1237 lines
31 KiB
C
1237 lines
31 KiB
C
/* $NetBSD: dm9000.c,v 1.11 2016/12/15 09:28:05 ozaki-r Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 2009 Paul Fleischer
|
|
* All rights reserved.
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. The name of the company nor the name of the author may be used to
|
|
* endorse or promote products derived from this software without specific
|
|
* prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
|
|
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/* based on sys/dev/ic/cs89x0.c */
|
|
/*
|
|
* Copyright (c) 2004 Christopher Gilbert
|
|
* All rights reserved.
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. The name of the company nor the name of the author may be used to
|
|
* endorse or promote products derived from this software without specific
|
|
* prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
|
|
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Copyright 1997
|
|
* Digital Equipment Corporation. All rights reserved.
|
|
*
|
|
* This software is furnished under license and may be used and
|
|
* copied only in accordance with the following terms and conditions.
|
|
* Subject to these conditions, you may download, copy, install,
|
|
* use, modify and distribute this software in source and/or binary
|
|
* form. No title or ownership is transferred hereby.
|
|
*
|
|
* 1) Any source code used, modified or distributed must reproduce
|
|
* and retain this copyright notice and list of conditions as
|
|
* they appear in the source file.
|
|
*
|
|
* 2) No right is granted to use any trade name, trademark, or logo of
|
|
* Digital Equipment Corporation. Neither the "Digital Equipment
|
|
* Corporation" name nor any trademark or logo of Digital Equipment
|
|
* Corporation may be used to endorse or promote products derived
|
|
* from this software without the prior written permission of
|
|
* Digital Equipment Corporation.
|
|
*
|
|
* 3) This software is provided "AS-IS" and any express or implied
|
|
* warranties, including but not limited to, any implied warranties
|
|
* of merchantability, fitness for a particular purpose, or
|
|
* non-infringement are disclaimed. In no event shall DIGITAL be
|
|
* liable for any damages whatsoever, and in particular, DIGITAL
|
|
* shall not be liable for special, indirect, consequential, or
|
|
* incidental damages or damages for lost profits, loss of
|
|
* revenue or loss of use, whether such damages arise in contract,
|
|
* negligence, tort, under statute, in equity, at law or otherwise,
|
|
* even if advised of the possibility of such damage.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/device.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/errno.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_ether.h>
|
|
#include <net/if_media.h>
|
|
#ifdef INET
|
|
#include <netinet/in.h>
|
|
#include <netinet/if_inarp.h>
|
|
#endif
|
|
|
|
#include <net/bpf.h>
|
|
#include <net/bpfdesc.h>
|
|
|
|
#include <sys/bus.h>
|
|
#include <sys/intr.h>
|
|
|
|
#include <dev/ic/dm9000var.h>
|
|
#include <dev/ic/dm9000reg.h>
|
|
|
|
#if 1
|
|
#undef DM9000_DEBUG
|
|
#undef DM9000_TX_DEBUG
|
|
#undef DM9000_TX_DATA_DEBUG
|
|
#undef DM9000_RX_DEBUG
|
|
#undef DM9000_RX_DATA_DEBUG
|
|
#else
|
|
#define DM9000_DEBUG
|
|
#define DM9000_TX_DEBUG
|
|
#define DM9000_TX_DATA_DEBUG
|
|
#define DM9000_RX_DEBUG
|
|
#define DM9000_RX_DATA_DEBUG
|
|
#endif
|
|
|
|
#ifdef DM9000_DEBUG
|
|
#define DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
|
|
#else
|
|
#define DPRINTF(s) do {} while (/*CONSTCOND*/0)
|
|
#endif
|
|
|
|
#ifdef DM9000_TX_DEBUG
|
|
#define TX_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
|
|
#else
|
|
#define TX_DPRINTF(s) do {} while (/*CONSTCOND*/0)
|
|
#endif
|
|
|
|
#ifdef DM9000_RX_DEBUG
|
|
#define RX_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
|
|
#else
|
|
#define RX_DPRINTF(s) do {} while (/*CONSTCOND*/0)
|
|
#endif
|
|
|
|
#ifdef DM9000_RX_DATA_DEBUG
|
|
#define RX_DATA_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
|
|
#else
|
|
#define RX_DATA_DPRINTF(s) do {} while (/*CONSTCOND*/0)
|
|
#endif
|
|
|
|
#ifdef DM9000_TX_DATA_DEBUG
|
|
#define TX_DATA_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
|
|
#else
|
|
