENGTH), btoc(0xFF000000),
"dvmamap", dvma_max_segs);
/*
* Enable DVMA in the System Enable register.
* Note: This is only necessary for VME slave accesses.
* On-board devices are always capable of DVMA.
* *enable_reg |= ENA_SDVMA;
*/
}
/*
* Given a DVMA address, return the physical address that
* would be used by some OTHER bus-master besides the CPU.
* (Examples: on-board ie/le, VME xy board).
*/
u_long
dvma_kvtopa(kva, bustype)
void * kva;
int bustype;
{
u_long addr, mask;
addr = (u_long)kva;
if ((addr & DVMA_SPACE_START) != DVMA_SPACE_START)
panic("dvma_kvtopa: bad dmva addr=0x%x\n", addr);
/* Everything has just 24 bits. */
mask = DVMA_SLAVE_MASK;
return(addr & mask);
}
/*
* Map a range [va, va+len] of wired virtual addresses in the given map
* to a kernel address in DVMA space.
*/
void *
dvma_mapin(kmem_va, len, canwait)
void * kmem_va;
int len, canwait;
{
void * dvma_addr;
vm_offset_t kva, tva;
register int npf, s;
register vm_offset_t pa;
long off, pn;
kva = (u_long)kmem_va;
if (kva < VM_MIN_KERNEL_ADDRESS)
panic("dvma_mapin: bad kva");
off = (int)kva & PGOFSET;
kva -= off;
len = round_page(len + off);
npf = btoc(len);
s = splimp();
for (;;) {
pn = rmalloc(dvmamap, npf);
if (pn != 0)
break;
if (canwait) {
(void)tsleep(dvmamap, PRIBIO+1, "physio", 0);
continue;
}
splx(s);
return NULL;
}
splx(s);
tva = ctob(pn);
dvma_addr = (void *) (tva + off);
while (npf--) {
pa = pmap_extract(pmap_kernel(), kva);
if (pa == 0)
panic("dvma_mapin: null page frame");
pa = trunc_page(pa);
iommu_enter((tva & DVMA_SLAVE_MASK), pa);
pmap_enter(pmap_kernel(), tva, pa | PMAP_NC,
VM_PROT_READ|VM_PROT_WRITE, 1);
kva += NBPG;
tva += NBPG;
}
return (dvma_addr);
}
/*
* Remove double map of `va' in DVMA space at `kva'.
*/
void
dvma_mapout(dvma_addr, len)
void * dvma_addr;
int len;
{
u_long kva;
int s, off;
kva = (u_long)dvma_addr;
off = (int)kva & PGOFSET;
kva -= off;
len = round_page(len + off);
iommu_remove((kva & DVMA_SLAVE_MASK), len);
pmap_remove(pmap_kernel(), kva, kva + len);
s = splimp();
rmfree(dvmamap, btoc(len), btoc(kva));
wakeup(dvmamap);
splx(s);
}