NetBSD/usr.sbin/xntp/xntpd/refclock_arbiter.c

444 lines
12 KiB
C

/* $NetBSD: refclock_arbiter.c,v 1.4 1998/08/12 14:11:54 christos Exp $ */
/*
* refclock_arbiter - clock driver for Arbiter 1088A/B Satellite
* Controlled Clock
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#if defined(REFCLOCK) && defined(ARBITER)
#include <stdio.h>
#include <ctype.h>
#include <sys/time.h>
#include "ntpd.h"
#include "ntp_io.h"
#include "ntp_refclock.h"
#include "ntp_stdlib.h"
/*
* This driver supports the Arbiter 1088A/B Satellite Controlled Clock.
* The claimed accuracy of this clock is 100 ns relative to the PPS
* output when receiving four or more satellites.
*
* The receiver should be configured before starting the NTP daemon, in
* order to establish reliable position and operating conditions. It
* does not initiate surveying or hold mode. For use with NTP, the
* daylight savings time feature should be disables (D0 command) and the
* broadcast mode set to operate in UTC (BU command).
*
* The timecode format supported by this driver is selected by the poll
* sequence "B5", which initiates a line in the following format to be
* repeated once per second until turned off by the "B0" poll sequence.
*
* Format B5 (24 ASCII printing characters):
*
* <cr><lf>i yy ddd hh:mm:ss.000bbb
*
* on-time = <cr>
* i = synchronization flag (' ' = locked, '?' = unlocked)
* yy = year of century
* ddd = day of year
* hh:mm:ss = hours, minutes, seconds
* .000 = fraction of second (not used)
* bbb = tailing spaces for fill
*
* The alarm condition is indicated by a '?' at i, which indicates the
* receiver is not synchronized. In normal operation, a line consisting
* of the timecode followed by the time quality character (TQ) followed
* by the receiver status string (SR) is written to the clockstats file.
* The time quality character is encoded in IEEE P1344 standard:
*
* Format TQ (IEEE P1344 estimated worst-case time quality)
*
* 0 clock locked, maximum accuracy
* F clock failure, time not reliable
* 4 clock unlocked, accuracy < 1 us
* 5 clock unlocked, accuracy < 10 us
* 6 clock unlocked, accuracy < 100 us
* 7 clock unlocked, accuracy < 1 ms
* 8 clock unlocked, accuracy < 10 ms
* 9 clock unlocked, accuracy < 100 ms
* A clock unlocked, accuracy < 1 s
* B clock unlocked, accuracy < 10 s
*
* The status string is encoded as follows:
*
* Format SR (25 ASCII printing characters)
*
* V=vv S=ss T=t P=pdop E=ee
*
* vv = satellites visible
* ss = relative signal strength
* t = satellites tracked
* pdop = position dilution of precision (meters)
* ee = hardware errors
*
* If flag4 is set, an additional line consisting of the receiver
* latitude (LA), longitude (LO) and elevation (LH) (meters) is written
* to this file. If channel B is enabled for deviation mode and connected
* to a 1-PPS signal, the last two numbers on the line are the deviation
* and standard deviation averaged over the last 15 seconds.
*/
/*
* Interface definitions
*/
#define DEVICE "/dev/gps%d" /* device name and unit */
#define SPEED232 B9600 /* uart speed (9600 baud) */
#define PRECISION (-10) /* precision assumed (about 1 ms) */
#define REFID "GPS " /* reference ID */
#define DESCRIPTION "Arbiter 1088A/B GPS Receiver" /* WRU */
#define NSAMPLES 3 /* stages of median filter */
#define LENARB 24 /* format B5 timecode length */
#define MAXSTA 30 /* max length of status string */
#define MAXPOS 70 /* max length of position string */
/*
* Imported from ntp_timer module
*/
extern u_long current_time; /* current time (s) */
/*
* Imported from ntpd module
*/
extern int debug; /* global debug flag */
/*
* ARB unit control structure
*/
struct arbunit {
int pollcnt; /* poll message counter */
l_fp laststamp; /* last receive timestamp */
u_char tcswitch; /* timecode enable switch */
char qualchar; /* IEEE P1344 quality (TQ command) */
char status[MAXSTA]; /* receiver status (SR command) */
char latlon[MAXPOS]; /* receiver position (lat/lon/alt) */
};
/*
* Function prototypes
*/
static int arb_start P((int, struct peer *));
static void arb_shutdown P((int, struct peer *));
static void arb_receive P((struct recvbuf *));
static void arb_poll P((int, struct peer *));
/*
* Transfer vector
*/
struct refclock refclock_arbiter = {
arb_start, /* start up driver */
arb_shutdown, /* shut down driver */
arb_poll, /* transmit poll message */
noentry, /* not used (old arb_control) */
noentry, /* initialize driver (not used) */
noentry, /* not used (old arb_buginfo) */
NOFLAGS /* not used */
};
/*
* arb_start - open the devices and initialize data for processing
*/
static int
arb_start(unit, peer)
int unit;
struct peer *peer;
{
register struct arbunit *up;
struct refclockproc *pp;
int fd;
char device[20];
/*
* Open serial port. Use CLK line discipline, if available.
