NetBSD/sys/dev/isa/if_ed.c
thorpej 29500b20c0 Make sure the i/o and/or mem addresses aren't wildcarded (i.e. -1) before
using the address in a bus_space_map() call.
1997-10-19 18:56:39 +00:00

2178 lines
57 KiB
C

/* $NetBSD: if_ed.c,v 1.117 1997/10/19 18:57:00 thorpej Exp $ */
/*
* Device driver for National Semiconductor DS8390/WD83C690 based ethernet
* adapters.
*
* Copyright (c) 1994, 1995 Charles M. Hannum. All rights reserved.
*
* Copyright (C) 1993, David Greenman. This software may be used, modified,
* copied, distributed, and sold, in both source and binary form provided that
* the above copyright and these terms are retained. Under no circumstances is
* the author responsible for the proper functioning of this software, nor does
* the author assume any responsibility for damages incurred with its use.
*
* Currently supports the Western Digital/SMC 8003 and 8013 series, the SMC
* Elite Ultra (8216), and the 3Com 3c503.
*/
#include "bpfilter.h"
#include "rnd.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/syslog.h>
#include <sys/device.h>
#if NRND > 0
#include <sys/rnd.h>
#endif
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#include <net/if_ether.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_inarp.h>
#endif
#ifdef NS
#include <netns/ns.h>
#include <netns/ns_if.h>
#endif
#if NBPFILTER > 0
#include <net/bpf.h>
#include <net/bpfdesc.h>
#endif
#include <machine/cpu.h>
#include <machine/bus.h>
#include <machine/intr.h>
#include <dev/isa/isareg.h>
#include <dev/isa/isavar.h>
#include <dev/ic/dp8390reg.h>
#include <dev/isa/if_edreg.h>
/*
* ed_softc: per line info and status
*/
struct ed_softc {
struct device sc_dev;
void *sc_ih;
struct ethercom sc_ethercom; /* ethernet common */
char *type_str; /* pointer to type string */
u_char vendor; /* interface vendor */
u_char type; /* interface type code */
bus_space_tag_t sc_iot; /* bus identifier */
bus_space_tag_t sc_memt;
bus_space_handle_t sc_ioh; /* io handle */
bus_space_handle_t sc_delaybah; /* io handle for `delay port' */
bus_space_handle_t sc_memh; /* bus memory handle */
bus_size_t asic_base; /* offset of ASIC I/O port */
bus_size_t nic_base; /* offset of NIC (DS8390) I/O port */
/*
* The following 'proto' variable is part of a work-around for 8013EBT asics
* being write-only. It's sort of a prototype/shadow of the real thing.
*/
u_char wd_laar_proto;
/*
* This `proto' variable is so we can turn MENB on and off without reading
* the value back from the card all the time.
*/
u_char wd_msr_proto;
u_char cr_proto; /* values always set in CR */
u_char isa16bit; /* width of access to card 0=8 or 1=16 */
u_char is790; /* set by probe if NIC is a 790 */
int mem_start; /* offset of NIC memory */
int mem_end; /* offset of NIC memory end */
int mem_size; /* total NIC memory size */
int mem_ring; /* offset of RX ring-buffer (in NIC mem) */
u_char txb_cnt; /* number of transmit buffers */
u_char txb_inuse; /* number of transmit buffers active */
u_char txb_new; /* pointer to where new buffer will be added */
u_char txb_next_tx; /* pointer to next buffer ready to xmit */
u_short txb_len[8]; /* buffered xmit buffer lengths */
u_char tx_page_start; /* first page of TX buffer area */
u_char rec_page_start; /* first page of RX ring-buffer */
u_char rec_page_stop; /* last page of RX ring-buffer */
u_char next_packet; /* pointer to next unread RX packet */
u_int8_t sc_enaddr[6];
#if NRND > 0
rndsource_element_t rnd_source;
#endif
};
int edprobe __P((struct device *, void *, void *));
void edattach __P((struct device *, struct device *, void *));
int ed_find __P((struct ed_softc *, struct cfdata *,
struct isa_attach_args *ia));
int ed_probe_generic8390 __P((bus_space_tag_t, bus_space_handle_t, int));
int ed_find_WD80x3 __P((struct ed_softc *, struct cfdata *,
struct isa_attach_args *ia));
int ed_find_3Com __P((struct ed_softc *, struct cfdata *,
struct isa_attach_args *ia));
int edintr __P((void *));
int edioctl __P((struct ifnet *, u_long, caddr_t));
void edstart __P((struct ifnet *));
void edwatchdog __P((struct ifnet *));
void edreset __P((struct ed_softc *));
void edinit __P((struct ed_softc *));
void edstop __P((struct ed_softc *));
void ed_shared_writemem __P((struct ed_softc *, caddr_t, int, int));
void ed_shared_readmem __P((struct ed_softc *, int, caddr_t, int));
#define inline /* XXX for debugging porpoises */
void ed_getmcaf __P((struct ethercom *, u_long *));
void edread __P((struct ed_softc *, int, int));
struct mbuf *edget __P((struct ed_softc *, int, int));
static inline void ed_rint __P((struct ed_softc *));
static inline void ed_xmit __P((struct ed_softc *));
static inline int ed_ring_copy __P((struct ed_softc *, int, caddr_t,
u_short));
struct cfattach ed_ca = {
sizeof(struct ed_softc), edprobe, edattach
};
struct cfdriver ed_cd = {
NULL, "ed", DV_IFNET
};
#define ETHER_MIN_LEN 64
#define ETHER_MAX_LEN 1518
#define ETHER_ADDR_LEN 6
#define NIC_PUT(t, bah, nic, reg, val) \
bus_space_write_1((t), (bah), ((nic) + (reg)), (val))
#define NIC_GET(t, bah, nic, reg) \
bus_space_read_1((t), (bah), ((nic) + (reg)))
/*
* Determine if the device is present.
*/
int
edprobe(parent, match, aux)
struct device *parent;
void *match, *aux;
{
struct ed_softc *sc = match;
return (ed_find(match, sc->sc_dev.dv_cfdata, aux));
}
/*
* Fill in softc (if given), based on device type, cfdata and attach args.
* Return 1 if successful, 0 otherwise.
*/
int
ed_find(sc, cf, ia)
struct ed_softc *sc;
struct cfdata *cf;
struct isa_attach_args *ia;
{
if (ed_find_WD80x3(sc, cf, ia))
return (1);
if (ed_find_3Com(sc, cf, ia))
return (1);
return (0);
}
/*
* Generic probe routine for testing for the existance of a DS8390. Must be
* called after the NIC has just been reset. This routine works by looking at
* certain register values that are guaranteed to be initialized a certain way
* after power-up or reset. Seems not to currently work on the 83C690.
*
* Specifically:
*
* Register reset bits set bits
* Command Register (CR) TXP, STA RD2, STP
* Interrupt Status (ISR) RST
* Interrupt Mask (IMR) All bits
* Data Control (DCR) LAS
* Transmit Config. (TCR) LB1, LB0
*
* We only look at the CR and ISR registers, however, because looking at the
* others would require changing register pages (which would be intrusive if
* this isn't an 8390).
*
* Return 1 if 8390 was found, 0 if not.
*/
int
ed_probe_generic8390(t, bah, nicbase)
bus_space_tag_t t;
bus_space_handle_t bah;
int nicbase;
{
if ((NIC_GET(t, bah, nicbase, ED_P0_CR) &
(ED_CR_RD2 | ED_CR_TXP | ED_CR_STA | ED_CR_STP)) !=
(ED_CR_RD2 | ED_CR_STP))
return (0);
if ((NIC_GET(t, bah, nicbase, ED_P0_ISR) & ED_ISR_RST) != ED_ISR_RST)
return (0);
return (1);
}
int ed_wd584_irq[] = { 9, 3, 5, 7, 10, 11, 15, 4 };
int ed_wd790_irq[] = { IRQUNK, 9, 3, 5, 7, 10, 11, 15 };
/*
* Probe and vendor-specific initialization routine for SMC/WD80x3 boards.
