NetBSD/sys/arch/vax/uba/qd.c
1996-10-13 03:29:05 +00:00

3612 lines
88 KiB
C

/* $NetBSD: qd.c,v 1.4 1996/10/13 03:35:17 christos Exp $ */
/*-
* Copyright (c) 1988 Regents of the University of California.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)qd.c 7.1 (Berkeley) 6/28/91
*/
/************************************************************************
* *
* Copyright (c) 1985-1988 by *
* Digital Equipment Corporation, Maynard, MA *
* All rights reserved. *
* *
* This software is furnished under a license and may be used and *
* copied only in accordance with the terms of such license and *
* with the inclusion of the above copyright notice. This *
* software or any other copies thereof may not be provided or *
* otherwise made available to any other person. No title to and *
* ownership of the software is hereby transferred. *
* *
* The information in this software is subject to change without *
* notice and should not be construed as a commitment by Digital *
* Equipment Corporation. *
* *
* Digital assumes no responsibility for the use or reliability *
* of its software on equipment which is not supplied by Digital. *
* *
*************************************************************************/
/*
* qd.c - QDSS display driver for VAXSTATION-II GPX workstation
*/
#include "qd.h"
#if NQD > 0
#include "../include/pte.h"
#include "../include/mtpr.h"
#include "sys/param.h"
#include "../include/cpu.h"
#include "sys/conf.h"
#include "sys/user.h"
#include "qdioctl.h"
#include "sys/tty.h"
#include "sys/map.h"
#include "sys/buf.h"
#include "sys/vm.h"
#include "sys/clist.h"
#include "sys/file.h"
#include "sys/uio.h"
#include "sys/kernel.h"
#include "sys/exec.h"
#include "sys/proc.h"
#include "ubareg.h"
#include "ubavar.h"
#include "sys/syslog.h"
#include "qduser.h" /* definitions shared with user level client */
#include "qdreg.h" /* QDSS device register structures */
/*
* QDSS driver status flags for tracking operational state
*/
struct qdflags {
u_int inuse; /* which minor dev's are in use now */
u_int config; /* I/O page register content */
u_int mapped; /* user mapping status word */
u_int kernel_loop; /* if kernel console is redirected */
u_int user_dma; /* DMA from user space in progress */
u_short pntr_id; /* type code of pointing device */
u_short duart_imask; /* shadowing for duart intrpt mask reg */
u_short adder_ie; /* shadowing for adder intrpt enbl reg */
u_short curs_acc; /* cursor acceleration factor */
u_short curs_thr; /* cursor acceleration threshold level */
u_short tab_res; /* tablet resolution factor */
u_short selmask; /* mask for active qd select entries */
};
/*
* bit definitions for 'inuse' entry
*/
#define CONS_DEV 0x01
#define GRAPHIC_DEV 0x04
/*
* bit definitions for 'mapped' member of flag structure
*/
#define MAPDEV 0x01 /* hardware is mapped */
#define MAPDMA 0x02 /* DMA buffer mapped */
#define MAPEQ 0x04 /* event queue buffer mapped */
#define MAPSCR 0x08 /* scroll param area mapped */
#define MAPCOLOR 0x10 /* color map writing buffer mapped */
/*
* bit definitions for 'selmask' member of qdflag structure
*/
#define SEL_READ 0x01 /* read select is active */
#define SEL_WRITE 0x02 /* write select is active */
/*
* constants used in shared memory operations
*/
#define EVENT_BUFSIZE 1024 /* # of bytes per device's event buffer */
#define MAXEVENTS ( (EVENT_BUFSIZE - sizeof(struct qdinput)) \
/ sizeof(struct _vs_event) )
#define DMA_BUFSIZ (1024 * 10)
#define COLOR_BUFSIZ ((sizeof(struct color_buf) + 512) & ~0x01FF)
/*
* reference to an array of "uba_device" structures built by the auto
* configuration program. The uba_device structure decribes the device
* sufficiently for the driver to talk to it. The auto configuration code
* fills in the uba_device structures (located in ioconf.c) from user
* maintained info.