*/
(void)sprintf(device, DEVICE, unit);
#ifdef TTYCLK
if (!(fd = refclock_open(device, SPEED232, LDISC_CLK)))
#else
if (!(fd = refclock_open(device, SPEED232, 0)))
#endif /* TTYCLK */
return (0);
/*
* Allocate and initialize unit structure
*/
if (!(up = (struct arbunit *)
emalloc(sizeof(struct arbunit)))) {
(void) close(fd);
return (0);
}
memset((char *)up, 0, sizeof(struct arbunit));
pp = peer->procptr;
pp->io.clock_recv = arb_receive;
pp->io.srcclock = (caddr_t)peer;
pp->io.datalen = 0;
pp->io.fd = fd;
if (!io_addclock(&pp->io)) {
(void) close(fd);
free(up);
return (0);
}
pp->unitptr = (caddr_t)up;
/*
* Initialize miscellaneous variables
*/
peer->precision = PRECISION;
pp->clockdesc = DESCRIPTION;
memcpy((char *)&pp->refid, REFID, 4);
up->pollcnt = 2;
return (1);
}
/*
* arb_shutdown - shut down the clock
*/
static void
arb_shutdown(unit, peer)
int unit;
struct peer *peer;
{
register struct arbunit *up;
struct refclockproc *pp;
pp = peer->procptr;
up = (struct arbunit *)pp->unitptr;
io_closeclock(&pp->io);
free(up);
}
/*
* arb_receive - receive data from the serial interface
*/
static void
arb_receive(rbufp)
struct recvbuf *rbufp;
{
register struct arbunit *up;
struct refclockproc *pp;
struct peer *peer;
l_fp trtmp;
u_long ltemp;
int temp;
u_char syncchar; /* synchronization indicator */
u_char leapchar; /* leap indicator */
/*
* Initialize pointers and read the timecode and timestamp
*/
peer = (struct peer *)rbufp->recv_srcclock;
pp = peer->procptr;
up = (struct arbunit *)pp->unitptr;
temp = refclock_gtlin(rbufp, pp->a_lastcode, BMAX, &trtmp);
if (up->tcswitch)
return;
/*
* Note we get a buffer and timestamp for both a <cr> and <lf>,
* but only the <cr> timestamp is retained. The program first
* sends a TQ and expects the echo followed by the time quality
* character. It then sends a B5 starting the timecode broadcast
* and expects the echo followed some time later by the on-time
* character <cr> and then the <lf> beginning the timecode
* itself. Finally, at the <cr> beginning the next timecode at
* the next second, the program sends a B0 shutting down the the
* timecode broadcast.
*
* If flag4 is set, the program snatches the latitude, longitude
* and elevation and writes it to the clockstats file.
*/
if (temp == 0)
return;
pp->lastrec = up->laststamp;
up->laststamp = trtmp;
if (temp < 3)
return;
if (!strncmp(pp->a_lastcode, "TQ", 2)) {
up->qualchar = pp->a_lastcode[2];
write(pp->io.fd, "SR", 2);
return;
} else if (!strncmp(pp->a_lastcode, "SR", 2)) {
strcpy(up->status, pp->a_lastcode + 2);
if (pp->sloppyclockflag & CLK_FLAG4)
write(pp->io.fd, "LA", 2);
else
write(pp->io.fd, "B5", 2);
return;
} else if (!strncmp(pp->a_lastcode, "LA", 2)) {
strcpy(up->latlon, pp->a_lastcode + 2);
write(pp->io.fd, "LO", 2);
return;
} else if (!strncmp(pp->a_lastcode, "LO", 2)) {
strcat(up->latlon, " ");
strcat(up->latlon, pp->a_lastcode + 2);
write(pp->io.fd, "LH", 2);
return;
} else if (!strncmp(pp->a_lastcode, "LH", 2)) {
strcat(up->latlon, " ");
strcat(up->latlon, pp->a_lastcode + 2);
write(pp->io.fd, "DB", 2);
return;
} else if (!strncmp(pp->a_lastcode, "DB", 2)) {
strcat(up->latlon, " ");
strcat(up->latlon, pp->a_lastcode + 2);
record_clock_stats(&peer->srcadr, up->latlon);
write(pp->io.fd, "B5", 2);
return;
}
write(pp->io.fd, "B0", 2);
pp->lencode = temp;
up->pollcnt = 2;
up->tcswitch++;
#ifdef DEBUG
if (debug)
printf("arbiter: timecode %d %s\n", pp->lencode,
pp->a_lastcode);
#endif
/*
* We get down to business, check the timecode format and decode
* its contents. If the timecode has valid length, but not in
* proper format, we declare bad format and exit. If the
* timecode has invalid length, which sometimes occurs when the
* B0 amputates the broadcast, we just quietly steal away. Note
* that the time quality character and receiver status string is
* tacked on the end for clockstats display.