*/
int
ed_find_WD80x3(sc, cf, ia)
struct ed_softc *sc;
struct cfdata *cf;
struct isa_attach_args *ia;
{
bus_space_tag_t iot;
bus_space_tag_t memt;
bus_space_handle_t ioh;
bus_space_handle_t delaybah = ia->ia_delaybah;
bus_space_handle_t memh;
u_int memsize;
u_char iptr, isa16bit, sum;
int i, rv, memfail, mapped_mem = 0;
int asicbase, nicbase;
iot = ia->ia_iot;
memt = ia->ia_memt;
rv = 0;
/* Set initial values for width/size. */
memsize = 8192;
isa16bit = 0;
/* Disallow wildcarded i/o address. */
if (ia->ia_iobase == ISACF_PORT_DEFAULT)
return (0);
/* Disallow wildcarded mem address. */
if (ia->ia_maddr == ISACF_IOMEM_DEFAULT)
return (0);
if (bus_space_map(iot, ia->ia_iobase, ED_WD_IO_PORTS, 0, &ioh))
return (0);
sc->asic_base = asicbase = 0;
sc->nic_base = nicbase = asicbase + ED_WD_NIC_OFFSET;
sc->is790 = 0;
#ifdef TOSH_ETHER
bus_space_write_1(iot, ioh, asicbase + ED_WD_MSR, ED_WD_MSR_POW);
delay(10000);
#endif
/*
* Attempt to do a checksum over the station address PROM. If it
* fails, it's probably not a SMC/WD board. There is a problem with
* this, though: some clone WD boards don't pass the checksum test.
* Danpex boards for one.
*/
for (sum = 0, i = 0; i < 8; ++i)
sum += bus_space_read_1(iot, ioh, asicbase + ED_WD_PROM + i);
if (sum != ED_WD_ROM_CHECKSUM_TOTAL) {
/*
* Checksum is invalid. This often happens with cheap WD8003E
* clones. In this case, the checksum byte (the eighth byte)
* seems to always be zero.
*/
if (bus_space_read_1(iot, ioh, asicbase + ED_WD_CARD_ID) !=
ED_TYPE_WD8003E ||
bus_space_read_1(iot, ioh, asicbase + ED_WD_PROM + 7) != 0)
goto out;
}
/* Reset card to force it into a known state. */
#ifdef TOSH_ETHER
bus_space_write_1(iot, ioh, asicbase + ED_WD_MSR,
ED_WD_MSR_RST | ED_WD_MSR_POW);
#else
bus_space_write_1(iot, ioh, asicbase + ED_WD_MSR, ED_WD_MSR_RST);
#endif
delay(100);
bus_space_write_1(iot, ioh, asicbase + ED_WD_MSR,
bus_space_read_1(iot, ioh, asicbase + ED_WD_MSR) & ~ED_WD_MSR_RST);
/* Wait in the case this card is reading it's EEROM. */
delay(5000);
sc->vendor = ED_VENDOR_WD_SMC;
sc->type = bus_space_read_1(iot, ioh, asicbase + ED_WD_CARD_ID);
switch (sc->type) {
case ED_TYPE_WD8003S:
sc->type_str = "WD8003S";
break;
case ED_TYPE_WD8003E:
sc->type_str = "WD8003E";
break;
case ED_TYPE_WD8003EB:
sc->type_str = "WD8003EB";
break;
case ED_TYPE_WD8003W:
sc->type_str = "WD8003W";
break;
case ED_TYPE_WD8013EBT:
sc->type_str = "WD8013EBT";
memsize = 16384;
isa16bit = 1;
break;
case ED_TYPE_WD8013W:
sc->type_str = "WD8013W";
memsize = 16384;
isa16bit = 1;
break;
case ED_TYPE_WD8013EP: /* also WD8003EP */
if (bus_space_read_1(iot, ioh, asicbase + ED_WD_ICR)
& ED_WD_ICR_16BIT) {
isa16bit = 1;
memsize = 16384;
sc->type_str = "WD8013EP";
} else
sc->type_str = "WD8003EP";
break;
case ED_TYPE_WD8013WC:
sc->type_str = "WD8013WC";
memsize = 16384;
isa16bit = 1;
break;
case ED_TYPE_WD8013EBP:
sc->type_str = "WD8013EBP";
memsize = 16384;
isa16bit = 1;
break;
case ED_TYPE_WD8013EPC:
sc->type_str = "WD8013EPC";
memsize = 16384;
isa16bit = 1;
break;
case ED_TYPE_SMC8216C:
case ED_TYPE_SMC8216T:
sc->type_str = (sc->type == ED_TYPE_SMC8216C) ?
"SMC8216/SMC8216C" : "SMC8216T";
bus_space_write_1(iot, ioh, asicbase + ED_WD790_HWR,
bus_space_read_1(iot, ioh, asicbase + ED_WD790_HWR)
| ED_WD790_HWR_SWH);
switch (bus_space_read_1(iot, ioh, asicbase + ED_WD790_RAR) &
ED_WD790_RAR_SZ64) {
case ED_WD790_RAR_SZ64:
memsize = 65536;
break;
case ED_WD790_RAR_SZ32:
memsize = 32768;
break;
case ED_WD790_RAR_SZ16:
memsize = 16384;
break;
case ED_WD790_RAR_SZ8:
/* 8216 has 16K shared mem -- 8416 has 8K */
sc->type_str = (sc->type == ED_TYPE_SMC8216C) ?
"SMC8416C/SMC8416BT" : "SMC8416T";
memsize = 8192;
break;
}
bus_space_write_1(iot, ioh, asicbase + ED_WD790_HWR,
bus_space_read_1(iot, ioh,
asicbase + ED_WD790_HWR) & ~ED_WD790_HWR_SWH);
isa16bit = 1;
sc->is790 = 1;
break;
#ifdef TOSH_ETHER
case ED_TYPE_TOSHIBA1:
sc->type_str = "Toshiba1";
memsize = 32768;
isa16bit = 1;
break;
case ED_TYPE_TOSHIBA4:
sc->type_str = "Toshiba4";
memsize = 32768;
isa16bit = 1;
break;
#endif
default:
sc->type_str = NULL;
break;
}
/*
* Make some adjustments to initial values depending on what is found
* in the ICR.
*/
if (isa16bit && (sc->type != ED_TYPE_WD8013EBT) &&
#ifdef TOSH_ETHER
(sc->type != ED_TYPE_TOSHIBA1) && (sc->type != ED_TYPE_TOSHIBA4) &&
#endif
((bus_space_read_1(iot, ioh,
asicbase + ED_WD_ICR) & ED_WD_ICR_16BIT) == 0)) {
isa16bit = 0;
memsize = 8192;
}
#ifdef ED_DEBUG
printf("type=%x type_str=%s isa16bit=%d memsize=%d id_msize=%d\n",
sc->type, sc->type_str ?: "unknown", isa16bit, memsize,
ia->ia_msize);
for (i = 0; i < 8; i++)
printf("%x -> %x\n", i, inb(asicbase + i));
#endif
/* Allow the user to override the autoconfiguration. */
if (ia->ia_msize)
memsize = ia->ia_msize;
/*
* (Note that if the user specifies both of the following flags that
* '8-bit' mode intentionally has precedence.)
*/
if (cf->cf_flags & ED_FLAGS_FORCE_16BIT_MODE)
isa16bit = 1;
if (cf->cf_flags & ED_FLAGS_FORCE_8BIT_MODE)
isa16bit = 0;
/*
* If possible, get the assigned interrupt number from the card and
* use it.
*/
if (sc->is790) {
u_char x;
/* Assemble together the encoded interrupt number. */
bus_space_write_1(iot, ioh, ED_WD790_HWR,
bus_space_read_1(iot, ioh, ED_WD790_HWR) | ED_WD790_HWR_SWH);
x = bus_space_read_1(iot, ioh, ED_WD790_GCR);
iptr = ((x & ED_WD790_GCR_IR2) >> 4) |
((x & (ED_WD790_GCR_IR1|ED_WD790_GCR_IR0)) >> 2);
bus_space_write_1(iot, ioh, ED_WD790_HWR,
bus_space_read_1(iot, ioh, ED_WD790_HWR) & ~ED_WD790_HWR_SWH);
/*
* Translate it using translation table, and check for
* correctness.
*/
if (ia->ia_irq != IRQUNK) {
if (ia->ia_irq != ed_wd790_irq[iptr]) {
printf("%s: irq mismatch; kernel configured %d != board configured %d\n",
sc->sc_dev.dv_xname, ia->ia_irq,
ed_wd790_irq[iptr]);
goto out;
}
} else
ia->ia_irq = ed_wd790_irq[iptr];
/* Enable the interrupt. */
bus_space_write_1(iot, ioh, ED_WD790_ICR,
bus_space_read_1(iot, ioh, ED_WD790_ICR) | ED_WD790_ICR_EIL);
} else if (sc->type & ED_WD_SOFTCONFIG) {
/* Assemble together the encoded interrupt number. */
iptr = (bus_space_read_1(iot, ioh, ED_WD_ICR) & ED_WD_ICR_IR2) |
((bus_space_read_1(iot, ioh, ED_WD_IRR) &
(ED_WD_IRR_IR0 | ED_WD_IRR_IR1)) >> 5);
/*
* Translate it using translation table, and check for
* correctness.
