1da427a80a
value (KERN_SUCCESS or KERN_RESOURCE_SHORTAGE) indicating if it succeeded or failed. Change the `wired' and `access_type' arguments to a single `flags' argument, which includes the access type, and flags: PMAP_WIRED the old `wired' boolean PMAP_CANFAIL pmap_enter() is allowed to fail If PMAP_CANFAIL is not specified, the pmap should behave as it always has in the face of a drastic resource shortage: fall over dead. Change the fault handler to deal with failure (which indicates resource shortage) by unlocking everything, waiting for the pagedaemon to free more memory, then retrying the fault.
642 lines
16 KiB
C
642 lines
16 KiB
C
/* $NetBSD: uvm_glue.c,v 1.30 1999/11/13 00:24:38 thorpej Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1997 Charles D. Cranor and Washington University.
|
|
* Copyright (c) 1991, 1993, The Regents of the University of California.
|
|
*
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* The Mach Operating System project at Carnegie-Mellon University.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Charles D. Cranor,
|
|
* Washington University, the University of California, Berkeley and
|
|
* its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
|
|
* from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
|
|
*
|
|
*
|
|
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
|
|
* All rights reserved.
|
|
*
|
|
* Permission to use, copy, modify and distribute this software and
|
|
* its documentation is hereby granted, provided that both the copyright
|
|
* notice and this permission notice appear in all copies of the
|
|
* software, derivative works or modified versions, and any portions
|
|
* thereof, and that both notices appear in supporting documentation.
|
|
*
|
|
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
|
|
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
|
|
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
|
|
*
|
|
* Carnegie Mellon requests users of this software to return to
|
|
*
|
|
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
|
|
* School of Computer Science
|
|
* Carnegie Mellon University
|
|
* Pittsburgh PA 15213-3890
|
|
*
|
|
* any improvements or extensions that they make and grant Carnegie the
|
|
* rights to redistribute these changes.
|
|
*/
|
|
|
|
#include "opt_uvmhist.h"
|
|
#include "opt_sysv.h"
|
|
|
|
/*
|
|
* uvm_glue.c: glue functions
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/user.h>
|
|
#ifdef SYSVSHM
|
|
#include <sys/shm.h>
|
|
#endif
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_kern.h>
|
|
|
|
#include <uvm/uvm.h>
|
|
|
|
#include <machine/cpu.h>
|
|
|
|
/*
|
|
* local prototypes
|
|
*/
|
|
|
|
static void uvm_swapout __P((struct proc *));
|
|
|
|
/*
|
|
* XXXCDC: do these really belong here?
|
|
*/
|
|
|
|
unsigned maxdmap = MAXDSIZ; /* kern_resource.c: RLIMIT_DATA max */
|
|
unsigned maxsmap = MAXSSIZ; /* kern_resource.c: RLIMIT_STACK max */
|
|
|
|
int readbuffers = 0; /* allow KGDB to read kern buffer pool */
|
|
/* XXX: see uvm_kernacc */
|
|
|
|
|
|
/*
|
|
* uvm_sleep: atomic unlock and sleep for UVM_UNLOCK_AND_WAIT().
|
|
*/
|
|
|
|
void
|
|
uvm_sleep(event, slock, canintr, msg, timo)
|
|
void *event;
|
|
struct simplelock *slock;
|
|
boolean_t canintr;
|
|
const char *msg;
|
|
int timo;
|
|
{
|
|
int s, pri;
|
|
|
|
pri = PVM;
|
|
if (canintr)
|
|
pri |= PCATCH;
|
|
|
|
s = splhigh();
|
|
if (slock != NULL)
|
|
simple_unlock(slock);
|
|
(void) tsleep(event, pri, msg, timo);
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* uvm_kernacc: can the kernel access a region of memory
|
|
*
|
|
* - called from malloc [DIAGNOSTIC], and /dev/kmem driver (mem.c)
|
|
*/
|
|
|
|
boolean_t
|
|
uvm_kernacc(addr, len, rw)
|
|
caddr_t addr;
|
|
size_t len;
|
|
int rw;
|
|
{
|
|
boolean_t rv;
|
|
vaddr_t saddr, eaddr;
|
|
vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
|
|
|
|
saddr = trunc_page(addr);
|
|
eaddr = round_page(addr+len);
|
|
vm_map_lock_read(kernel_map);
|
|
rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
|
|
vm_map_unlock_read(kernel_map);
|
|
|
|
/*
|
|
* XXX there are still some things (e.g. the buffer cache) that
|
|
* are managed behind the VM system's back so even though an
|
|
* address is accessible in the mind of the VM system, there may
|
|
* not be physical pages where the VM thinks there is. This can
|
|
* lead to bogus allocation of pages in the kernel address space
|
|
* or worse, inconsistencies at the pmap level. We only worry
|
|
* about the buffer cache for now.