*/
struct uba_device *qdinfo[NQD]; /* array of pntrs to each QDSS's */
struct tty qd_tty[NQD*4]; /* teletype structures for each.. */
extern char qvmem[][128*NBPG];
extern struct pte QVmap[][128];
#define CHUNK (64 * 1024)
#define QMEMSIZE (1024 * 1024 * 4) /* 4 meg */
/*
* static storage used by multiple functions in this code
*/
int Qbus_unmap[NQD]; /* Qbus mapper release code */
struct qdflags qdflags[NQD]; /* QDSS device status flags */
struct qdmap qdmap[NQD]; /* QDSS register map structure */
caddr_t qdbase[NQD]; /* base address of each QDSS unit */
struct buf qdbuf[NQD]; /* buf structs used by strategy */
short qdopened[NQD]; /* graphics device is open exclusive use */
/*
* the array "event_shared[]" is made up of a number of event queue buffers
* equal to the number of QDSS's configured into the running kernel (NQD).
* Each event queue buffer begins with an event queue header (struct qdinput)
* followed by a group of event queue entries (struct _vs_event). The array
* "*eq_header[]" is an array of pointers to the start of each event queue
* buffer in "event_shared[]".
*/
#define EQSIZE ((EVENT_BUFSIZE * NQD) + 512)
char event_shared[EQSIZE]; /* reserve space for event bufs */
struct qdinput *eq_header[NQD]; /* event queue header pntrs */
/*
* This allocation method reserves enough memory pages for NQD shared DMA I/O
* buffers. Each buffer must consume an integral number of memory pages to
* guarantee that a following buffer will begin on a page boundary. Also,
* enough space is allocated so that the FIRST I/O buffer can start at the
* 1st page boundary after "&DMA_shared". Page boundaries are used so that
* memory protections can be turned on/off for individual buffers.
*/
#define IOBUFSIZE ((DMA_BUFSIZ * NQD) + 512)
char DMA_shared[IOBUFSIZE]; /* reserve I/O buffer space */
struct DMAreq_header *DMAheader[NQD]; /* DMA buffer header pntrs */
/*
* The driver assists a client in scroll operations by loading dragon
* registers from an interrupt service routine. The loading is done using
* parameters found in memory shrade between the driver and it's client.
* The scroll parameter structures are ALL loacted in the same memory page
* for reasons of memory economy.
*/
char scroll_shared[2 * 512]; /* reserve space for scroll structs */
struct scroll *scroll[NQD]; /* pointers to scroll structures */
/*
* the driver is programmable to provide the user with color map write
* services at VSYNC interrupt time. At interrupt time the driver loads
* the color map with any user-requested load data found in shared memory
*/
#define COLOR_SHARED ((COLOR_BUFSIZ * NQD) + 512)
char color_shared[COLOR_SHARED]; /* reserve space: color bufs */
struct color_buf *color_buf[NQD]; /* pointers to color bufs */
/*
* mouse input event structures
*/
struct mouse_report last_rep[NQD];
struct mouse_report current_rep[NQD];
struct proc *qdrsel[NQD]; /* process waiting for select */
struct _vs_cursor cursor[NQD]; /* console cursor */
int qdcount = 0; /* count of successfully probed qd's */
int nNQD = NQD;
int DMAbuf_size = DMA_BUFSIZ;
int QDlast_DMAtype; /* type of the last DMA operation */
#define QDSSMAJOR 41 /* QDSS major device number */
/*
* macro to get system time. Used to time stamp event queue entries
*/
#define TOY ((time.tv_sec * 100) + (time.tv_usec / 10000))
int qdprobe();
int qdattach();
int qddint(); /* DMA gate array intrpt service */
int qdaint(); /* Dragon ADDER intrpt service */
int qdiint();
u_short qdstd[] = { 0 };
struct uba_driver qddriver = {
qdprobe, /* device probe entry */
0, /* no slave device */
qdattach, /* device attach entry */
0, /* no "fill csr/ba to start" */
qdstd, /* device addresses */