*/
if (ia->ia_irq != IRQUNK) {
if (ia->ia_irq != ed_wd584_irq[iptr]) {
printf("%s: irq mismatch; kernel configured %d != board configured %d\n",
sc->sc_dev.dv_xname, ia->ia_irq,
ed_wd584_irq[iptr]);
goto out;
}
} else
ia->ia_irq = ed_wd584_irq[iptr];
/* Enable the interrupt. */
bus_space_write_1(iot, ioh, ED_WD_IRR,
bus_space_read_1(iot, ioh, ED_WD_IRR) | ED_WD_IRR_IEN);
} else {
if (ia->ia_irq == IRQUNK) {
printf("%s: %s does not have soft configuration\n",
sc->sc_dev.dv_xname, sc->type_str);
goto out;
}
}
/* XXX Figure out the shared memory address. */
sc->isa16bit = isa16bit;
ia->ia_msize = memsize;
if (bus_space_map(memt, ia->ia_maddr, memsize, 0, &memh))
goto out;
mapped_mem = 1;
sc->mem_start = 0; /* offset */
/* Allocate one xmit buffer if < 16k, two buffers otherwise. */
if ((memsize < 16384) || (cf->cf_flags & ED_FLAGS_NO_MULTI_BUFFERING))
sc->txb_cnt = 1;
else
sc->txb_cnt = 2;
sc->tx_page_start = ED_WD_PAGE_OFFSET;
sc->rec_page_start = sc->tx_page_start + sc->txb_cnt * ED_TXBUF_SIZE;
sc->rec_page_stop = sc->tx_page_start + (memsize >> ED_PAGE_SHIFT);
sc->mem_ring = sc->mem_start + (sc->rec_page_start << ED_PAGE_SHIFT);
sc->mem_size = memsize;
sc->mem_end = sc->mem_start + memsize;
/* Get station address from on-board ROM. */
for (i = 0; i < ETHER_ADDR_LEN; ++i)
sc->sc_enaddr[i] =
bus_space_read_1(iot, ioh, asicbase + ED_WD_PROM + i);
/*
* Set upper address bits and 8/16 bit access to shared memory.
*/
if (isa16bit) {
if (sc->is790) {
sc->wd_laar_proto =
bus_space_read_1(iot, ioh, asicbase + ED_WD_LAAR) &
~ED_WD_LAAR_M16EN;
} else {
sc->wd_laar_proto =
ED_WD_LAAR_L16EN |
((ia->ia_maddr >> 19) &
ED_WD_LAAR_ADDRHI);
}
bus_space_write_1(iot, ioh, asicbase + ED_WD_LAAR,
sc->wd_laar_proto | ED_WD_LAAR_M16EN);
} else {
if ((sc->type & ED_WD_SOFTCONFIG) ||
#ifdef TOSH_ETHER
(sc->type == ED_TYPE_TOSHIBA1) ||
(sc->type == ED_TYPE_TOSHIBA4) ||
#endif
((sc->type == ED_TYPE_WD8013EBT) && !sc->is790)) {
sc->wd_laar_proto =
((ia->ia_maddr >> 19) &
ED_WD_LAAR_ADDRHI);
bus_space_write_1(iot, ioh, asicbase + ED_WD_LAAR,
sc->wd_laar_proto);
}
}
/*
* Set address and enable interface shared memory.
*/
if (!sc->is790) {
#ifdef TOSH_ETHER
bus_space_write_1(iot, ioh, asicbase + ED_WD_MSR + 1,
((ia->ia_maddr >> 8) & 0xe0) | 4);
bus_space_write_1(iot, ioh, asicbase + ED_WD_MSR + 2,
((ia->ia_maddr >> 16) & 0x0f));
sc->wd_msr_proto = ED_WD_MSR_POW;
#else
sc->wd_msr_proto =
(ia->ia_maddr >> 13) & ED_WD_MSR_ADDR;
#endif
sc->cr_proto = ED_CR_RD2;
} else {
bus_space_write_1(iot, ioh, asicbase + 0x04,
bus_space_read_1(iot, ioh, asicbase + 0x04) | 0x80);
bus_space_write_1(iot, ioh, asicbase + 0x0b,
((ia->ia_maddr >> 13) & 0x0f) |
((ia->ia_maddr >> 11) & 0x40) |
(bus_space_read_1(iot, ioh, asicbase + 0x0b) & 0xb0));
bus_space_write_1(iot, ioh, asicbase + 0x04,
bus_space_read_1(iot, ioh, asicbase + 0x04) & ~0x80);
sc->wd_msr_proto = 0x00;
sc->cr_proto = 0;
}
bus_space_write_1(iot, ioh, asicbase + ED_WD_MSR,
sc->wd_msr_proto | ED_WD_MSR_MENB);
(void) bus_space_read_1(iot, delaybah, 0);
(void) bus_space_read_1(iot, delaybah, 0);
/* Now zero memory and verify that it is clear. */
if (isa16bit) {
for (i = 0; i < memsize; i += 2)
bus_space_write_2(memt, memh, sc->mem_start + i, 0);
} else {
for (i = 0; i < memsize; ++i)
bus_space_write_1(memt, memh, sc->mem_start + i, 0);
}
memfail = 0;
if (isa16bit) {
for (i = 0; i < memsize; i += 2) {
if (bus_space_read_2(memt, memh, sc->mem_start + i)) {
memfail = 1;
break;
}
}
} else {
for (i = 0; i < memsize; ++i) {
if (bus_space_read_1(memt, memh, sc->mem_start + i)) {
memfail = 1;
break;
}
}
}
if (memfail) {
printf("%s: failed to clear shared memory at %x - "
"check configuration\n",
sc->sc_dev.dv_xname,
(ia->ia_maddr + sc->mem_start + i));
/* Disable 16 bit access to shared memory. */
bus_space_write_1(iot, ioh, asicbase + ED_WD_MSR,
sc->wd_msr_proto);
if (isa16bit)
bus_space_write_1(iot, ioh, asicbase + ED_WD_LAAR,
sc->wd_laar_proto);
(void) bus_space_read_1(iot, delaybah, 0);
(void) bus_space_read_1(iot, delaybah, 0);
goto out;
}
/*
* Disable 16bit access to shared memory - we leave it disabled
* so that 1) machines reboot properly when the board is set 16
* 16 bit mode and there are conflicting 8bit devices/ROMS in
* the same 128k address space as this boards shared memory,
* and 2) so that other 8 bit devices with shared memory can be
* used in this 128k region, too.
*/
bus_space_write_1(iot, ioh, asicbase + ED_WD_MSR, sc->wd_msr_proto);
if (isa16bit)
bus_space_write_1(iot, ioh, asicbase + ED_WD_LAAR,
sc->wd_laar_proto);
(void) bus_space_read_1(iot, delaybah, 0);
(void) bus_space_read_1(iot, delaybah, 0);
ia->ia_iosize = ED_WD_IO_PORTS;
rv = 1;
out:
/*
* XXX Sould always unmap, but we can't yet.
* XXX Need to squish "indirect" first.
*/
if (rv == 0) {
bus_space_unmap(iot, ioh, ED_WD_IO_PORTS);
if (mapped_mem)
bus_space_unmap(memt, memh, memsize);
} else {
/* XXX this is all "indirect" brokenness */
sc->sc_iot = iot;
sc->sc_memt = memt;
sc->sc_ioh = ioh;
sc->sc_memh = memh;
}
return (rv);
}
int ed_3com_iobase[] = {0x2e0, 0x2a0, 0x280, 0x250, 0x350, 0x330, 0x310, 0x300};
int ed_3com_maddr[] = {MADDRUNK, MADDRUNK, MADDRUNK, MADDRUNK, 0xc8000, 0xcc000, 0xd8000, 0xdc000};
#if 0
int ed_3com_irq[] = {IRQUNK, IRQUNK, IRQUNK, IRQUNK, 9, 3, 4, 5};
#endif
/*
* Probe and vendor-specific initialization routine for 3Com 3c503 boards.
*/
int
ed_find_3Com(sc, cf, ia)
struct ed_softc *sc;
struct cfdata *cf;
struct isa_attach_args *ia;
{
bus_space_tag_t iot;
bus_space_tag_t memt;
bus_space_handle_t ioh;
bus_space_handle_t memh;
int i;
u_int memsize, memfail;
u_char isa16bit, x;
int ptr, asicbase, nicbase;
/*
* Hmmm...a 16bit 3Com board has 16k of memory, but only an 8k window
* to it.
*/
memsize = 8192;
iot = ia->ia_iot;
memt = ia->ia_memt;
/* Disallow wildcarded i/o address. */
if (ia->ia_iobase == ISACF_PORT_DEFAULT)
return (0);
/* Disallow wildcarded mem address. */
if (ia->ia_maddr == ISACF_IOMEM_DEFAULT)
return (0);
if (bus_space_map(iot, ia->ia_iobase, ED_3COM_IO_PORTS, 0, &ioh))
return (0);
sc->asic_base = asicbase = ED_3COM_ASIC_OFFSET;
sc->nic_base = nicbase = ED_3COM_NIC_OFFSET;
/*
* Verify that the kernel configured I/O address matches the board
* configured address.