|
|
*/
|
|
if (!readbuffers && rv && (eaddr > (vaddr_t)buffers &&
|
|
saddr < (vaddr_t)buffers + MAXBSIZE * nbuf))
|
|
rv = FALSE;
|
|
return(rv);
|
|
}
|
|
|
|
/*
|
|
* uvm_useracc: can the user access it?
|
|
*
|
|
* - called from physio() and sys___sysctl().
|
|
*/
|
|
|
|
boolean_t
|
|
uvm_useracc(addr, len, rw)
|
|
caddr_t addr;
|
|
size_t len;
|
|
int rw;
|
|
{
|
|
vm_map_t map;
|
|
boolean_t rv;
|
|
vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
|
|
|
|
/* XXX curproc */
|
|
map = &curproc->p_vmspace->vm_map;
|
|
|
|
vm_map_lock_read(map);
|
|
rv = uvm_map_checkprot(map, trunc_page(addr), round_page(addr+len),
|
|
prot);
|
|
vm_map_unlock_read(map);
|
|
|
|
return(rv);
|
|
}
|
|
|
|
#ifdef KGDB
|
|
/*
|
|
* Change protections on kernel pages from addr to addr+len
|
|
* (presumably so debugger can plant a breakpoint).
|
|
*
|
|
* We force the protection change at the pmap level. If we were
|
|
* to use vm_map_protect a change to allow writing would be lazily-
|
|
* applied meaning we would still take a protection fault, something
|
|
* we really don't want to do. It would also fragment the kernel
|
|
* map unnecessarily. We cannot use pmap_protect since it also won't
|
|
* enforce a write-enable request. Using pmap_enter is the only way
|
|
* we can ensure the change takes place properly.
|
|
*/
|
|
void
|
|
uvm_chgkprot(addr, len, rw)
|
|
register caddr_t addr;
|
|
size_t len;
|
|
int rw;
|
|
{
|
|
vm_prot_t prot;
|
|
paddr_t pa;
|
|
vaddr_t sva, eva;
|
|
|
|
prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
|
|
eva = round_page(addr + len);
|
|
for (sva = trunc_page(addr); sva < eva; sva += PAGE_SIZE) {
|
|
/*
|
|
* Extract physical address for the page.
|
|
* We use a cheezy hack to differentiate physical
|
|
* page 0 from an invalid mapping, not that it
|
|
* really matters...
|
|
*/
|
|
if (pmap_extract(pmap_kernel(), sva, &pa) == FALSE)
|
|
panic("chgkprot: invalid page");
|
|
pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* vslock: wire user memory for I/O
|
|
*
|
|
* - called from physio and sys___sysctl
|
|
* - XXXCDC: consider nuking this (or making it a macro?)
|
|
*/
|
|
|
|
int
|
|
uvm_vslock(p, addr, len, access_type)
|
|
struct proc *p;
|
|
caddr_t addr;
|
|
size_t len;
|
|
vm_prot_t access_type;
|
|
{
|
|
vm_map_t map;
|
|
vaddr_t start, end;
|
|
int rv;
|
|
|
|
map = &p->p_vmspace->vm_map;
|
|
start = trunc_page(addr);
|
|
end = round_page(addr + len);
|
|
|
|
rv = uvm_fault_wire(map, start, end, access_type);
|
|
|
|
return (rv);
|
|
}
|
|
|
|
/*
|
|
* vslock: wire user memory for I/O
|
|
*
|
|
* - called from physio and sys___sysctl
|
|
* - XXXCDC: consider nuking this (or making it a macro?)
|
|
*/
|
|
|
|
void
|
|
uvm_vsunlock(p, addr, len)
|
|
struct proc *p;
|
|
caddr_t addr;
|
|
size_t len;
|
|
{
|
|
uvm_fault_unwire(&p->p_vmspace->vm_map, trunc_page(addr),
|
|
round_page(addr+len));
|
|
}
|
|
|
|
/*
|
|
* uvm_fork: fork a virtual address space
|
|
*
|
|
* - the address space is copied as per parent map's inherit values
|
|
* - a new "user" structure is allocated for the child process
|
|
* [filled in by MD layer...]