"qd", /* device name string */
qdinfo /* ptr to QDSS's uba_device struct */
};
#define QDPRIOR (PZERO-1) /* must be negative */
#define FALSE 0
#define TRUE ~FALSE
#define BAD -1
#define GOOD 0
/*
* macro to create a system virtual page number from system virtual adrs
*/
#define VTOP(x) (((int)x & ~0xC0000000) >> PGSHIFT)
/*
* QDSS register address offsets from start of QDSS address space
*/
#define QDSIZE (52 * 1024) /* size of entire QDSS foot print */
#define TMPSIZE (16 * 1024) /* template RAM is 8k SHORT WORDS */
#define TMPSTART 0x8000 /* offset of template RAM from base adrs */
#define REGSIZE (5 * 512) /* regs touch 2.5k (5 pages) of addr space */
#define REGSTART 0xC000 /* offset of reg pages from base adrs */
#define ADDER (REGSTART+0x000)
#define DGA (REGSTART+0x200)
#define DUART (REGSTART+0x400)
#define MEMCSR (REGSTART+0x800)
#define CLRSIZE (3 * 512) /* color map size */
#define CLRSTART (REGSTART+0xA00) /* color map start offset from base */
/* 0x0C00 really */
#define RED (CLRSTART+0x000)
#define BLUE (CLRSTART+0x200)
#define GREEN (CLRSTART+0x400)
/*
* QDSS minor device numbers. The *real* minor device numbers are in
* the bottom two bits of the major/minor device spec. Bits 2 and up are
* used to specify the QDSS device number (ie: which one?)
*/
#define CONS 0
#define GRAPHIC 2
/*
* console cursor bitmap (white block cursor)
*/
short cons_cursor[32] = {
/* A */ 0x00FF, 0x00FF, 0x00FF, 0x00FF, 0x00FF, 0x00FF, 0x00FF, 0x00FF,
0x00FF, 0x00FF, 0x00FF, 0x00FF, 0x00FF, 0x00FF, 0x00FF, 0x00FF,
/* B */ 0x00FF, 0x00FF, 0x00FF, 0x00FF, 0x00FF, 0x00FF, 0x00FF, 0x00FF,
0x00FF, 0x00FF, 0x00FF, 0x00FF, 0x00FF, 0x00FF, 0x00FF, 0x00FF
};
/*
* constants used in font operations
*/
#define CHARS 190 /* # of chars in the font */
#define CHAR_HEIGHT 15 /* char height in pixels */
#define CHAR_WIDTH 8 /* char width in pixels*/
#define FONT_WIDTH (CHAR_WIDTH * CHARS) /* font width in pixels */
#define ROWS CHAR_HEIGHT
#define FONT_X 0 /* font's off screen adrs */
#define FONT_Y (2048 - CHAR_HEIGHT)
/* Offset to second row characters (XXX - should remove) */
#define FONT_OFFSET ((MAX_SCREEN_X/CHAR_WIDTH)*CHAR_HEIGHT)
extern char q_font[]; /* reference font object code */
extern u_short q_key[]; /* reference key xlation tables */
extern u_short q_shift_key[];
extern char *q_special[];
/*
* definitions for cursor acceleration reporting
*/
#define ACC_OFF 0x01 /* acceleration is inactive */
/*
* virtual console support.
*/
extern (*v_putc)();
#ifdef KADB
extern (*v_getc)();
extern (*v_poll)();
#endif
extern struct cdevsw *consops;
int qdputc();
int qdgetc();
int qdpoll();
int qdstart();
int qdpolling = 0;
/*
* LK-201 state storage for input console keyboard conversion to ASCII
*/
struct q_keyboard {
int shift; /* state variables */
int cntrl;
int lock;
int lastcode; /* last keycode typed */
unsigned kup[8]; /* bits for each keycode*/
unsigned dkeys[8]; /* down/up mode keys */
char last; /* last character */
} q_keyboard;
/*
* tty settings on first open
*/
#define IFLAG (BRKINT|ISTRIP|IXON|IXANY|ICRNL|IMAXBEL)
#define OFLAG (OPOST|OXTABS|ONLCR)
#define LFLAG (ISIG|ICANON|ECHO|IEXTEN)
#define CFLAG (PARENB|CREAD|CS7|CLOCAL)
/*
* Init QDSS as console (before probe routine)
*/
qdcons_init()
{
register unit;
caddr_t phys_adr; /* physical QDSS base adrs */
u_int mapix; /* index into QVmap[] array */
struct percpu *pcpu; /* pointer to cpusw structure */
register struct qbus *qb;
u_short *qdaddr; /* address of QDSS IO page CSR */
u_short *devptr; /* vitual device space */
extern cnputc();
#define QDSSCSR 0x1F00
if (v_putc != cnputc)
return 0;
unit = 0;
/*
* find the cpusw entry that matches this machine.