*
* This is really only useful to see if something that looks like the
* board is there; after all, we are already talking it at that
* address.
*/
x = bus_space_read_1(iot, ioh, asicbase + ED_3COM_BCFR);
if (x == 0 || (x & (x - 1)) != 0)
goto err;
ptr = ffs(x) - 1;
if (ia->ia_iobase != IOBASEUNK) {
if (ia->ia_iobase != ed_3com_iobase[ptr]) {
printf("%s: %s mismatch; kernel configured %x != board configured %x\n",
"iobase", sc->sc_dev.dv_xname, ia->ia_iobase,
ed_3com_iobase[ptr]);
goto err;
}
} else
ia->ia_iobase = ed_3com_iobase[ptr]; /* XXX --thorpej */
x = bus_space_read_1(iot, ioh, asicbase + ED_3COM_PCFR);
if (x == 0 || (x & (x - 1)) != 0) {
printf("%s: The 3c503 is not currently supported with memory "
"mapping disabled.\n%s: Reconfigure the card to "
"enable memory mapping.\n",
sc->sc_dev.dv_xname, sc->sc_dev.dv_xname);
goto err;
}
ptr = ffs(x) - 1;
if (ia->ia_maddr != MADDRUNK) {
if (ia->ia_maddr != ed_3com_maddr[ptr]) {
printf("%s: %s mismatch; kernel configured %x != board configured %x\n",
"maddr", sc->sc_dev.dv_xname, ia->ia_maddr,
ed_3com_maddr[ptr]);
goto err;
}
} else
ia->ia_maddr = ed_3com_maddr[ptr];
#if 0
x = bus_space_read_1(iot, ioh, asicbase + ED_3COM_IDCFR) &
ED_3COM_IDCFR_IRQ;
if (x == 0 || (x & (x - 1)) != 0)
goto out;
ptr = ffs(x) - 1;
if (ia->ia_irq != IRQUNK) {
if (ia->ia_irq != ed_3com_irq[ptr]) {
printf("%s: irq mismatch; kernel configured %d != board configured %d\n",
sc->sc_dev.dv_xname, ia->ia_irq,
ed_3com_irq[ptr]);
goto err;
}
} else
ia->ia_irq = ed_3com_irq[ptr];
#endif
/*
* Reset NIC and ASIC. Enable on-board transceiver throughout reset
* sequence because it'll lock up if the cable isn't connected if we
* don't.
*/
bus_space_write_1(iot, ioh, asicbase + ED_3COM_CR,
ED_3COM_CR_RST | ED_3COM_CR_XSEL);
/* Wait for a while, then un-reset it. */
delay(50);
/*
* The 3Com ASIC defaults to rather strange settings for the CR after a
* reset - it's important to set it again after the following outb
* (this is done when we map the PROM below).
*/
bus_space_write_1(iot, ioh, asicbase + ED_3COM_CR, ED_3COM_CR_XSEL);
/* Wait a bit for the NIC to recover from the reset. */
delay(5000);
sc->vendor = ED_VENDOR_3COM;
sc->type_str = "3c503";
sc->cr_proto = ED_CR_RD2;
/*
* Get station address from on-board ROM.
*
* First, map ethernet address PROM over the top of where the NIC
* registers normally appear.
*/
bus_space_write_1(iot, ioh, asicbase + ED_3COM_CR,
ED_3COM_CR_EALO | ED_3COM_CR_XSEL);
for (i = 0; i < ETHER_ADDR_LEN; ++i)
sc->sc_enaddr[i] = NIC_GET(iot, ioh, nicbase, i);
/*
* Unmap PROM - select NIC registers. The proper setting of the
* tranceiver is set in edinit so that the attach code is given a
* chance to set the default based on a compile-time config option.
*/
bus_space_write_1(iot, ioh, asicbase + ED_3COM_CR, ED_3COM_CR_XSEL);
/* Determine if this is an 8bit or 16bit board. */
/* Select page 0 registers. */
NIC_PUT(iot, ioh, nicbase, ED_P0_CR,
ED_CR_RD2 | ED_CR_PAGE_0 | ED_CR_STP);
/*
* Attempt to clear WTS bit. If it doesn't clear, then this is a
* 16-bit board.
*/
NIC_PUT(iot, ioh, nicbase, ED_P0_DCR, 0);
/* Select page 2 registers. */
NIC_PUT(iot, ioh, nicbase,
ED_P0_CR, ED_CR_RD2 | ED_CR_PAGE_2 | ED_CR_STP);
/* The 3c503 forces the WTS bit to a one if this is a 16bit board. */
if (NIC_GET(iot, ioh, nicbase, ED_P2_DCR) & ED_DCR_WTS)
isa16bit = 1;
else
isa16bit = 0;
/* Select page 0 registers. */
NIC_PUT(iot, ioh, nicbase, ED_P2_CR,
ED_CR_RD2 | ED_CR_PAGE_0 | ED_CR_STP);
if (bus_space_map(memt, ia->ia_maddr, memsize, 0, &memh))
goto err;
sc->mem_start = 0; /* offset */
sc->mem_size = memsize;
sc->mem_end = sc->mem_start + memsize;
/*
* We have an entire 8k window to put the transmit buffers on the
* 16-bit boards. But since the 16bit 3c503's shared memory is only
* fast enough to overlap the loading of one full-size packet, trying
* to load more than 2 buffers can actually leave the transmitter idle
* during the load. So 2 seems the best value. (Although a mix of
* variable-sized packets might change this assumption. Nonetheless,
* we optimize for linear transfers of same-size packets.)
*/
if (isa16bit) {
if (cf->cf_flags & ED_FLAGS_NO_MULTI_BUFFERING)
sc->txb_cnt = 1;
else
sc->txb_cnt = 2;
sc->tx_page_start = ED_3COM_TX_PAGE_OFFSET_16BIT;
sc->rec_page_start = ED_3COM_RX_PAGE_OFFSET_16BIT;
sc->rec_page_stop =
(memsize >> ED_PAGE_SHIFT) + ED_3COM_RX_PAGE_OFFSET_16BIT;
sc->mem_ring = sc->mem_start;
} else {
sc->txb_cnt = 1;
sc->tx_page_start = ED_3COM_TX_PAGE_OFFSET_8BIT;
sc->rec_page_start =
ED_TXBUF_SIZE + ED_3COM_TX_PAGE_OFFSET_8BIT;
sc->rec_page_stop =
(memsize >> ED_PAGE_SHIFT) + ED_3COM_TX_PAGE_OFFSET_8BIT;
sc->mem_ring =
sc->mem_start + (ED_TXBUF_SIZE << ED_PAGE_SHIFT);
}
sc->isa16bit = isa16bit;
/*
* Initialize GA page start/stop registers. Probably only needed if
* doing DMA, but what the Hell.
*/
bus_space_write_1(iot, ioh, asicbase + ED_3COM_PSTR, sc->rec_page_start);
bus_space_write_1(iot, ioh, asicbase + ED_3COM_PSPR, sc->rec_page_stop);
/* Set IRQ. 3c503 only allows a choice of irq 3-5 or 9. */
switch (ia->ia_irq) {
case 9:
bus_space_write_1(iot, ioh, asicbase + ED_3COM_IDCFR,
ED_3COM_IDCFR_IRQ2);
break;
case 3:
bus_space_write_1(iot, ioh, asicbase + ED_3COM_IDCFR,
ED_3COM_IDCFR_IRQ3);
break;
case 4:
bus_space_write_1(iot, ioh, asicbase + ED_3COM_IDCFR,
ED_3COM_IDCFR_IRQ4);
break;
case 5:
bus_space_write_1(iot, ioh, asicbase + ED_3COM_IDCFR,
ED_3COM_IDCFR_IRQ5);
break;
default:
printf("%s: invalid irq configuration (%d) must be 3-5 or 9 for 3c503\n",
sc->sc_dev.dv_xname, ia->ia_irq);
goto out;
}
/*
* Initialize GA configuration register. Set bank and enable shared
* mem.
*/
bus_space_write_1(iot, ioh, asicbase + ED_3COM_GACFR,
ED_3COM_GACFR_RSEL | ED_3COM_GACFR_MBS0);
/*
* Initialize "Vector Pointer" registers. These gawd-awful things are
* compared to 20 bits of the address on ISA, and if they match, the
* shared memory is disabled. We set them to 0xffff0...allegedly the
* reset vector.