|
|
* - if specified, the child gets a new user stack described by
|
|
* stack and stacksize
|
|
* - NOTE: the kernel stack may be at a different location in the child
|
|
* process, and thus addresses of automatic variables may be invalid
|
|
* after cpu_fork returns in the child process. We do nothing here
|
|
* after cpu_fork returns.
|
|
* - XXXCDC: we need a way for this to return a failure value rather
|
|
* than just hang
|
|
*/
|
|
void
|
|
uvm_fork(p1, p2, shared, stack, stacksize)
|
|
struct proc *p1, *p2;
|
|
boolean_t shared;
|
|
void *stack;
|
|
size_t stacksize;
|
|
{
|
|
struct user *up = p2->p_addr;
|
|
int rv;
|
|
|
|
if (shared == TRUE)
|
|
uvmspace_share(p1, p2); /* share vmspace */
|
|
else
|
|
p2->p_vmspace = uvmspace_fork(p1->p_vmspace); /* fork vmspace */
|
|
|
|
/*
|
|
* Wire down the U-area for the process, which contains the PCB
|
|
* and the kernel stack. Wired state is stored in p->p_flag's
|
|
* P_INMEM bit rather than in the vm_map_entry's wired count
|
|
* to prevent kernel_map fragmentation.
|
|
*
|
|
* Note the kernel stack gets read/write accesses right off
|
|
* the bat.
|
|
*/
|
|
rv = uvm_fault_wire(kernel_map, (vaddr_t)up,
|
|
(vaddr_t)up + USPACE, VM_PROT_READ | VM_PROT_WRITE);
|
|
if (rv != KERN_SUCCESS)
|
|
panic("uvm_fork: uvm_fault_wire failed: %d", rv);
|
|
|
|
/*
|
|
* p_stats currently points at a field in the user struct. Copy
|
|
* parts of p_stats, and zero out the rest.
|
|
*/
|
|
p2->p_stats = &up->u_stats;
|
|
memset(&up->u_stats.pstat_startzero, 0,
|
|
(unsigned) ((caddr_t)&up->u_stats.pstat_endzero -
|
|
(caddr_t)&up->u_stats.pstat_startzero));
|
|
memcpy(&up->u_stats.pstat_startcopy, &p1->p_stats->pstat_startcopy,
|
|
((caddr_t)&up->u_stats.pstat_endcopy -
|
|
(caddr_t)&up->u_stats.pstat_startcopy));
|
|
|
|
/*
|
|
* cpu_fork will copy and update the kernel stack and pcb, and make
|
|
* the child ready to run. The child will exit directly to user
|
|
* mode on its first time slice, and will not return here.
|
|
*/
|
|
cpu_fork(p1, p2, stack, stacksize);
|
|
}
|
|
|
|
/*
|
|
* uvm_exit: exit a virtual address space
|
|
*
|
|
* - the process passed to us is a dead (pre-zombie) process; we
|
|
* are running on a different context now (the reaper).
|
|
* - we must run in a separate thread because freeing the vmspace
|
|
* of the dead process may block.
|
|
*/
|
|
void
|
|
uvm_exit(p)
|
|
struct proc *p;
|
|
{
|
|
|
|
uvmspace_free(p->p_vmspace);
|
|
uvm_km_free(kernel_map, (vaddr_t)p->p_addr, USPACE);
|
|
}
|
|
|
|
/*
|
|
* uvm_init_limit: init per-process VM limits
|
|
*
|
|
* - called for process 0 and then inherited by all others.
|
|
*/
|
|
void
|
|
uvm_init_limits(p)
|
|
struct proc *p;
|
|
{
|
|
|
|
/*
|
|
* Set up the initial limits on process VM. Set the maximum
|
|
* resident set size to be all of (reasonably) available memory.
|
|
* This causes any single, large process to start random page
|
|
* replacement once it fills memory.
|
|
*/
|
|
|
|
p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
|
|
p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
|
|
p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
|
|
p->p_rlimit[RLIMIT_DATA].rlim_max = MAXDSIZ;
|
|
p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free);
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
int enableswap = 1;
|
|
int swapdebug = 0;
|
|
#define SDB_FOLLOW 1
|
|
#define SDB_SWAPIN 2
|
|
#define SDB_SWAPOUT 4
|
|
#endif
|
|
|
|
/*
|
|
* uvm_swapin: swap in a process's u-area.