*/
for (pcpu = percpu; pcpu && pcpu->pc_cputype != cpu; pcpu++)
;
if (pcpu == NULL)
return 0;
if (pcpu->pc_io->io_type != IO_QBUS)
return 0;
/*
* Map device registers - the last 8K of qvmem.
*/
qb = (struct qbus *)pcpu->pc_io->io_details;
ioaccess(qb->qb_iopage, UMEMmap[0] + qb->qb_memsize,
UBAIOPAGES * NBPG);
devptr = (u_short *)((char *)umem[0]+(qb->qb_memsize * NBPG));
qdaddr = (u_short *)((u_int)devptr + ubdevreg(QDSSCSR));
if (badaddr((caddr_t)qdaddr, sizeof(short)))
return 0;
/*
* Map q-bus memory used by qdss. (separate map)
*/
mapix = QMEMSIZE - (CHUNK * (unit + 1));
phys_adr = qb->qb_maddr + mapix;
ioaccess(phys_adr, QVmap[0], (CHUNK*NQD));
/*
* tell QDSS which Q memory address base to decode
* (shifted right 16 bits - its in 64K units)
*/
*qdaddr = (u_short)((int)mapix >> 16);
qdflags[unit].config = *(u_short *)qdaddr;
/*
* load qdmap struct with the virtual addresses of the QDSS elements
*/
qdbase[unit] = (caddr_t) (qvmem[0]);
qdmap[unit].template = qdbase[unit] + TMPSTART;
qdmap[unit].adder = qdbase[unit] + ADDER;
qdmap[unit].dga = qdbase[unit] + DGA;
qdmap[unit].duart = qdbase[unit] + DUART;
qdmap[unit].memcsr = qdbase[unit] + MEMCSR;
qdmap[unit].red = qdbase[unit] + RED;
qdmap[unit].blue = qdbase[unit] + BLUE;
qdmap[unit].green = qdbase[unit] + GREEN;
qdflags[unit].duart_imask = 0; /* init shadow variables */
/*
* init the QDSS
*/
/*
printf("qdbase[0] = %x, qdmap[0].memcsr = %x\n",
(char *)qdbase[0], qdmap[0].memcsr);
*/
*(short *)qdmap[unit].memcsr |= SYNC_ON; /* once only: turn on sync */
cursor[unit].x = 0;
cursor[unit].y = 0;
init_shared(unit); /* init shared memory */
setup_dragon(unit); /* init the ADDER/VIPER stuff */
clear_qd_screen(unit); /* clear the screen */
ldfont(unit); /* load the console font */
ldcursor(unit, cons_cursor); /* load default cursor map */
setup_input(unit); /* init the DUART */
v_putc = qdputc; /* kernel console output to qdss */
#ifdef KADB
v_getc = qdgetc; /* kernel console input from qdss */
v_poll = qdpoll; /* kdb hook to disable char intr */
#endif
consops = &cdevsw[QDSSMAJOR]; /* virtual console is qdss */
return 1;
} /* qdcons_init */
/*
* Configure QDSS into Q memory and make it intrpt.
*
* side effects: QDSS gets mapped into Qbus memory space at the first
* vacant 64kb boundary counting back from the top of
* Qbus memory space (qvmem+4mb)
*
* return: QDSS bus request level and vector address returned in
* registers by UNIX convention.