#define TX_DATA_DPRINTF(s) do {} while (/*CONSTCOND*/0)
|
|
#endif
|
|
|
|
/*** Internal PHY functions ***/
|
|
uint16_t dme_phy_read(struct dme_softc *, int );
|
|
void dme_phy_write(struct dme_softc *, int, uint16_t);
|
|
void dme_phy_init(struct dme_softc *);
|
|
void dme_phy_reset(struct dme_softc *);
|
|
void dme_phy_update_media(struct dme_softc *);
|
|
void dme_phy_check_link(void *);
|
|
|
|
/*** Methods registered in struct ifnet ***/
|
|
void dme_start_output(struct ifnet *);
|
|
int dme_init(struct ifnet *);
|
|
int dme_ioctl(struct ifnet *, u_long, void *);
|
|
void dme_stop(struct ifnet *, int);
|
|
|
|
int dme_mediachange(struct ifnet *);
|
|
void dme_mediastatus(struct ifnet *, struct ifmediareq *);
|
|
|
|
/*** Internal methods ***/
|
|
|
|
/* Prepare data to be transmitted (i.e. dequeue and load it into the DM9000) */
|
|
void dme_prepare(struct dme_softc *, struct ifnet *);
|
|
|
|
/* Transmit prepared data */
|
|
void dme_transmit(struct dme_softc *);
|
|
|
|
/* Receive data */
|
|
void dme_receive(struct dme_softc *, struct ifnet *);
|
|
|
|
/* Software Initialize/Reset of the DM9000 */
|
|
void dme_reset(struct dme_softc *);
|
|
|
|
/* Configure multicast filter */
|
|
void dme_set_addr_filter(struct dme_softc *);
|
|
|
|
/* Set media */
|
|
int dme_set_media(struct dme_softc *, int );
|
|
|
|
/* Read/write packet data from/to DM9000 IC in various transfer sizes */
|
|
int dme_pkt_read_2(struct dme_softc *, struct ifnet *, struct mbuf **);
|
|
int dme_pkt_write_2(struct dme_softc *, struct mbuf *);
|
|
int dme_pkt_read_1(struct dme_softc *, struct ifnet *, struct mbuf **);
|
|
int dme_pkt_write_1(struct dme_softc *, struct mbuf *);
|
|
/* TODO: Implement 32 bit read/write functions */
|
|
|
|
uint16_t
|
|
dme_phy_read(struct dme_softc *sc, int reg)
|
|
{
|
|
uint16_t val;
|
|
/* Select Register to read*/
|
|
dme_write(sc, DM9000_EPAR, DM9000_EPAR_INT_PHY +
|
|
(reg & DM9000_EPAR_EROA_MASK));
|
|
/* Select read operation (DM9000_EPCR_ERPRR) from the PHY */
|
|
dme_write(sc, DM9000_EPCR, DM9000_EPCR_ERPRR + DM9000_EPCR_EPOS_PHY);
|
|
|
|
/* Wait until access to PHY has completed */
|
|
while (dme_read(sc, DM9000_EPCR) & DM9000_EPCR_ERRE);
|
|
|
|
/* Reset ERPRR-bit */
|
|
dme_write(sc, DM9000_EPCR, DM9000_EPCR_EPOS_PHY);
|
|
|
|
val = dme_read(sc, DM9000_EPDRL);
|
|
val += dme_read(sc, DM9000_EPDRH) << 8;
|
|
|
|
return val;
|
|
}
|
|
|
|
void
|
|
dme_phy_write(struct dme_softc *sc, int reg, uint16_t value)
|
|
{
|
|
/* Select Register to write*/
|
|
dme_write(sc, DM9000_EPAR, DM9000_EPAR_INT_PHY +
|
|
(reg & DM9000_EPAR_EROA_MASK));
|
|
|
|
/* Write data to the two data registers */
|
|
dme_write(sc, DM9000_EPDRL, value & 0xFF);
|
|
dme_write(sc, DM9000_EPDRH, (value >> 8) & 0xFF);
|
|
|
|
/* Select write operation (DM9000_EPCR_ERPRW) from the PHY */
|
|
dme_write(sc, DM9000_EPCR, DM9000_EPCR_ERPRW + DM9000_EPCR_EPOS_PHY);
|
|
|
|
/* Wait until access to PHY has completed */
|
|
while(dme_read(sc, DM9000_EPCR) & DM9000_EPCR_ERRE);
|
|
|
|
/* Reset ERPRR-bit */
|
|
dme_write(sc, DM9000_EPCR, DM9000_EPCR_EPOS_PHY);
|
|
}
|
|
|
|
void
|
|
dme_phy_init(struct dme_softc *sc)
|
|
{
|
|
u_int ifm_media = sc->sc_media.ifm_media;
|
|
uint32_t bmcr, anar;
|
|
|
|
bmcr = dme_phy_read(sc, DM9000_PHY_BMCR);
|
|
anar = dme_phy_read(sc, DM9000_PHY_ANAR);
|
|
|
|
anar = anar & ~DM9000_PHY_ANAR_10_HDX
|
|
& ~DM9000_PHY_ANAR_10_FDX
|
|
& ~DM9000_PHY_ANAR_TX_HDX
|
|
& ~DM9000_PHY_ANAR_TX_FDX;
|
|
|
|
switch (IFM_SUBTYPE(ifm_media)) {
|
|
case IFM_AUTO:
|
|
bmcr |= DM9000_PHY_BMCR_AUTO_NEG_EN;
|
|
anar |= DM9000_PHY_ANAR_10_HDX |
|
|
DM9000_PHY_ANAR_10_FDX |
|
|
DM9000_PHY_ANAR_TX_HDX |
|
|
DM9000_PHY_ANAR_TX_FDX;
|
|
break;
|
|
case IFM_10_T:
|
|
//bmcr &= ~DM9000_PHY_BMCR_AUTO_NEG_EN;
|
|
bmcr &= ~DM9000_PHY_BMCR_SPEED_SELECT;
|
|
if (ifm_media & IFM_FDX)
|
|
anar |= DM9000_PHY_ANAR_10_FDX;
|
|
else
|
|
anar |= DM9000_PHY_ANAR_10_HDX;
|
|
break;
|
|
case IFM_100_TX:
|
|
//bmcr &= ~DM9000_PHY_BMCR_AUTO_NEG_EN;
|
|
bmcr |= DM9000_PHY_BMCR_SPEED_SELECT;
|
|
if (ifm_media & IFM_FDX)
|
|
anar |= DM9000_PHY_ANAR_TX_FDX;
|
|
else
|
|
anar |= DM9000_PHY_ANAR_TX_HDX;
|
|
|
|
break;
|
|
}
|
|
|
|
if(ifm_media & IFM_FDX) {
|
|
bmcr |= DM9000_PHY_BMCR_DUPLEX_MODE;
|
|
} else {
|
|