*/
bus_space_write_1(iot, ioh, asicbase + ED_3COM_VPTR2, 0xff);
bus_space_write_1(iot, ioh, asicbase + ED_3COM_VPTR1, 0xff);
bus_space_write_1(iot, ioh, asicbase + ED_3COM_VPTR0, 0x00);
/* Now zero memory and verify that it is clear. */
if (isa16bit) {
for (i = 0; i < memsize; i += 2)
bus_space_write_2(memt, memh, sc->mem_start + i, 0);
} else {
for (i = 0; i < memsize; ++i)
bus_space_write_1(memt, memh, sc->mem_start + i, 0);
}
memfail = 0;
if (isa16bit) {
for (i = 0; i < memsize; i += 2) {
if (bus_space_read_2(memt, memh, sc->mem_start + i)) {
memfail = 1;
break;
}
}
} else {
for (i = 0; i < memsize; ++i) {
if (bus_space_read_1(memt, memh, sc->mem_start + i)) {
memfail = 1;
break;
}
}
}
if (memfail) {
printf("%s: failed to clear shared memory at %x - "
"check configuration\n",
sc->sc_dev.dv_xname,
(ia->ia_maddr + sc->mem_start + i));
goto out;
}
ia->ia_msize = memsize;
ia->ia_iosize = ED_3COM_IO_PORTS;
/*
* XXX Sould always unmap, but we can't yet.
* XXX Need to squish "indirect" first.
*/
sc->sc_iot = iot;
sc->sc_memt = memt;
sc->sc_ioh = ioh;
sc->sc_memh = memh;
return 1;
out:
bus_space_unmap(memt, memh, memsize);
err:
bus_space_unmap(iot, ioh, ED_3COM_IO_PORTS);
return 0;
}
/*
* Install interface into kernel networking data structures.
*/
void
edattach(parent, self, aux)
struct device *parent, *self;
void *aux;
{
bus_space_tag_t iot;
bus_space_handle_t ioh;
struct ed_softc *sc = (void *)self;
struct isa_attach_args *ia = aux;
struct cfdata *cf = sc->sc_dev.dv_cfdata;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
int asicbase;
/*
* XXX Should re-map io and mem, but can't
* XXX until we squish "indirect" brokenness.
*/
iot = sc->sc_iot; /* XXX */
ioh = sc->sc_ioh; /* XXX */
asicbase = sc->asic_base;
sc->sc_delaybah = ia->ia_delaybah;
/* Set interface to stopped condition (reset). */
edstop(sc);
/* Initialize ifnet structure. */
bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
ifp->if_softc = sc;
ifp->if_start = edstart;
ifp->if_ioctl = edioctl;
ifp->if_watchdog = edwatchdog;
ifp->if_flags =
IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
/*
* Set default state for LINK0 flag (used to disable the tranceiver
* for AUI operation), based on compile-time config option.
*/
switch (sc->vendor) {
case ED_VENDOR_3COM:
if (cf->cf_flags & ED_FLAGS_DISABLE_TRANCEIVER)
ifp->if_flags |= IFF_LINK0;
break;
case ED_VENDOR_WD_SMC:
if ((sc->type & ED_WD_SOFTCONFIG) == 0)
break;
if ((bus_space_read_1(iot, ioh, asicbase + ED_WD_IRR) &
ED_WD_IRR_OUT2) == 0)
ifp->if_flags |= IFF_LINK0;
break;
}
/* Attach the interface. */
if_attach(ifp);
ether_ifattach(ifp, sc->sc_enaddr);
/* Print additional info when attached. */
printf("\n%s: address %s, ", sc->sc_dev.dv_xname,
ether_sprintf(sc->sc_enaddr));
if (sc->type_str)
printf("type %s ", sc->type_str);
else
printf("type unknown (0x%x) ", sc->type);
printf("%s", sc->isa16bit ? "(16-bit)" : "(8-bit)");
switch (sc->vendor) {
case ED_VENDOR_WD_SMC:
if ((sc->type & ED_WD_SOFTCONFIG) == 0)
break;
case ED_VENDOR_3COM:
if (ifp->if_flags & IFF_LINK0)
printf(" aui");
else
printf(" bnc");
break;
}
printf("\n");
#if NBPFILTER > 0
bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
#endif
sc->sc_ih = isa_intr_establish(ia->ia_ic, ia->ia_irq, IST_EDGE,
IPL_NET, edintr, sc);
#if NRND > 0
rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname, RND_TYPE_NET);
#endif
}
/*
* Reset interface.
*/
void
edreset(sc)
struct ed_softc *sc;
{
int s;
s = splnet();
edstop(sc);
edinit(sc);
splx(s);
}
/*
* Take interface offline.
*/
void
edstop(sc)
struct ed_softc *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
int nicbase = sc->nic_base;
int n = 5000;
/* Stop everything on the interface, and select page 0 registers. */
NIC_PUT(iot, ioh, nicbase, ED_P0_CR,
sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STP);
/*
* Wait for interface to enter stopped state, but limit # of checks to
* 'n' (about 5ms). It shouldn't even take 5us on modern DS8390's, but
* just in case it's an old one.
*/
while (((NIC_GET(iot, ioh, nicbase,
ED_P0_ISR) & ED_ISR_RST) == 0) && --n);
}
/*
* Device timeout/watchdog routine. Entered if the device neglects to generate
* an interrupt after a transmit has been started on it.
*/
void
edwatchdog(ifp)
struct ifnet *ifp;
{
struct ed_softc *sc = ifp->if_softc;
log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
++sc->sc_ethercom.ec_if.if_oerrors;
edreset(sc);
}
/*
* Initialize device.
*/
void
edinit(sc)
struct ed_softc *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
int nicbase = sc->nic_base, asicbase = sc->asic_base;
int i;
u_long mcaf[2];
/*
* Initialize the NIC in the exact order outlined in the NS manual.
* This init procedure is "mandatory"...don't change what or when
* things happen.
*/
/* Reset transmitter flags. */
ifp->if_timer = 0;
sc->txb_inuse = 0;
sc->txb_new = 0;
sc->txb_next_tx = 0;
/* Set interface for page 0, remote DMA complete, stopped. */
NIC_PUT(iot, ioh, nicbase, ED_P0_CR,
sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STP);
if (sc->isa16bit) {
/*
* Set FIFO threshold to 8, No auto-init Remote DMA, byte
* order=80x86, word-wide DMA xfers,
*/
NIC_PUT(iot, ioh, nicbase, ED_P0_DCR,
ED_DCR_FT1 | ED_DCR_WTS | ED_DCR_LS);
} else {
/* Same as above, but byte-wide DMA xfers. */
NIC_PUT(iot, ioh, nicbase, ED_P0_DCR, ED_DCR_FT1 | ED_DCR_LS);
}
/* Clear remote byte count registers. */
NIC_PUT(iot, ioh, nicbase, ED_P0_RBCR0, 0);
NIC_PUT(iot, ioh, nicbase, ED_P0_RBCR1, 0);
/* Tell RCR to do nothing for now. */
NIC_PUT(iot, ioh, nicbase, ED_P0_RCR, ED_RCR_MON);
/* Place NIC in internal loopback mode. */
NIC_PUT(iot, ioh, nicbase, ED_P0_TCR, ED_TCR_LB0);
/* Set lower bits of byte addressable framing to 0. */
if (sc->is790)
NIC_PUT(iot, ioh, nicbase, 0x09, 0);
/* Initialize receive buffer ring. */
NIC_PUT(iot, ioh, nicbase, ED_P0_BNRY, sc->rec_page_start);
NIC_PUT(iot, ioh, nicbase, ED_P0_PSTART, sc->rec_page_start);
NIC_PUT(iot, ioh, nicbase, ED_P0_PSTOP, sc->rec_page_stop);
/*
* Clear all interrupts. A '1' in each bit position clears the
* corresponding flag.
*/
NIC_PUT(iot, ioh, nicbase, ED_P0_ISR, 0xff);
/*
* Enable the following interrupts: receive/transmit complete,
* receive/transmit error, and Receiver OverWrite.
*
* Counter overflow and Remote DMA complete are *not* enabled.
*/
NIC_PUT(iot, ioh, nicbase, ED_P0_IMR,
ED_IMR_PRXE | ED_IMR_PTXE | ED_IMR_RXEE | ED_IMR_TXEE |
ED_IMR_OVWE);
/* Program command register for page 1. */
NIC_PUT(iot, ioh, nicbase, ED_P0_CR,
sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STP);
/* Copy out our station address. */
for (i = 0; i < ETHER_ADDR_LEN; ++i)
NIC_PUT(iot, ioh, nicbase, ED_P1_PAR0 + i,
LLADDR(ifp->if_sadl)[i]);
/* Set multicast filter on chip. */
ed_getmcaf(&sc->sc_ethercom, mcaf);
for (i = 0; i < 8; i++)
NIC_PUT(iot, ioh, nicbase, ED_P1_MAR0 + i, ((u_char *)mcaf)[i]);
/*
* Set current page pointer to one page after the boundary pointer, as
* recommended in the National manual.