*
*/
qdprobe(reg)
caddr_t reg; /* character pointer to the QDSS I/O page register */
{
register int br, cvec;
register int unit;
struct dga *dga; /* pointer to gate array structure */
int vector;
#ifdef notdef
int *ptep; /* page table entry pointer */
caddr_t phys_adr; /* physical QDSS base adrs */
u_int mapix;
#endif
#ifdef lint
br = 0; cvec = br; br = cvec; nNQD = br; br = nNQD;
qddint(0); qdaint(0); qdiint(0); (void)qdgetc();
#endif
/*
* calculate board unit number from I/O page register address
*/
unit = (int) (((int)reg >> 1) & 0x0007);
/*
* QDSS regs must be mapped to Qbus memory space at a 64kb
* physical boundary. The Qbus memory space is mapped into
* the system memory space at config time. After config
* runs, "qvmem[0]" (ubavar.h) holds the system virtual adrs
* of the start of Qbus memory. The Qbus memory page table
* is found via an array of pte ptrs called "QVmap[]" (ubavar.h)
* which is also loaded at config time. These are the
* variables used below to find a vacant 64kb boundary in
* Qbus memory, and load it's corresponding physical adrs
* into the QDSS's I/O page CSR.
*/
/*
* Only if QD is the graphics device.
*/
/* if this QDSS is NOT the console, then do init here.. */
if (unit != 0) {
printf("qd: can't support two qdss's (yet)\n");
#ifdef notdef /* can't test */
if (v_consputc != qdputc || unit != 0) {
/*
* read QDSS config info
*/
qdflags[unit].config = *(u_short *)reg;
/*
* find an empty 64kb adrs boundary
*/
qdbase[unit] = (caddr_t) (qvmem[0] + QMEMSIZE - CHUNK);
/*
* find the cpusw entry that matches this machine.
*/
cpup = &cpusw[cpu];
while (!(BADADDR(qdbase[unit], sizeof(short))))
qdbase[unit] -= CHUNK;
/*
* tell QDSS which Q memory address base to decode
*/
mapix = (int) (VTOP(qdbase[unit]) - VTOP(qvmem[0]));
ptep = (int *) QVmap[0] + mapix;
phys_adr = (caddr_t)(((int)*ptep&0x001FFFFF)<<PGSHIFT);
*(u_short *)reg = (u_short) ((int)phys_adr >> 16);
/*
* load QDSS adrs map with system addresses
* of device regs
*/
qdmap[unit].template = qdbase[unit] + TMPSTART;
qdmap[unit].adder = qdbase[unit] + ADDER;
qdmap[unit].dga = qdbase[unit] + DGA;
qdmap[unit].duart = qdbase[unit] + DUART;
qdmap[unit].memcsr = qdbase[unit] + MEMCSR;
qdmap[unit].red = qdbase[unit] + RED;
qdmap[unit].blue = qdbase[unit] + BLUE;
qdmap[unit].green = qdbase[unit] + GREEN;
/* device init */
cursor[unit].x = 0;
cursor[unit].y = 0;
init_shared(unit); /* init shared memory */
setup_dragon(unit); /* init the ADDER/VIPER stuff */
ldcursor(unit, cons_cursor); /* load default cursor map */
setup_input(unit); /* init the DUART */
clear_qd_screen(unit);
ldfont(unit); /* load the console font */
/* once only: turn on sync */
*(short *)qdmap[unit].memcsr |= SYNC_ON;
}
#endif /*notdef*/
}
/*
* The QDSS interrupts at HEX vectors xx0 (DMA) xx4
* (ADDER) and xx8 (DUART). Therefore, we take three
* vectors from the vector pool, and then continue
* to take them until we get a xx0 HEX vector. The
* pool provides vectors in contiguous decending
* order.