bmcr &= ~DM9000_PHY_BMCR_DUPLEX_MODE;
|
|
}
|
|
|
|
dme_phy_write(sc, DM9000_PHY_BMCR, bmcr);
|
|
dme_phy_write(sc, DM9000_PHY_ANAR, anar);
|
|
}
|
|
|
|
void
|
|
dme_phy_reset(struct dme_softc *sc)
|
|
{
|
|
uint32_t reg;
|
|
|
|
/* PHY Reset */
|
|
dme_phy_write(sc, DM9000_PHY_BMCR, DM9000_PHY_BMCR_RESET);
|
|
|
|
reg = dme_read(sc, DM9000_GPCR);
|
|
dme_write(sc, DM9000_GPCR, reg & ~DM9000_GPCR_GPIO0_OUT);
|
|
reg = dme_read(sc, DM9000_GPR);
|
|
dme_write(sc, DM9000_GPR, reg | DM9000_GPR_PHY_PWROFF);
|
|
|
|
dme_phy_init(sc);
|
|
|
|
reg = dme_read(sc, DM9000_GPR);
|
|
dme_write(sc, DM9000_GPR, reg & ~DM9000_GPR_PHY_PWROFF);
|
|
reg = dme_read(sc, DM9000_GPCR);
|
|
dme_write(sc, DM9000_GPCR, reg | DM9000_GPCR_GPIO0_OUT);
|
|
|
|
dme_phy_update_media(sc);
|
|
}
|
|
|
|
void
|
|
dme_phy_update_media(struct dme_softc *sc)
|
|
{
|
|
u_int ifm_media = sc->sc_media.ifm_media;
|
|
uint32_t reg;
|
|
|
|
if (IFM_SUBTYPE(ifm_media) == IFM_AUTO) {
|
|
/* If auto-negotiation is used, ensures that it is completed
|
|
before trying to extract any media information. */
|
|
reg = dme_phy_read(sc, DM9000_PHY_BMSR);
|
|
if ((reg & DM9000_PHY_BMSR_AUTO_NEG_AB) == 0) {
|
|
/* Auto-negotation not possible, therefore there is no
|
|
reason to try obtain any media information. */
|
|
return;
|
|
}
|
|
|
|
/* Then loop until the negotiation is completed. */
|
|
while ((reg & DM9000_PHY_BMSR_AUTO_NEG_COM) == 0) {
|
|
/* TODO: Bail out after a finite number of attempts
|
|
in case something goes wrong. */
|
|
preempt();
|
|
reg = dme_phy_read(sc, DM9000_PHY_BMSR);
|
|
}
|
|
}
|
|
|
|
|
|
sc->sc_media_active = IFM_ETHER;
|
|
reg = dme_phy_read(sc, DM9000_PHY_BMCR);
|
|
|
|
if (reg & DM9000_PHY_BMCR_SPEED_SELECT) {
|
|
sc->sc_media_active |= IFM_100_TX;
|
|
} else {
|
|
sc->sc_media_active |= IFM_10_T;
|
|
}
|
|
|
|
if (reg & DM9000_PHY_BMCR_DUPLEX_MODE) {
|
|
sc->sc_media_active |= IFM_FDX;
|
|
}
|
|
}
|
|
|
|
void
|
|
dme_phy_check_link(void *arg)
|
|
{
|
|
struct dme_softc *sc = arg;
|
|
uint32_t reg;
|
|
int s;
|
|
|
|
s = splnet();
|
|
|
|
reg = dme_read(sc, DM9000_NSR) & DM9000_NSR_LINKST;
|
|
|
|
if( reg )
|
|
reg = IFM_ETHER | IFM_AVALID | IFM_ACTIVE;
|
|
else {
|
|
reg = IFM_ETHER | IFM_AVALID;
|
|
sc->sc_media_active = IFM_NONE;
|
|
}
|
|
|
|
if ( (sc->sc_media_status != reg) && (reg & IFM_ACTIVE)) {
|
|
dme_phy_reset(sc);
|
|
}
|
|
|
|
sc->sc_media_status = reg;
|
|
|
|
callout_schedule(&sc->sc_link_callout, mstohz(2000));
|
|
splx(s);
|
|
}
|
|
|
|
int
|
|
dme_set_media(struct dme_softc *sc, int media)
|
|
{
|
|
int s;
|
|
|
|
s = splnet();
|
|
sc->sc_media.ifm_media = media;
|
|
dme_phy_reset(sc);
|
|
|
|
splx(s);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
dme_attach(struct dme_softc *sc, const uint8_t *enaddr)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
uint8_t b[2];
|
|
uint16_t io_mode;
|
|
|
|
dme_read_c(sc, DM9000_VID0, b, 2);
|
|
#if BYTE_ORDER == BIG_ENDIAN
|
|
sc->sc_vendor_id = (b[0] << 8) | b[1];
|
|
#else
|
|
sc->sc_vendor_id = b[0] | (b[1] << 8);
|
|
#endif
|
|
dme_read_c(sc, DM9000_PID0, b, 2);
|
|
#if BYTE_ORDER == BIG_ENDIAN
|
|
sc->sc_product_id = (b[0] << 8) | b[1];
|
|
#else
|
|
sc->sc_product_id = b[0] | (b[1] << 8);
|
|
#endif
|
|
/* TODO: Check the vendor ID as well */
|
|
if (sc->sc_product_id != 0x9000) {
|
|
panic("dme_attach: product id mismatch (0x%hx != 0x9000)",
|
|
sc->sc_product_id);
|
|
}
|
|
|
|
/* Initialize ifnet structure. */
|
|
strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
|
|
ifp->if_softc = sc;
|
|
ifp->if_start = dme_start_output;
|
|
ifp->if_init = dme_init;
|
|
ifp->if_ioctl = dme_ioctl;
|
|
ifp->if_stop = dme_stop;
|
|
ifp->if_watchdog = NULL; /* no watchdog at this stage */
|
|
ifp->if_flags = IFF_SIMPLEX | IFF_NOTRAILERS | IFF_BROADCAST |
|
|
IFF_MULTICAST;
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
|
|
/* Initialize ifmedia structures. */
|
|
ifmedia_init(&sc->sc_media, 0, dme_mediachange, dme_mediastatus);
|
|
ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_AUTO, 0, NULL);
|
|
ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
|
|
ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10_T, 0, NULL);
|
|
ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
|
|
ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_100_TX, 0, NULL);