|
|
*/
|
|
|
|
void
|
|
uvm_swapin(p)
|
|
struct proc *p;
|
|
{
|
|
vaddr_t addr;
|
|
int s;
|
|
|
|
addr = (vaddr_t)p->p_addr;
|
|
/* make P_INMEM true */
|
|
uvm_fault_wire(kernel_map, addr, addr + USPACE,
|
|
VM_PROT_READ | VM_PROT_WRITE);
|
|
|
|
/*
|
|
* Some architectures need to be notified when the user area has
|
|
* moved to new physical page(s) (e.g. see mips/mips/vm_machdep.c).
|
|
*/
|
|
cpu_swapin(p);
|
|
s = splstatclock();
|
|
if (p->p_stat == SRUN)
|
|
setrunqueue(p);
|
|
p->p_flag |= P_INMEM;
|
|
splx(s);
|
|
p->p_swtime = 0;
|
|
++uvmexp.swapins;
|
|
}
|
|
|
|
/*
|
|
* uvm_scheduler: process zero main loop
|
|
*
|
|
* - attempt to swapin every swaped-out, runnable process in order of
|
|
* priority.
|
|
* - if not enough memory, wake the pagedaemon and let it clear space.
|
|
*/
|
|
|
|
void
|
|
uvm_scheduler()
|
|
{
|
|
register struct proc *p;
|
|
register int pri;
|
|
struct proc *pp;
|
|
int ppri;
|
|
UVMHIST_FUNC("uvm_scheduler"); UVMHIST_CALLED(maphist);
|
|
|
|
loop:
|
|
#ifdef DEBUG
|
|
while (!enableswap)
|
|
tsleep((caddr_t)&proc0, PVM, "noswap", 0);
|
|
#endif
|
|
pp = NULL; /* process to choose */
|
|
ppri = INT_MIN; /* its priority */
|
|
proclist_lock_read();
|
|
for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
|
|
|
|
/* is it a runnable swapped out process? */
|
|
if (p->p_stat == SRUN && (p->p_flag & P_INMEM) == 0) {
|
|
pri = p->p_swtime + p->p_slptime -
|
|
(p->p_nice - NZERO) * 8;
|
|
if (pri > ppri) { /* higher priority? remember it. */
|
|
pp = p;
|
|
ppri = pri;
|
|
}
|
|
}
|
|
}
|
|
proclist_unlock_read();
|
|
|
|
#ifdef DEBUG
|
|
if (swapdebug & SDB_FOLLOW)
|
|
printf("scheduler: running, procp %p pri %d\n", pp, ppri);
|
|
#endif
|
|
/*
|
|
* Nothing to do, back to sleep
|
|
*/
|
|
if ((p = pp) == NULL) {
|
|
tsleep((caddr_t)&proc0, PVM, "scheduler", 0);
|
|
goto loop;
|
|
}
|
|
|
|
/*
|
|
* we have found swapped out process which we would like to bring
|
|
* back in.
|
|
*
|
|
* XXX: this part is really bogus cuz we could deadlock on memory
|
|
* despite our feeble check
|
|
*/
|
|
if (uvmexp.free > atop(USPACE)) {
|
|
#ifdef DEBUG
|
|
if (swapdebug & SDB_SWAPIN)
|
|
printf("swapin: pid %d(%s)@%p, pri %d free %d\n",
|
|
p->p_pid, p->p_comm, p->p_addr, ppri, uvmexp.free);
|
|
#endif
|
|
uvm_swapin(p);
|
|
goto loop;
|
|
}
|
|
/*
|
|
* not enough memory, jab the pageout daemon and wait til the coast
|
|
* is clear
|
|
*/
|
|
#ifdef DEBUG
|
|
if (swapdebug & SDB_FOLLOW)
|
|
printf("scheduler: no room for pid %d(%s), free %d\n",
|
|
p->p_pid, p->p_comm, uvmexp.free);
|
|
#endif
|
|
(void) splhigh();
|
|
uvm_wait("schedpwait");
|
|
(void) spl0();
|
|
#ifdef DEBUG
|
|
if (swapdebug & SDB_FOLLOW)
|
|
printf("scheduler: room again, free %d\n", uvmexp.free);
|
|
#endif
|
|
goto loop;
|
|
}
|
|
|
|
/*
|
|
* swappable: is process "p" swappable?