*/
sc->next_packet = sc->rec_page_start + 1;
NIC_PUT(iot, ioh, nicbase, ED_P1_CURR, sc->next_packet);
/* Program command register for page 0. */
NIC_PUT(iot, ioh, nicbase, ED_P1_CR,
sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STP);
i = ED_RCR_AB | ED_RCR_AM;
if (ifp->if_flags & IFF_PROMISC) {
/*
* Set promiscuous mode. Multicast filter was set earlier so
* that we should receive all multicast packets.
*/
i |= ED_RCR_PRO | ED_RCR_AR | ED_RCR_SEP;
}
NIC_PUT(iot, ioh, nicbase, ED_P0_RCR, i);
/* Take interface out of loopback. */
NIC_PUT(iot, ioh, nicbase, ED_P0_TCR, 0);
/*
* If this is a 3Com board, the tranceiver must be software enabled
* (there is no settable hardware default).
*/
switch (sc->vendor) {
u_char x;
case ED_VENDOR_3COM:
if (ifp->if_flags & IFF_LINK0)
bus_space_write_1(iot, ioh, asicbase + ED_3COM_CR, 0);
else
bus_space_write_1(iot, ioh, asicbase + ED_3COM_CR,
ED_3COM_CR_XSEL);
break;
case ED_VENDOR_WD_SMC:
if ((sc->type & ED_WD_SOFTCONFIG) == 0)
break;
x = bus_space_read_1(iot, ioh, asicbase + ED_WD_IRR);
if (ifp->if_flags & IFF_LINK0)
x &= ~ED_WD_IRR_OUT2;
else
x |= ED_WD_IRR_OUT2;
bus_space_write_1(iot, ioh, asicbase + ED_WD_IRR, x);
break;
}
/* Fire up the interface. */
NIC_PUT(iot, ioh, nicbase, ED_P0_CR,
sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA);
/* Set 'running' flag, and clear output active flag. */
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
/* ...and attempt to start output. */
edstart(ifp);
}
/*
* This routine actually starts the transmission on the interface.
*/
static inline void
ed_xmit(sc)
struct ed_softc *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
int nicbase = sc->nic_base;
u_short len;
len = sc->txb_len[sc->txb_next_tx];
/* Set NIC for page 0 register access. */
NIC_PUT(iot, ioh, nicbase, ED_P0_CR,
sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA);
/* Set TX buffer start page. */
NIC_PUT(iot, ioh, nicbase, ED_P0_TPSR, sc->tx_page_start +
sc->txb_next_tx * ED_TXBUF_SIZE);
/* Set TX length. */
NIC_PUT(iot, ioh, nicbase, ED_P0_TBCR0, len);
NIC_PUT(iot, ioh, nicbase, ED_P0_TBCR1, len >> 8);
/* Set page 0, remote DMA complete, transmit packet, and *start*. */
NIC_PUT(iot, ioh, nicbase, ED_P0_CR,
sc->cr_proto | ED_CR_PAGE_0 | ED_CR_TXP | ED_CR_STA);
/* Point to next transmit buffer slot and wrap if necessary. */
sc->txb_next_tx++;
if (sc->txb_next_tx == sc->txb_cnt)
sc->txb_next_tx = 0;
/* Set a timer just in case we never hear from the board again. */
ifp->if_timer = 2;
}
/*
* Start output on interface.
* We make two assumptions here:
* 1) that the current priority is set to splnet _before_ this code
* is called *and* is returned to the appropriate priority after
* return
* 2) that the IFF_OACTIVE flag is checked before this code is called
* (i.e. that the output part of the interface is idle)
*/
void
edstart(ifp)
struct ifnet *ifp;
{
struct ed_softc *sc = ifp->if_softc;
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
struct mbuf *m0, *m;
int buffer;
int asicbase = sc->asic_base;
int len;
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
return;
outloop:
/* See if there is room to put another packet in the buffer. */
if (sc->txb_inuse == sc->txb_cnt) {
/* No room. Indicate this to the outside world and exit. */
ifp->if_flags |= IFF_OACTIVE;
return;
}
IF_DEQUEUE(&ifp->if_snd, m0);
if (m0 == 0)
return;
/* We need to use m->m_pkthdr.len, so require the header */
if ((m0->m_flags & M_PKTHDR) == 0)
panic("edstart: no header mbuf");
#if NBPFILTER > 0
/* Tap off here if there is a BPF listener. */
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m0);
#endif
/* txb_new points to next open buffer slot. */
buffer = sc->mem_start +
((sc->txb_new * ED_TXBUF_SIZE) << ED_PAGE_SHIFT);
/* Special case setup for 16 bit boards... */
switch (sc->vendor) {
/*
* For 16bit 3Com boards (which have 16k of memory), we
* have the xmit buffers in a different page of memory
* ('page 0') - so change pages.
*/
case ED_VENDOR_3COM:
if (sc->isa16bit)
bus_space_write_1(iot, ioh,
asicbase + ED_3COM_GACFR,
ED_3COM_GACFR_RSEL);
break;
/*
* Enable 16bit access to shared memory on WD/SMC
* boards.
*/
case ED_VENDOR_WD_SMC:
if (sc->isa16bit)
bus_space_write_1(iot, ioh, asicbase + ED_WD_LAAR,
sc->wd_laar_proto | ED_WD_LAAR_M16EN);
bus_space_write_1(iot, ioh, asicbase + ED_WD_MSR,
sc->wd_msr_proto | ED_WD_MSR_MENB);
(void) bus_space_read_1(iot, sc->sc_delaybah, 0);
(void) bus_space_read_1(iot, sc->sc_delaybah, 0);
break;
}
for (m = m0; m != 0; m = m->m_next) {
ed_shared_writemem(sc, mtod(m, caddr_t), buffer,
m->m_len);
buffer += m->m_len;
}
len = m0->m_pkthdr.len;
/* Restore previous shared memory access. */
switch (sc->vendor) {
case ED_VENDOR_3COM:
if (sc->isa16bit)
bus_space_write_1(iot, ioh,
asicbase + ED_3COM_GACFR,
ED_3COM_GACFR_RSEL | ED_3COM_GACFR_MBS0);
break;
case ED_VENDOR_WD_SMC:
bus_space_write_1(iot, ioh, asicbase + ED_WD_MSR,
sc->wd_msr_proto);
if (sc->isa16bit)
bus_space_write_1(iot, ioh, asicbase + ED_WD_LAAR,
sc->wd_laar_proto);
(void) bus_space_read_1(iot, sc->sc_delaybah, 0);
(void) bus_space_read_1(iot, sc->sc_delaybah, 0);
break;
}
m_freem(m0);
sc->txb_len[sc->txb_new] = max(len, ETHER_MIN_LEN);
/* Start the first packet transmitting. */
if (sc->txb_inuse == 0)
ed_xmit(sc);
/* Point to next buffer slot and wrap if necessary. */
if (++sc->txb_new == sc->txb_cnt)
sc->txb_new = 0;
sc->txb_inuse++;
/* Loop back to the top to possibly buffer more packets. */
goto outloop;
}
/*
* Ethernet interface receiver interrupt.
*/
static inline void
ed_rint(sc)
struct ed_softc *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
int nicbase = sc->nic_base;
u_char boundary, current;
u_short len;
u_char nlen;
struct ed_ring packet_hdr;
int packet_ptr;
loop:
/* Set NIC to page 1 registers to get 'current' pointer. */
NIC_PUT(iot, ioh, nicbase, ED_P0_CR,
sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STA);
/*
* 'sc->next_packet' is the logical beginning of the ring-buffer - i.e.
* it points to where new data has been buffered. The 'CURR' (current)
* register points to the logical end of the ring-buffer - i.e. it
* points to where additional new data will be added. We loop here
* until the logical beginning equals the logical end (or in other
* words, until the ring-buffer is empty).
*/
current = NIC_GET(iot, ioh, nicbase, ED_P1_CURR);
if (sc->next_packet == current)
return;
/* Set NIC to page 0 registers to update boundary register. */
NIC_PUT(iot, ioh, nicbase, ED_P1_CR,
sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA);
do {
/* Get pointer to this buffer's header structure. */
packet_ptr = sc->mem_ring +
((sc->next_packet - sc->rec_page_start) << ED_PAGE_SHIFT);
/*
* The byte count includes a 4 byte header that was added by
* the NIC.
*/
ed_shared_readmem(sc, packet_ptr, (caddr_t)&packet_hdr,
sizeof(packet_hdr));
len = packet_hdr.count;
/*
* Try do deal with old, buggy chips that sometimes duplicate
* the low byte of the length into the high byte. We do this
* by simply ignoring the high byte of the length and always
* recalculating it.