|
|
|
|
ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
|
|
|
|
if (enaddr != NULL)
|
|
memcpy(sc->sc_enaddr, enaddr, sizeof(sc->sc_enaddr));
|
|
/* TODO: Support an EEPROM attached to the DM9000 chip */
|
|
|
|
callout_init(&sc->sc_link_callout, 0);
|
|
callout_setfunc(&sc->sc_link_callout, dme_phy_check_link, sc);
|
|
|
|
sc->sc_media_status = 0;
|
|
|
|
/* Configure DM9000 with the MAC address */
|
|
dme_write_c(sc, DM9000_PAB0, sc->sc_enaddr, 6);
|
|
|
|
#ifdef DM9000_DEBUG
|
|
{
|
|
uint8_t macAddr[6];
|
|
dme_read_c(sc, DM9000_PAB0, macAddr, 6);
|
|
printf("DM9000 configured with MAC address: ");
|
|
for (int i = 0; i < 6; i++) {
|
|
printf("%02X:", macAddr[i]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
#endif
|
|
|
|
if_attach(ifp);
|
|
ether_ifattach(ifp, sc->sc_enaddr);
|
|
|
|
#ifdef DM9000_DEBUG
|
|
{
|
|
uint8_t network_state;
|
|
network_state = dme_read(sc, DM9000_NSR);
|
|
printf("DM9000 Link status: ");
|
|
if (network_state & DM9000_NSR_LINKST) {
|
|
if (network_state & DM9000_NSR_SPEED)
|
|
printf("10Mbps");
|
|
else
|
|
printf("100Mbps");
|
|
} else {
|
|
printf("Down");
|
|
}
|
|
printf("\n");
|
|
}
|
|
#endif
|
|
|
|
io_mode = (dme_read(sc, DM9000_ISR) &
|
|
DM9000_IOMODE_MASK) >> DM9000_IOMODE_SHIFT;
|
|
|
|
DPRINTF(("DM9000 Operation Mode: "));
|
|
switch( io_mode) {
|
|
case DM9000_MODE_16BIT:
|
|
DPRINTF(("16-bit mode"));
|
|
sc->sc_data_width = 2;
|
|
sc->sc_pkt_write = dme_pkt_write_2;
|
|
sc->sc_pkt_read = dme_pkt_read_2;
|
|
break;
|
|
case DM9000_MODE_32BIT:
|
|
DPRINTF(("32-bit mode"));
|
|
sc->sc_data_width = 4;
|
|
panic("32bit mode is unsupported\n");
|
|
break;
|
|
case DM9000_MODE_8BIT:
|
|
DPRINTF(("8-bit mode"));
|
|
sc->sc_data_width = 1;
|
|
sc->sc_pkt_write = dme_pkt_write_1;
|
|
sc->sc_pkt_read = dme_pkt_read_1;
|
|
break;
|
|
default:
|
|
DPRINTF(("Invalid mode"));
|
|
break;
|
|
}
|
|
DPRINTF(("\n"));
|
|
|
|
callout_schedule(&sc->sc_link_callout, mstohz(2000));
|
|
|
|
return 0;
|
|
}
|
|
|
|
int dme_intr(void *arg)
|
|
{
|
|
struct dme_softc *sc = arg;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
uint8_t status;
|
|
|
|
|
|
DPRINTF(("dme_intr: Begin\n"));
|
|
|
|
/* Disable interrupts */
|
|
dme_write(sc, DM9000_IMR, DM9000_IMR_PAR );
|
|
|
|
status = dme_read(sc, DM9000_ISR);
|
|
dme_write(sc, DM9000_ISR, status);
|
|
|
|
if (status & DM9000_ISR_PRS) {
|
|
if (ifp->if_flags & IFF_RUNNING )
|
|
dme_receive(sc, ifp);
|
|
}
|
|
if (status & DM9000_ISR_PTS) {
|
|
uint8_t nsr;
|
|
uint8_t tx_status = 0x01; /* Initialize to an error value */
|
|
|
|
/* A packet has been transmitted */
|
|
sc->txbusy = 0;
|
|
|
|
nsr = dme_read(sc, DM9000_NSR);
|
|
|
|
if (nsr & DM9000_NSR_TX1END) {
|
|
tx_status = dme_read(sc, DM9000_TSR1);
|
|
TX_DPRINTF(("dme_intr: Sent using channel 0\n"));
|
|
} else if (nsr & DM9000_NSR_TX2END) {
|
|
tx_status = dme_read(sc, DM9000_TSR2);
|
|
TX_DPRINTF(("dme_intr: Sent using channel 1\n"));
|
|
}
|
|
|
|
if (tx_status == 0x0) {
|
|
/* Frame successfully sent */
|
|
ifp->if_opackets++;
|
|
} else {
|
|
ifp->if_oerrors++;
|
|
}
|
|
|
|
/* If we have nothing ready to transmit, prepare something */
|
|
if (!sc->txready) {
|
|
dme_prepare(sc, ifp);
|
|
}
|
|
|
|
if (sc->txready)
|
|
dme_transmit(sc);
|
|
|
|
/* Prepare the next frame */
|
|
dme_prepare(sc, ifp);
|
|
|
|
}
|
|
#ifdef notyet
|
|
if (status & DM9000_ISR_LNKCHNG) {
|
|
}
|
|
#endif
|
|
|
|
/* Enable interrupts again */
|
|
dme_write(sc, DM9000_IMR, DM9000_IMR_PAR | DM9000_IMR_PRM |
|
|
DM9000_IMR_PTM);
|
|
|
|
DPRINTF(("dme_intr: End\n"));
|
|
|
|
return 1;
|
|
}
|
|
|
|
void
|
|
dme_start_output(struct ifnet *ifp)
|
|
{
|
|
struct dme_softc *sc;
|
|
|
|
sc = ifp->if_softc;
|
|
|
|
DPRINTF(("dme_start_output: Begin\n"));
|
|
|
|
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
|
|
printf("No output\n");
|
|
return;
|
|
}
|
|
|
|
if (sc->txbusy && sc->txready) {
|
|
panic("DM9000: Internal error, trying to send without"
|
|
" any empty queue\n");
|
|
}
|
|
|
|
dme_prepare(sc, ifp);
|
|
|
|
if (sc->txbusy == 0) {
|
|
/* We are ready to transmit right away */
|
|
dme_transmit(sc);
|
|
dme_prepare(sc, ifp); /* Prepare next one */
|
|
} else {
|
|
/* We need to wait until the current packet has
|
|
* been transmitted.