|
|
*/
|
|
|
|
#define swappable(p) \
|
|
(((p)->p_flag & (P_SYSTEM | P_INMEM | P_WEXIT)) == P_INMEM && \
|
|
(p)->p_holdcnt == 0)
|
|
|
|
/*
|
|
* swapout_threads: find threads that can be swapped and unwire their
|
|
* u-areas.
|
|
*
|
|
* - called by the pagedaemon
|
|
* - try and swap at least one processs
|
|
* - processes that are sleeping or stopped for maxslp or more seconds
|
|
* are swapped... otherwise the longest-sleeping or stopped process
|
|
* is swapped, otherwise the longest resident process...
|
|
*/
|
|
void
|
|
uvm_swapout_threads()
|
|
{
|
|
register struct proc *p;
|
|
struct proc *outp, *outp2;
|
|
int outpri, outpri2;
|
|
int didswap = 0;
|
|
extern int maxslp;
|
|
/* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */
|
|
|
|
#ifdef DEBUG
|
|
if (!enableswap)
|
|
return;
|
|
#endif
|
|
|
|
/*
|
|
* outp/outpri : stop/sleep process with largest sleeptime < maxslp
|
|
* outp2/outpri2: the longest resident process (its swap time)
|
|
*/
|
|
outp = outp2 = NULL;
|
|
outpri = outpri2 = 0;
|
|
proclist_lock_read();
|
|
for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
|
|
if (!swappable(p))
|
|
continue;
|
|
switch (p->p_stat) {
|
|
case SRUN:
|
|
if (p->p_swtime > outpri2) {
|
|
outp2 = p;
|
|
outpri2 = p->p_swtime;
|
|
}
|
|
continue;
|
|
|
|
case SSLEEP:
|
|
case SSTOP:
|
|
if (p->p_slptime >= maxslp) {
|
|
uvm_swapout(p); /* zap! */
|
|
didswap++;
|
|
} else if (p->p_slptime > outpri) {
|
|
outp = p;
|
|
outpri = p->p_slptime;
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
proclist_unlock_read();
|
|
|
|
/*
|
|
* If we didn't get rid of any real duds, toss out the next most
|
|
* likely sleeping/stopped or running candidate. We only do this
|
|
* if we are real low on memory since we don't gain much by doing
|
|
* it (USPACE bytes).
|
|
*/
|
|
if (didswap == 0 && uvmexp.free <= atop(round_page(USPACE))) {
|
|
if ((p = outp) == NULL)
|
|
p = outp2;
|
|
#ifdef DEBUG
|
|
if (swapdebug & SDB_SWAPOUT)
|
|
printf("swapout_threads: no duds, try procp %p\n", p);
|
|
#endif
|
|
if (p)
|
|
uvm_swapout(p);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* uvm_swapout: swap out process "p"
|
|
*
|
|
* - currently "swapout" means "unwire U-area" and "pmap_collect()"
|
|
* the pmap.
|
|
* - XXXCDC: should deactivate all process' private anonymous memory
|
|
*/
|
|
|
|
static void
|
|
uvm_swapout(p)
|
|
register struct proc *p;
|
|
{
|
|
vaddr_t addr;
|
|
int s;
|
|
|
|
#ifdef DEBUG
|
|
if (swapdebug & SDB_SWAPOUT)
|
|
printf("swapout: pid %d(%s)@%p, stat %x pri %d free %d\n",
|
|
p->p_pid, p->p_comm, p->p_addr, p->p_stat,
|
|
p->p_slptime, uvmexp.free);
|
|
#endif
|
|
|
|
/*
|
|
* Do any machine-specific actions necessary before swapout.
|
|
* This can include saving floating point state, etc.
|
|
*/
|
|
cpu_swapout(p);
|
|
|
|
/*
|
|
* Unwire the to-be-swapped process's user struct and kernel stack.
|
|
*/
|
|
addr = (vaddr_t)p->p_addr;
|
|
uvm_fault_unwire(kernel_map, addr, addr + USPACE); /* !P_INMEM */
|
|
pmap_collect(vm_map_pmap(&p->p_vmspace->vm_map));
|
|
|
|
/*
|
|
* Mark it as (potentially) swapped out.
|
|
*/
|
|
s = splstatclock();
|
|
p->p_flag &= ~P_INMEM;
|
|
if (p->p_stat == SRUN)
|
|
remrunqueue(p);
|
|
splx(s);
|
|
p->p_swtime = 0;
|
|
++uvmexp.swapouts;
|
|
}
|
|
|