*/
vector = (uba_hd[0].uh_lastiv -= 4*3); /* take three vectors */
while (vector & 0x0F) { /* if lo nibble != 0.. */
/* ..take another vector */
vector = (uba_hd[0].uh_lastiv -= 4);
}
/*
* setup DGA to do a DMA interrupt (transfer count = 0)
*/
dga = (struct dga *) qdmap[unit].dga;
dga->csr = (short) HALT; /* disable everything */
dga->ivr = (short) vector; /* load intrpt base vector */
dga->bytcnt_lo = (short) 0; /* DMA xfer count = 0 */
dga->bytcnt_hi = (short) 0;
/*
* turn on DMA interrupts
*/
dga->csr &= ~SET_DONE_FIFO;
dga->csr |= DMA_IE | DL_ENB;
DELAY(20000); /* wait for the intrpt */
dga->csr = HALT; /* stop the wheels */
if (cvec != vector) /* if vector != base vector.. */
return(0); /* ..return = 'no device' */
/*
* score this as an existing qdss
*/
qdcount++;
return(sizeof(short)); /* return size of QDSS I/O page reg */
} /* qdprobe */
qdattach(ui)
struct uba_device *ui;
{
register unit; /* QDSS module # for this call */
unit = ui->ui_unit; /* get QDSS number */
/*
* init "qdflags[]" for this QDSS
*/
qdflags[unit].inuse = 0; /* init inuse variable EARLY! */
qdflags[unit].mapped = 0;
qdflags[unit].kernel_loop = -1;
qdflags[unit].user_dma = 0;
qdflags[unit].curs_acc = ACC_OFF;
qdflags[unit].curs_thr = 128;
qdflags[unit].tab_res = 2; /* default tablet resolution factor */
qdflags[unit].duart_imask = 0; /* init shadow variables */
qdflags[unit].adder_ie = 0;
/*
* init structures used in kbd/mouse interrupt service. This code must
* come after the "init_shared()" routine has run since that routine
* inits the eq_header[unit] structure used here.
*/
/*
* init the "latest mouse report" structure
*/
last_rep[unit].state = 0;
last_rep[unit].dx = 0;
last_rep[unit].dy = 0;
last_rep[unit].bytcnt = 0;
/*
* init the event queue (except mouse position)
*/
eq_header[unit]->header.events =
(struct _vs_event *)((int)eq_header[unit] + sizeof(struct qdinput));
eq_header[unit]->header.size = MAXEVENTS;
eq_header[unit]->header.head = 0;
eq_header[unit]->header.tail = 0;
/*
* open exclusive for graphics device.
*/
qdopened[unit] = 0;
} /* qdattach */
/*ARGSUSED*/
qdopen(dev, flag)
dev_t dev;
int flag;
{
register struct uba_device *ui; /* ptr to uba structures */
register struct dga *dga; /* ptr to gate array struct */
register struct tty *tp;
struct duart *duart;
int unit;
int minor_dev;
minor_dev = minor(dev); /* get QDSS minor device number */
unit = minor_dev >> 2;
/*
* check for illegal conditions
*/
ui = qdinfo[unit]; /* get ptr to QDSS device struct */
if (ui == 0 || ui->ui_alive == 0)
return(ENXIO); /* no such device or address */
duart = (struct duart *) qdmap[unit].duart;
dga = (struct dga *) qdmap[unit].dga;
if ((minor_dev & 0x03) == 2) {
/*
* this is the graphic device...
*/
if (qdopened[unit] != 0)
return(EBUSY);
else
qdopened[unit] = 1;
qdflags[unit].inuse |= GRAPHIC_DEV; /* graphics dev is open */
/*
* enble kbd & mouse intrpts in DUART mask reg
*/
qdflags[unit].duart_imask |= 0x22;
duart->imask = qdflags[unit].duart_imask;
} else {
/*
* this is the console
*/
qdflags[unit].inuse |= CONS_DEV; /* mark console as open */
dga->csr |= CURS_ENB;
qdflags[unit].duart_imask |= 0x02;
duart->imask = qdflags[unit].duart_imask;
/*
* some setup for tty handling
*/
tp = &qd_tty[minor_dev];
tp->t_addr = ui->ui_addr;
tp->t_oproc = qdstart;
if ((tp->t_state & TS_ISOPEN) == 0) {
ttychars(tp);
tp->t_ispeed = B9600;
tp->t_ospeed = B9600;
tp->t_state = TS_ISOPEN | TS_CARR_ON;
tp->t_iflag = TTYDEF_IFLAG;
tp->t_oflag = TTYDEF_OFLAG;
tp->t_lflag = TTYDEF_LFLAG;
tp->t_cflag = TTYDEF_CFLAG;
}
/*
* enable intrpts, open line discipline
*/
dga->csr |= GLOBAL_IE; /* turn on the interrupts */
return ((*linesw[tp->t_line].l_open)(dev, tp));
}
dga->csr |= GLOBAL_IE; /* turn on the interrupts */
return(0);
} /* qdopen */
/*ARGSUSED*/
qdclose(dev, flag, mode, p)
dev_t dev;
int flag, mode;
struct proc *p;
{
register struct tty *tp;
register struct qdmap *qd;
register int *ptep;
struct dga *dga; /* gate array register map pointer */
struct duart *duart;
struct adder *adder;
int unit;
int minor_dev;
u_int mapix;
int i; /* SIGNED index */
minor_dev = minor(dev); /* get minor device number */
unit = minor_dev >> 2; /* get QDSS number */
qd = &qdmap[unit];
if ((minor_dev & 0x03) == 2) {
/*
* this is the graphic device...