|
|
*/
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
}
|
|
|
|
DPRINTF(("dme_start_output: End\n"));
|
|
}
|
|
|
|
void
|
|
dme_prepare(struct dme_softc *sc, struct ifnet *ifp)
|
|
{
|
|
struct mbuf *bufChain;
|
|
uint16_t length;
|
|
|
|
TX_DPRINTF(("dme_prepare: Entering\n"));
|
|
|
|
if (sc->txready)
|
|
panic("dme_prepare: Someone called us with txready set\n");
|
|
|
|
IFQ_DEQUEUE(&ifp->if_snd, bufChain);
|
|
if (bufChain == NULL) {
|
|
TX_DPRINTF(("dme_prepare: Nothing to transmit\n"));
|
|
ifp->if_flags &= ~IFF_OACTIVE; /* Clear OACTIVE bit */
|
|
return; /* Nothing to transmit */
|
|
}
|
|
|
|
/* Element has now been removed from the queue, so we better send it */
|
|
|
|
if (ifp->if_bpf)
|
|
bpf_mtap(ifp, bufChain);
|
|
|
|
/* Setup the DM9000 to accept the writes, and then write each buf in
|
|
the chain. */
|
|
|
|
TX_DATA_DPRINTF(("dme_prepare: Writing data: "));
|
|
bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->dme_io, DM9000_MWCMD);
|
|
length = sc->sc_pkt_write(sc, bufChain);
|
|
TX_DATA_DPRINTF(("\n"));
|
|
|
|
if (length % sc->sc_data_width != 0) {
|
|
panic("dme_prepare: length is not compatible with IO_MODE");
|
|
}
|
|
|
|
sc->txready_length = length;
|
|
sc->txready = 1;
|
|
|
|
TX_DPRINTF(("dme_prepare: txbusy: %d\ndme_prepare: "
|
|
"txready: %d, txready_length: %d\n",
|
|
sc->txbusy, sc->txready, sc->txready_length));
|
|
|
|
m_freem(bufChain);
|
|
|
|
TX_DPRINTF(("dme_prepare: Leaving\n"));
|
|
}
|
|
|
|
int
|
|
dme_init(struct ifnet *ifp)
|
|
{
|
|
int s;
|
|
struct dme_softc *sc = ifp->if_softc;
|
|
|
|
dme_stop(ifp, 0);
|
|
|
|
s = splnet();
|
|
|
|
dme_reset(sc);
|
|
|
|
sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
|
|
sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
|
|
sc->sc_ethercom.ec_if.if_timer = 0;
|
|
|
|
splx(s);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
dme_ioctl(struct ifnet *ifp, u_long cmd, void *data)
|
|
{
|
|
struct dme_softc *sc = ifp->if_softc;
|
|
struct ifreq *ifr = data;
|
|
int s, error = 0;
|
|
|
|
s = splnet();
|
|
|
|
switch(cmd) {
|
|
case SIOCGIFMEDIA:
|
|
case SIOCSIFMEDIA:
|
|
error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
|
|
break;
|
|
default:
|
|
error = ether_ioctl(ifp, cmd, data);
|
|
if (error == ENETRESET) {
|
|
if (ifp->if_flags && IFF_RUNNING) {
|
|
/* Address list has changed, reconfigure
|
|
filter */
|
|
dme_set_addr_filter(sc);
|
|
}
|
|
error = 0;
|
|
}
|
|
break;
|
|
}
|
|
|
|
splx(s);
|
|
return error;
|
|
}
|
|
|
|
void
|
|
dme_stop(struct ifnet *ifp, int disable)
|
|
{
|
|
struct dme_softc *sc = ifp->if_softc;
|
|
|
|
/* Not quite sure what to do when called with disable == 0 */
|
|
if (disable) {
|
|
/* Disable RX */
|
|
dme_write(sc, DM9000_RCR, 0x0);
|
|
}
|
|
|
|
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
|
|
ifp->if_timer = 0;
|
|
}
|
|
|
|
int
|
|
dme_mediachange(struct ifnet *ifp)
|
|
{
|
|
struct dme_softc *sc = ifp->if_softc;
|
|
|
|
return dme_set_media(sc, sc->sc_media.ifm_cur->ifm_media);
|
|
}
|
|
|
|
void
|
|
dme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
|
|
{
|
|
struct dme_softc *sc = ifp->if_softc;
|
|
|
|
ifmr->ifm_active = sc->sc_media_active;
|
|
ifmr->ifm_status = sc->sc_media_status;
|
|
}
|
|
|
|
void
|
|
dme_transmit(struct dme_softc *sc)
|
|
{
|
|
|
|
TX_DPRINTF(("dme_transmit: PRE: txready: %d, txbusy: %d\n",
|
|
sc->txready, sc->txbusy));
|
|
|
|
dme_write(sc, DM9000_TXPLL, sc->txready_length & 0xff);
|
|
dme_write(sc, DM9000_TXPLH, (sc->txready_length >> 8) & 0xff );
|
|
|
|
/* Request to send the packet */
|
|
dme_read(sc, DM9000_ISR);
|
|
|
|
dme_write(sc, DM9000_TCR, DM9000_TCR_TXREQ);
|
|
|
|
sc->txready = 0;
|
|
sc->txbusy = 1;
|
|
sc->txready_length = 0;
|
|
}
|
|
|
|
void
|
|
dme_receive(struct dme_softc *sc, struct ifnet *ifp)
|
|
{
|
|
uint8_t ready = 0x01;
|
|
|
|
DPRINTF(("inside dme_receive\n"));
|
|
|
|
while (ready == 0x01) {
|
|
/* Packet received, retrieve it */
|
|
|
|
/* Read without address increment to get the ready byte without