*/
if (pp->lencode == LENARB) {
/*
* Timecode format B5: "i yy ddd hh:mm:ss.000 "
*/
pp->a_lastcode[LENARB - 2] = up->qualchar;
strcat(pp->a_lastcode, up->status);
record_clock_stats(&peer->srcadr, pp->a_lastcode);
syncchar = leapchar = ' ';
if (sscanf(pp->a_lastcode, "%c%2d %3d %2d:%2d:%2d",
&syncchar, &pp->year, &pp->day, &pp->hour,
&pp->minute, &pp->second) != 6) {
refclock_report(peer, CEVNT_BADREPLY);
return;
}
} else {
return;
}
/*
* We decode the clock dispersion from the time quality
* character. This assumes dispersion increases at about 1 ms
* per minute, or about 16 ppm, which may even be a reasonable
* figure for the radio clock oscillator. If the clock has not
* yet tracked any satellites or failed, the leap bits are
* marked unsynchronized.
*/
switch (up->qualchar) {
case '0': /* locked, max accuracy */
case '4': /* unlock accuracy < 1 us */
case '5': /* unlock accuracy < 10 us */
ltemp = 0;
break;
case '6': /* unlock accuracy < 100 us */
ltemp = 6;
break;
case '7': /* unlock accuracy < 1 ms */
ltemp = 63;
break;
case '8': /* unlock accuracy < 10 ms */
ltemp = 625;
break;
case '9': /* unlock accuracy < 100 ms */
ltemp = 6250;
break;
case 'A': /* unlock accuracy < 1 s */
ltemp = 62500;
break;
case 'B': /* unlock accuracy < 10 s */
case 'F': /* clock failure */
ltemp = NTP_MAXAGE;
pp->leap = LEAP_NOTINSYNC;
return;
default:
ltemp = NTP_MAXAGE;
pp->leap = LEAP_NOTINSYNC;
refclock_report(peer, CEVNT_BADREPLY);
return;
}
pp->leap = 0;
pp->lasttime = current_time - ltemp;
/*
* Process the new sample in the median filter and determine the
* reference clock offset and dispersion. We use lastrec as both
* the reference time and receive time in order to avoid being
* cute, like setting the reference time later than the receive
* time, which may cause a paranoid protocol module to chuck out
* the data.
*/
if (!refclock_process(pp, NSAMPLES, NSAMPLES)) {
refclock_report(peer, CEVNT_BADTIME);
return;
}
trtmp = pp->lastrec;
trtmp.l_ui -= ltemp;
refclock_receive(peer, &pp->offset, 0, pp->dispersion,
&trtmp, &pp->lastrec, pp->leap);
}
/*
* arb_poll - called by the transmit procedure
*/
static void
arb_poll(unit, peer)
int unit;
struct peer *peer;
{
register struct arbunit *up;
struct refclockproc *pp;
/*
* Time to poll the clock. The Arbiter clock responds to a "B5"
* by returning a timecode in the format specified above.
* Transmission occurs once per second, unless turned off by a
* "B0". Note there is no checking on state, since this may not
* be the only customer reading the clock. Only one customer
* need poll the clock; all others just listen in. If nothing is
* heard from the clock for two polls, declare a timeout and
* keep going.
*/
pp = peer->procptr;
up = (struct arbunit *)pp->unitptr;
if (up->pollcnt == 0)
refclock_report(peer, CEVNT_TIMEOUT);
else
up->pollcnt--;
if (write(pp->io.fd, "TQ", 2) != 2) {
refclock_report(peer, CEVNT_FAULT);
} else
pp->polls++;
up->tcswitch = 0;
}
#else /* not (REFCLOCK && ARBITER) */
int refclock_arbiter_bs;
#endif /* not (REFCLOCK && ARBITER) */