*
* NOTE: sc->next_packet is pointing at the current packet.
*/
if (packet_hdr.next_packet >= sc->next_packet)
nlen = (packet_hdr.next_packet - sc->next_packet);
else
nlen = ((packet_hdr.next_packet - sc->rec_page_start) +
(sc->rec_page_stop - sc->next_packet));
--nlen;
if ((len & ED_PAGE_MASK) + sizeof(packet_hdr) > ED_PAGE_SIZE)
--nlen;
len = (len & ED_PAGE_MASK) | (nlen << ED_PAGE_SHIFT);
#ifdef DIAGNOSTIC
if (len != packet_hdr.count) {
printf("%s: length does not match next packet pointer\n",
sc->sc_dev.dv_xname);
printf("%s: len %04x nlen %04x start %02x first %02x curr %02x next %02x stop %02x\n",
sc->sc_dev.dv_xname, packet_hdr.count, len,
sc->rec_page_start, sc->next_packet, current,
packet_hdr.next_packet, sc->rec_page_stop);
}
#endif
/*
* Be fairly liberal about what we allow as a "reasonable"
* length so that a [crufty] packet will make it to BPF (and
* can thus be analyzed). Note that all that is really
* important is that we have a length that will fit into one
* mbuf cluster or less; the upper layer protocols can then
* figure out the length from their own length field(s).
*/
if (len <= MCLBYTES &&
packet_hdr.next_packet >= sc->rec_page_start &&
packet_hdr.next_packet < sc->rec_page_stop) {
/* Go get packet. */
edread(sc, packet_ptr + sizeof(struct ed_ring),
len - sizeof(struct ed_ring));
} else {
/* Really BAD. The ring pointers are corrupted. */
log(LOG_ERR,
"%s: NIC memory corrupt - invalid packet length %d\n",
sc->sc_dev.dv_xname, len);
++sc->sc_ethercom.ec_if.if_ierrors;
edreset(sc);
return;
}
/* Update next packet pointer. */
sc->next_packet = packet_hdr.next_packet;
/*
* Update NIC boundary pointer - being careful to keep it one
* buffer behind (as recommended by NS databook).
*/
boundary = sc->next_packet - 1;
if (boundary < sc->rec_page_start)
boundary = sc->rec_page_stop - 1;
NIC_PUT(iot, ioh, nicbase, ED_P0_BNRY, boundary);
} while (sc->next_packet != current);
goto loop;
}
/* Ethernet interface interrupt processor. */
int
edintr(arg)
void *arg;
{
struct ed_softc *sc = arg;
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
int nicbase = sc->nic_base, asicbase = sc->asic_base;
u_char isr;
/* Set NIC to page 0 registers. */
NIC_PUT(iot, ioh, nicbase, ED_P0_CR,
sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA);
isr = NIC_GET(iot, ioh, nicbase, ED_P0_ISR);
if (!isr)
return (0);
/* Loop until there are no more new interrupts. */
for (;;) {
/*
* Reset all the bits that we are 'acknowledging' by writing a
* '1' to each bit position that was set.
* (Writing a '1' *clears* the bit.)
*/
NIC_PUT(iot, ioh, nicbase, ED_P0_ISR, isr);
/*
* Handle transmitter interrupts. Handle these first because
* the receiver will reset the board under some conditions.
*/
if (isr & (ED_ISR_PTX | ED_ISR_TXE)) {
u_char collisions = NIC_GET(iot, ioh, nicbase,
ED_P0_NCR) & 0x0f;
/*
* Check for transmit error. If a TX completed with an
* error, we end up throwing the packet away. Really
* the only error that is possible is excessive
* collisions, and in this case it is best to allow the
* automatic mechanisms of TCP to backoff the flow. Of
* course, with UDP we're screwed, but this is expected
* when a network is heavily loaded.
*/
(void) NIC_GET(iot, ioh, nicbase, ED_P0_TSR);
if (isr & ED_ISR_TXE) {
/*
* Excessive collisions (16).
*/
if ((NIC_GET(iot, ioh, nicbase, ED_P0_TSR) &
ED_TSR_ABT) && (collisions == 0)) {
/*
* When collisions total 16, the P0_NCR
* will indicate 0, and the TSR_ABT is
* set.
*/
collisions = 16;
}
/* Update output errors counter. */
++ifp->if_oerrors;
} else {
/*
* Update total number of successfully
* transmitted packets.
*/
++ifp->if_opackets;
}
/* Done with the buffer. */
sc->txb_inuse--;
/* Clear watchdog timer. */
ifp->if_timer = 0;
ifp->if_flags &= ~IFF_OACTIVE;
/*
* Add in total number of collisions on last
* transmission.
*/
ifp->if_collisions += collisions;
/*
* Decrement buffer in-use count if not zero (can only
* be zero if a transmitter interrupt occured while not
* actually transmitting).
* If data is ready to transmit, start it transmitting,
* otherwise defer until after handling receiver.
*/
if (sc->txb_inuse > 0)
ed_xmit(sc);
}
/* Handle receiver interrupts. */
if (isr & (ED_ISR_PRX | ED_ISR_RXE | ED_ISR_OVW)) {
/*
* Overwrite warning. In order to make sure that a
* lockup of the local DMA hasn't occurred, we reset
* and re-init the NIC. The NSC manual suggests only a
* partial reset/re-init is necessary - but some chips
* seem to want more. The DMA lockup has been seen
* only with early rev chips - Methinks this bug was
* fixed in later revs. -DG
*/
if (isr & ED_ISR_OVW) {
++ifp->if_ierrors;
#ifdef DIAGNOSTIC
log(LOG_WARNING,
"%s: warning - receiver ring buffer overrun\n",
sc->sc_dev.dv_xname);
#endif
/* Stop/reset/re-init NIC. */
edreset(sc);
} else {
/*
* Receiver Error. One or more of: CRC error,
* frame alignment error FIFO overrun, or
* missed packet.
*/
if (isr & ED_ISR_RXE) {
++ifp->if_ierrors;
#ifdef ED_DEBUG
printf("%s: receive error %x\n",
sc->sc_dev.dv_xname,
NIC_GET(iot, ioh, nicbase,
ED_P0_RSR));
#endif
}
/*
* Go get the packet(s).
* XXX - Doing this on an error is dubious
* because there shouldn't be any data to get
* (we've configured the interface to not
* accept packets with errors).
*/
/*
* Enable 16bit access to shared memory first
* on WD/SMC boards.
*/
if (sc->vendor == ED_VENDOR_WD_SMC) {
if (sc->isa16bit)
bus_space_write_1(iot, ioh,
asicbase + ED_WD_LAAR,
sc->wd_laar_proto |
ED_WD_LAAR_M16EN);
bus_space_write_1(iot, ioh,
asicbase + ED_WD_MSR,
sc->wd_msr_proto | ED_WD_MSR_MENB);
(void) bus_space_read_1(iot,
sc->sc_delaybah, 0);
(void) bus_space_read_1(iot,
sc->sc_delaybah, 0);
}
ed_rint(sc);
/* Disable 16-bit access. */
if (sc->vendor == ED_VENDOR_WD_SMC) {
bus_space_write_1(iot, ioh,
asicbase + ED_WD_MSR,
sc->wd_msr_proto);
if (sc->isa16bit)
bus_space_write_1(iot, ioh,
asicbase + ED_WD_LAAR,
sc->wd_laar_proto);
(void) bus_space_read_1(iot,
sc->sc_delaybah, 0);
(void) bus_space_read_1(iot,
sc->sc_delaybah, 0);
}
}
}
/*
* If it looks like the transmitter can take more data, attempt
* to start output on the interface. This is done after
* handling the receiver to give the receiver priority.
*/
edstart(ifp);
/*
* Return NIC CR to standard state: page 0, remote DMA
* complete, start (toggling the TXP bit off, even if was just
* set in the transmit routine, is *okay* - it is 'edge'
* triggered from low to high).
*/
NIC_PUT(iot, ioh, nicbase, ED_P0_CR,
sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA);
/*
* If the Network Talley Counters overflow, read them to reset
* them. It appears that old 8390's won't clear the ISR flag
* otherwise - resulting in an infinite loop.
*/
if (isr & ED_ISR_CNT) {
(void) NIC_GET(iot, ioh, nicbase, ED_P0_CNTR0);
(void) NIC_GET(iot, ioh, nicbase, ED_P0_CNTR1);
(void) NIC_GET(iot, ioh, nicbase, ED_P0_CNTR2);
}
#if NRND > 0
if (isr)
rnd_add_uint32(&sc->rnd_source, isr);
#endif
isr = NIC_GET(iot, ioh, nicbase, ED_P0_ISR);
if (!isr)
return (1);
}
}
/*
* Process an ioctl request. This code needs some work - it looks pretty ugly.