|
|
moving past it. */
|
|
bus_space_write_1(sc->sc_iot, sc->sc_ioh,
|
|
sc->dme_io, DM9000_MRCMDX);
|
|
/* Dummy ready */
|
|
ready = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
|
|
ready = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
|
|
ready &= 0x03; /* we only want bits 1:0 */
|
|
if (ready == 0x01) {
|
|
uint8_t rx_status;
|
|
struct mbuf *m;
|
|
|
|
/* Read with address increment. */
|
|
bus_space_write_1(sc->sc_iot, sc->sc_ioh,
|
|
sc->dme_io, DM9000_MRCMD);
|
|
|
|
rx_status = sc->sc_pkt_read(sc, ifp, &m);
|
|
if (m == NULL) {
|
|
/* failed to allocate a receive buffer */
|
|
ifp->if_ierrors++;
|
|
RX_DPRINTF(("dme_receive: "
|
|
"Error allocating buffer\n"));
|
|
} else if (rx_status & (DM9000_RSR_CE | DM9000_RSR_PLE)) {
|
|
/* Error while receiving the packet,
|
|
* discard it and keep track of counters
|
|
*/
|
|
ifp->if_ierrors++;
|
|
RX_DPRINTF(("dme_receive: "
|
|
"Error reciving packet\n"));
|
|
} else if (rx_status & DM9000_RSR_LCS) {
|
|
ifp->if_collisions++;
|
|
} else {
|
|
if_percpuq_enqueue(ifp->if_percpuq, m);
|
|
}
|
|
|
|
} else if (ready != 0x00) {
|
|
/* Should this be logged somehow? */
|
|
printf("%s: Resetting chip\n",
|
|
device_xname(sc->sc_dev));
|
|
dme_reset(sc);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
dme_reset(struct dme_softc *sc)
|
|
{
|
|
uint8_t var;
|
|
|
|
/* We only re-initialized the PHY in this function the first time it is
|
|
called. */
|
|
if( !sc->sc_phy_initialized) {
|
|
/* PHY Reset */
|
|
dme_phy_write(sc, DM9000_PHY_BMCR, DM9000_PHY_BMCR_RESET);
|
|
|
|
/* PHY Power Down */
|
|
var = dme_read(sc, DM9000_GPR);
|
|
dme_write(sc, DM9000_GPR, var | DM9000_GPR_PHY_PWROFF);
|
|
}
|
|
|
|
/* Reset the DM9000 twice, as described in section 2 of the Programming
|
|
Guide.
|
|
The PHY is initialized and enabled between those two resets.
|
|
*/
|
|
|
|
/* Software Reset*/
|
|
dme_write(sc, DM9000_NCR,
|
|
DM9000_NCR_RST | DM9000_NCR_LBK_MAC_INTERNAL);
|
|
delay(20);
|
|
dme_write(sc, DM9000_NCR, 0x0);
|
|
|
|
if( !sc->sc_phy_initialized) {
|
|
/* PHY Initialization */
|
|
dme_phy_init(sc);
|
|
|
|
/* PHY Enable */
|
|
var = dme_read(sc, DM9000_GPR);
|
|
dme_write(sc, DM9000_GPR, var & ~DM9000_GPR_PHY_PWROFF);
|
|
var = dme_read(sc, DM9000_GPCR);
|
|
dme_write(sc, DM9000_GPCR, var | DM9000_GPCR_GPIO0_OUT);
|
|
|
|
dme_write(sc, DM9000_NCR,
|
|
DM9000_NCR_RST | DM9000_NCR_LBK_MAC_INTERNAL);
|
|
delay(20);
|
|
dme_write(sc, DM9000_NCR, 0x0);
|
|
}
|
|
|
|
/* Select internal PHY, no wakeup event, no collosion mode,
|
|
* normal loopback mode.
|
|
*/
|
|
dme_write(sc, DM9000_NCR, DM9000_NCR_LBK_NORMAL );
|
|
|
|
/* Will clear TX1END, TX2END, and WAKEST fields by reading DM9000_NSR*/
|
|
dme_read(sc, DM9000_NSR);
|
|
|
|
/* Enable wraparound of read/write pointer, packet received latch,
|
|
* and packet transmitted latch.
|
|
*/
|
|
dme_write(sc, DM9000_IMR,
|
|
DM9000_IMR_PAR | DM9000_IMR_PRM | DM9000_IMR_PTM);
|
|
|
|
/* Setup multicast address filter, and enable RX. */
|
|
dme_set_addr_filter(sc);
|
|
|
|
/* Obtain media information from PHY */
|
|
dme_phy_update_media(sc);
|
|
|
|
sc->txbusy = 0;
|
|
sc->txready = 0;
|
|
sc->sc_phy_initialized = 1;
|
|
}
|
|
|
|
void
|
|
dme_set_addr_filter(struct dme_softc *sc)
|
|
{
|
|
struct ether_multi *enm;
|
|
struct ether_multistep step;
|
|
struct ethercom *ec;
|
|
struct ifnet *ifp;
|
|
uint16_t af[4];
|
|
int i;
|
|
|
|
ec = &sc->sc_ethercom;
|
|
ifp = &ec->ec_if;
|
|
|
|
if (ifp->if_flags & IFF_PROMISC) {
|
|
dme_write(sc, DM9000_RCR, DM9000_RCR_RXEN |
|
|
DM9000_RCR_WTDIS |
|
|
DM9000_RCR_PRMSC);
|
|
ifp->if_flags |= IFF_ALLMULTI;
|
|
return;
|
|
}
|
|
|
|
af[0] = af[1] = af[2] = af[3] = 0x0000;
|
|
ifp->if_flags &= ~IFF_ALLMULTI;
|
|
|
|
ETHER_FIRST_MULTI(step, ec, enm);
|
|
while (enm != NULL) {
|
|
uint16_t hash;
|
|
if (memcpy(enm->enm_addrlo, enm->enm_addrhi,
|
|
sizeof(enm->enm_addrlo))) {
|
|
/*
|
|
* We must listen to a range of multicast addresses.
|
|
* For now, just accept all multicasts, rather than
|
|
* trying to set only those filter bits needed to match
|
|
* the range. (At this time, the only use of address
|
|
* ranges is for IP multicast routing, for which the
|
|
* range is big enough to require all bits set.)
|
|
*/
|
|
ifp->if_flags |= IFF_ALLMULTI;
|
|
af[0] = af[1] = af[2] = af[3] = 0xffff;
|
|
break;
|
|
} else {
|
|
hash = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) & 0x3F;
|
|
af[(uint16_t)(hash>>4)] |= (uint16_t)(1 << (hash % 16));
|
|
ETHER_NEXT_MULTI(step, enm);
|
|
}
|
|
}
|
|
|
|
/* Write the multicast address filter */
|
|
for(i=0; i<4; i++) {
|
|
dme_write(sc, DM9000_MAB0+i*2, af[i] & 0xFF);
|
|
dme_write(sc, DM9000_MAB0+i*2+1, (af[i] >> 8) & 0xFF);
|
|
}
|
|
|
|
/* Setup RX controls */
|
|
dme_write(sc, DM9000_RCR, DM9000_RCR_RXEN | DM9000_RCR_WTDIS);
|
|
}
|
|
|
|
int
|
|
dme_pkt_write_2(struct dme_softc *sc, struct mbuf *bufChain)
|
|
{
|
|
int left_over_count = 0; /* Number of bytes from previous mbuf, which
|
|
need to be written with the next.*/
|
|
uint16_t left_over_buf = 0;
|
|
int length = 0;
|
|
struct mbuf *buf;
|
|
uint8_t *write_ptr;
|
|
|
|
/* We expect that the DM9000 has been setup to accept writes before
|
|
this function is called. */
|
|
|
|
for (buf = bufChain; buf != NULL; buf = buf->m_next) {
|
|
int to_write = buf->m_len;
|
|
|
|
length += to_write;
|
|
|
|
write_ptr = buf->m_data;
|
|
while (to_write > 0 ||
|
|
(buf->m_next == NULL && left_over_count > 0)
|
|
) {
|
|
if (left_over_count > 0) {
|
|
uint8_t b = 0;
|
|
DPRINTF(("dme_pkt_write_16: "
|
|
"Writing left over byte\n"));
|
|
|
|
if (to_write > 0) {
|
|
b = *write_ptr;
|
|
to_write--;
|
|
write_ptr++;
|
|
|
|
DPRINTF(("Took single byte\n"));
|
|
} else {
|
|
DPRINTF(("Leftover in last run\n"));
|
|
length++;
|
|
}
|
|
|
|
/* Does shift direction depend on endianess? */
|
|
left_over_buf = left_over_buf | (b << 8);
|
|
|
|
bus_space_write_2(sc->sc_iot, sc->sc_ioh,
|
|
sc->dme_data, left_over_buf);
|
|
TX_DATA_DPRINTF(("%02X ", left_over_buf));
|
|
left_over_count = 0;
|
|
} else if ((long)write_ptr % 2 != 0) {
|
|
/* Misaligned data */
|
|
DPRINTF(("dme_pkt_write_16: "
|
|
"Detected misaligned data\n"));
|
|
left_over_buf = *write_ptr;
|
|
left_over_count = 1;
|
|
write_ptr++;
|
|
to_write--;
|
|
} else {
|
|
int i;
|
|
uint16_t *dptr = (uint16_t *)write_ptr;
|
|
|
|
/* A block of aligned data. */
|
|
for(i = 0; i < to_write / 2; i++) {
|
|
/* buf will be half-word aligned
|
|
* all the time
|
|
*/
|
|
bus_space_write_2(sc->sc_iot,
|
|
sc->sc_ioh, sc->dme_data, *dptr);
|
|
TX_DATA_DPRINTF(("%02X %02X ",
|
|
*dptr & 0xFF, (*dptr >> 8) & 0xFF));
|
|
dptr++;
|
|
}
|
|
|
|
write_ptr += i * 2;
|
|
if (to_write % 2 != 0) {
|
|
DPRINTF(("dme_pkt_write_16: "
|
|
"to_write %% 2: %d\n",
|
|
to_write % 2));
|
|
left_over_count = 1;
|
|
/* XXX: Does this depend on
|
|
* the endianess?