*/
int
edioctl(ifp, cmd, data)
register struct ifnet *ifp;
u_long cmd;
caddr_t data;
{
struct ed_softc *sc = ifp->if_softc;
register struct ifaddr *ifa = (struct ifaddr *)data;
struct ifreq *ifr = (struct ifreq *)data;
int s, error = 0;
s = splnet();
switch (cmd) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
edinit(sc);
arp_ifinit(ifp, ifa);
break;
#endif
#ifdef NS
/* XXX - This code is probably wrong. */
case AF_NS:
{
register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
if (ns_nullhost(*ina))
ina->x_host =
*(union ns_host *)LLADDR(ifp->if_sadl);
else {
bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
ETHER_ADDR_LEN);
}
/* Set new address. */
edinit(sc);
break;
}
#endif
default:
edinit(sc);
break;
}
break;
case SIOCSIFFLAGS:
if ((ifp->if_flags & IFF_UP) == 0 &&
(ifp->if_flags & IFF_RUNNING) != 0) {
/*
* If interface is marked down and it is running, then
* stop it.
*/
edstop(sc);
ifp->if_flags &= ~IFF_RUNNING;
} else if ((ifp->if_flags & IFF_UP) != 0 &&
(ifp->if_flags & IFF_RUNNING) == 0) {
/*
* If interface is marked up and it is stopped, then
* start it.
*/
edinit(sc);
} else {
/*
* Reset the interface to pick up changes in any other
* flags that affect hardware registers.
*/
edstop(sc);
edinit(sc);
}
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
/* Update our multicast list. */
error = (cmd == SIOCADDMULTI) ?
ether_addmulti(ifr, &sc->sc_ethercom) :
ether_delmulti(ifr, &sc->sc_ethercom);
if (error == ENETRESET) {
/*
* Multicast list has changed; set the hardware filter
* accordingly.
*/
edstop(sc); /* XXX for ds_setmcaf? */
edinit(sc);
error = 0;
}
break;
default:
error = EINVAL;
break;
}
splx(s);
return (error);
}
/*
* Retreive packet from shared memory and send to the next level up via
* ether_input(). If there is a BPF listener, give a copy to BPF, too.
*/
void
edread(sc, buf, len)
struct ed_softc *sc;
int buf, len;
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct mbuf *m;
struct ether_header *eh;
/* Pull packet off interface. */
m = edget(sc, buf, len);
if (m == 0) {
ifp->if_ierrors++;
return;
}
ifp->if_ipackets++;
/* We assume that the header fit entirely in one mbuf. */
eh = mtod(m, struct ether_header *);
#if NBPFILTER > 0
/*
* Check if there's a BPF listener on this interface.
* If so, hand off the raw packet to BPF.
*/
if (ifp->if_bpf) {
bpf_mtap(ifp->if_bpf, m);
/*
* Note that the interface cannot be in promiscuous mode if
* there are no BPF listeners. And if we are in promiscuous
* mode, we have to check if this packet is really ours.
*/
if ((ifp->if_flags & IFF_PROMISC) &&
(eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
bcmp(eh->ether_dhost, LLADDR(ifp->if_sadl),
sizeof(eh->ether_dhost)) != 0) {
m_freem(m);
return;
}
}
#endif
/* We assume that the header fit entirely in one mbuf. */
m_adj(m, sizeof(struct ether_header));
ether_input(ifp, eh, m);
}
/*
* Supporting routines.
*/
/*
* Given a source and destination address, copy 'amount' of a packet from the
* ring buffer into a linear destination buffer. Takes into account ring-wrap.
*/
static inline int
ed_ring_copy(sc, src, dst, amount)
struct ed_softc *sc;
int src;
caddr_t dst;
u_short amount;
{
u_short tmp_amount;
/* Does copy wrap to lower addr in ring buffer? */
if (src + amount > sc->mem_end) {
tmp_amount = sc->mem_end - src;
/* Copy amount up to end of NIC memory. */
ed_shared_readmem(sc, src, dst, tmp_amount);
amount -= tmp_amount;
src = sc->mem_ring;
dst += tmp_amount;
}
ed_shared_readmem(sc, src, dst, amount);
return (src + amount);
}
/*
* Copy data from receive buffer to end of mbuf chain allocate additional mbufs
* as needed. Return pointer to last mbuf in chain.
* sc = ed info (softc)
* src = pointer in ed ring buffer
* dst = pointer to last mbuf in mbuf chain to copy to
* amount = amount of data to copy
*/
struct mbuf *
edget(sc, src, total_len)
struct ed_softc *sc;
int src;
u_short total_len;
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct mbuf *top, **mp, *m;
int len;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == 0)
return 0;
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = total_len;
len = MHLEN;
top = 0;
mp = &top;
while (total_len > 0) {
if (top) {
MGET(m, M_DONTWAIT, MT_DATA);
if (m == 0) {
m_freem(top);
return 0;
}
len = MLEN;
}
if (total_len >= MINCLSIZE) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_free(m);
m_freem(top);
return 0;
}
len = MCLBYTES;
}
m->m_len = len = min(total_len, len);
src = ed_ring_copy(sc, src, mtod(m, caddr_t), len);
total_len -= len;
*mp = m;
mp = &m->m_next;
}
return top;
}
/*
* Compute the multicast address filter from the list of multicast addresses we
* need to listen to.
*/
void
ed_getmcaf(ec, af)
struct ethercom *ec;
u_long *af;
{
struct ifnet *ifp = &ec->ec_if;
struct ether_multi *enm;
register u_char *cp, c;
register u_long crc;
register int i, len;
struct ether_multistep step;
/*
* Set up multicast address filter by passing all multicast addresses
* through a crc generator, and then using the high order 6 bits as an
* index into the 64 bit logical address filter. The high order bit
* selects the word, while the rest of the bits select the bit within
* the word.
*/
if (ifp->if_flags & IFF_PROMISC) {
ifp->if_flags |= IFF_ALLMULTI;
af[0] = af[1] = 0xffffffff;
return;
}
af[0] = af[1] = 0;
ETHER_FIRST_MULTI(step, ec, enm);
while (enm != NULL) {
if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
sizeof(enm->enm_addrlo)) != 0) {
/*
* We must listen to a range of multicast addresses.
* For now, just accept all multicasts, rather than
* trying to set only those filter bits needed to match
* the range. (At this time, the only use of address
* ranges is for IP multicast routing, for which the
* range is big enough to require all bits set.)
*/
ifp->if_flags |= IFF_ALLMULTI;
af[0] = af[1] = 0xffffffff;
return;
}
cp = enm->enm_addrlo;
crc = 0xffffffff;
for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
c = *cp++;
for (i = 8; --i >= 0;) {
if (((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01)) {
crc <<= 1;
crc ^= 0x04c11db6 | 1;
} else
crc <<= 1;
c >>= 1;
}
}
/* Just want the 6 most significant bits. */
crc >>= 26;
/* Turn on the corresponding bit in the filter. */
af[crc >> 5] |= 1 << ((crc & 0x1f) ^ 0);
ETHER_NEXT_MULTI(step, enm);
}
ifp->if_flags &= ~IFF_ALLMULTI;
}
void
ed_shared_writemem(sc, from, card, len)
struct ed_softc *sc;
caddr_t from;
int card, len;
{
bus_space_tag_t memt = sc->sc_memt;
bus_space_handle_t memh = sc->sc_memh;
/*
* For 16-bit cards, 16-bit memory access has already
* been set up. Note that some cards are really picky
* about enforcing 16-bit access to memory, so we
* have to be careful.
*/
if (sc->isa16bit) {
while (len > 1) {
bus_space_write_2(memt, memh, card,
*((u_int16_t *)from));
from += 2;
card += 2;
len -= 2;
}
if (len == 1)
bus_space_write_2(memt, memh, card, (u_int16_t)(*from));
} else {
while (len--)
bus_space_write_1(memt, memh, card++, *from++);
}
}
void
ed_shared_readmem(sc, card, to, len)
struct ed_softc *sc;
caddr_t to;
int card, len;
{
bus_space_tag_t memt = sc->sc_memt;
bus_space_handle_t memh = sc->sc_memh;
/*
* See comment above re. 16-bit cards.
*/
if (sc->isa16bit) {
while (len > 1) {
*((u_int16_t *)to) = bus_space_read_2(memt, memh, card);
to += 2;
card += 2;
len -= 2;
}
if (len == 1)
*to = bus_space_read_2(memt, memh, card) & 0xff;
} else {
while (len--)
*to++ = bus_space_read_1(memt, memh, card++);
}
}