|
|
*/
|
|
left_over_buf = *write_ptr;
|
|
|
|
write_ptr++;
|
|
to_write--;
|
|
DPRINTF(("dme_pkt_write_16: "
|
|
"to_write (after): %d\n",
|
|
to_write));
|
|
DPRINTF(("dme_pkt_write_16: i * 2: %d\n",
|
|
i*2));
|
|
}
|
|
to_write -= i * 2;
|
|
}
|
|
} /* while(...) */
|
|
} /* for(...) */
|
|
|
|
return length;
|
|
}
|
|
|
|
int
|
|
dme_pkt_read_2(struct dme_softc *sc, struct ifnet *ifp, struct mbuf **outBuf)
|
|
{
|
|
uint8_t rx_status;
|
|
struct mbuf *m;
|
|
uint16_t data;
|
|
uint16_t frame_length;
|
|
uint16_t i;
|
|
uint16_t *buf;
|
|
|
|
data = bus_space_read_2(sc->sc_iot, sc->sc_ioh, sc->dme_data);
|
|
|
|
rx_status = data & 0xFF;
|
|
frame_length = bus_space_read_2(sc->sc_iot,
|
|
sc->sc_ioh, sc->dme_data);
|
|
if (frame_length > ETHER_MAX_LEN) {
|
|
printf("Got frame of length: %d\n", frame_length);
|
|
printf("ETHER_MAX_LEN is: %d\n", ETHER_MAX_LEN);
|
|
panic("Something is rotten");
|
|
}
|
|
RX_DPRINTF(("dme_receive: "
|
|
"rx_statux: 0x%x, frame_length: %d\n",
|
|
rx_status, frame_length));
|
|
|
|
|
|
m = dme_alloc_receive_buffer(ifp, frame_length);
|
|
if (m == NULL) {
|
|
/*
|
|
* didn't get a receive buffer, so we read the rest of the
|
|
* packet, throw it away and return an error
|
|
*/
|
|
for (i = 0; i < frame_length; i += 2 ) {
|
|
data = bus_space_read_2(sc->sc_iot,
|
|
sc->sc_ioh, sc->dme_data);
|
|
}
|
|
*outBuf = NULL;
|
|
return 0;
|
|
}
|
|
|
|
buf = mtod(m, uint16_t*);
|
|
|
|
RX_DPRINTF(("dme_receive: "));
|
|
|
|
for (i = 0; i < frame_length; i += 2 ) {
|
|
data = bus_space_read_2(sc->sc_iot,
|
|
sc->sc_ioh, sc->dme_data);
|
|
if ( (frame_length % 2 != 0) &&
|
|
(i == frame_length - 1) ) {
|
|
data = data & 0xff;
|
|
RX_DPRINTF((" L "));
|
|
}
|
|
*buf = data;
|
|
buf++;
|
|
RX_DATA_DPRINTF(("%02X %02X ", data & 0xff,
|
|
(data >> 8) & 0xff));
|
|
}
|
|
|
|
RX_DATA_DPRINTF(("\n"));
|
|
RX_DPRINTF(("Read %d bytes\n", i));
|
|
|
|
*outBuf = m;
|
|
return rx_status;
|
|
}
|
|
|
|
int
|
|
dme_pkt_write_1(struct dme_softc *sc, struct mbuf *bufChain)
|
|
{
|
|
int length = 0, i;
|
|
struct mbuf *buf;
|
|
uint8_t *write_ptr;
|
|
|
|
/* We expect that the DM9000 has been setup to accept writes before
|
|
this function is called. */
|
|
|
|
for (buf = bufChain; buf != NULL; buf = buf->m_next) {
|
|
int to_write = buf->m_len;
|
|
|
|
length += to_write;
|
|
|
|
write_ptr = buf->m_data;
|
|
for (i = 0; i < to_write; i++) {
|
|
bus_space_write_1(sc->sc_iot, sc->sc_ioh,
|
|
sc->dme_data, *write_ptr);
|
|
write_ptr++;
|
|
}
|
|
} /* for(...) */
|
|
|
|
return length;
|
|
}
|
|
|
|
int
|
|
dme_pkt_read_1(struct dme_softc *sc, struct ifnet *ifp, struct mbuf **outBuf)
|
|
{
|
|
uint8_t rx_status;
|
|
struct mbuf *m;
|
|
uint8_t *buf;
|
|
uint16_t frame_length;
|
|
uint16_t i, reg;
|
|
uint8_t data;
|
|
|
|
reg = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
|
|
reg |= bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data) << 8;
|
|
rx_status = reg & 0xFF;
|
|
|
|
reg = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
|
|
reg |= bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data) << 8;
|
|
frame_length = reg;
|
|
|
|
if (frame_length > ETHER_MAX_LEN) {
|
|
printf("Got frame of length: %d\n", frame_length);
|
|
printf("ETHER_MAX_LEN is: %d\n", ETHER_MAX_LEN);
|
|
panic("Something is rotten");
|
|
}
|
|
RX_DPRINTF(("dme_receive: "
|
|
"rx_statux: 0x%x, frame_length: %d\n",
|
|
rx_status, frame_length));
|
|
|
|
|
|
m = dme_alloc_receive_buffer(ifp, frame_length);
|
|
if (m == NULL) {
|
|
/*
|
|
* didn't get a receive buffer, so we read the rest of the
|
|
* packet, throw it away and return an error
|
|
*/
|
|
for (i = 0; i < frame_length; i++ ) {
|
|
data = bus_space_read_2(sc->sc_iot,
|
|
sc->sc_ioh, sc->dme_data);
|
|
}
|
|
*outBuf = NULL;
|
|
return 0;
|
|
}
|
|
|
|
buf = mtod(m, uint8_t *);
|
|
|
|
RX_DPRINTF(("dme_receive: "));
|
|
|
|
for (i = 0; i< frame_length; i += 1 ) {
|
|
data = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
|
|
*buf = data;
|
|
buf++;
|
|
RX_DATA_DPRINTF(("%02X ", data));
|
|
}
|
|
|
|
RX_DATA_DPRINTF(("\n"));
|
|
RX_DPRINTF(("Read %d bytes\n", i));
|
|
|
|
*outBuf = m;
|
|
return rx_status;
|
|
}
|
|
|
|
struct mbuf*
|
|
dme_alloc_receive_buffer(struct ifnet *ifp, unsigned int frame_length)
|
|
{
|
|
struct dme_softc *sc = ifp->if_softc;
|
|
struct mbuf *m;
|
|
int pad;
|
|
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == NULL) return NULL;
|
|
|
|
m_set_rcvif(m, ifp);
|
|
/* Ensure that we always allocate an even number of
|
|
* bytes in order to avoid writing beyond the buffer
|
|
*/
|
|
m->m_pkthdr.len = frame_length + (frame_length % sc->sc_data_width);
|
|
pad = ALIGN(sizeof(struct ether_header)) -
|
|
sizeof(struct ether_header);
|
|
/* All our frames have the CRC attached */
|
|
m->m_flags |= M_HASFCS;
|
|
if (m->m_pkthdr.len + pad > MHLEN )
|
|
MCLGET(m, M_DONTWAIT);
|
|
|
|
m->m_data += pad;
|
|
m->m_len = frame_length + (frame_length % sc->sc_data_width);
|
|
|
|
return m;
|
|
}
|