*/
if (qdopened[unit] != 1)
return(EBUSY);
else
qdopened[unit] = 0; /* allow it to be re-opened */
/*
* re-protect device memory
*/
if (qdflags[unit].mapped & MAPDEV) {
/*
* TEMPLATE RAM
*/
mapix = VTOP((int)qd->template) - VTOP(qvmem[0]);
ptep = (int *)(QVmap[0] + mapix);
for (i = 0; i < btop(TMPSIZE); i++, ptep++)
*ptep = (*ptep & ~PG_PROT) | PG_V | PG_KW;
/*
* ADDER
*/
mapix = VTOP((int)qd->adder) - VTOP(qvmem[0]);
ptep = (int *)(QVmap[0] + mapix);
for (i = 0; i < btop(REGSIZE); i++, ptep++)
*ptep = (*ptep & ~PG_PROT) | PG_V | PG_KW;
/*
* COLOR MAPS
*/
mapix = VTOP((int)qd->red) - VTOP(qvmem[0]);
ptep = (int *)(QVmap[0] + mapix);
for (i = 0; i < btop(CLRSIZE); i++, ptep++)
*ptep = (*ptep & ~PG_PROT) | PG_V | PG_KW;
}
/*
* re-protect DMA buffer and free the map registers
*/
if (qdflags[unit].mapped & MAPDMA) {
dga = (struct dga *) qdmap[unit].dga;
adder = (struct adder *) qdmap[unit].adder;
dga->csr &= ~DMA_IE;
dga->csr &= ~0x0600; /* kill DMA */
adder->command = CANCEL;
/*
* if DMA was running, flush spurious intrpt
*/
if (dga->bytcnt_lo != 0) {
dga->bytcnt_lo = 0;
dga->bytcnt_hi = 0;
DMA_SETIGNORE(DMAheader[unit]);
dga->csr |= DMA_IE;
dga->csr &= ~DMA_IE;
}
ptep = (int *)
((VTOP(DMAheader[unit]*4)) + (mfpr(SBR)|0x80000000));
for (i = 0; i < btop(DMAbuf_size); i++, ptep++)
*ptep = (*ptep & ~PG_PROT) | PG_V | PG_KW;
ubarelse(0, &Qbus_unmap[unit]);
}
/*
* re-protect 1K (2 pages) event queue
*/
if (qdflags[unit].mapped & MAPEQ) {
ptep = (int *)
((VTOP(eq_header[unit])*4) + (mfpr(SBR)|0x80000000));
*ptep = (*ptep & ~PG_PROT) | PG_KW | PG_V; ptep++;
*ptep = (*ptep & ~PG_PROT) | PG_KW | PG_V;
}
/*
* re-protect scroll param area and disable scroll intrpts
*/
if (qdflags[unit].mapped & MAPSCR) {
ptep = (int *) ((VTOP(scroll[unit]) * 4)
+ (mfpr(SBR) | 0x80000000));
/*
* re-protect 512 scroll param area
*/
*ptep = (*ptep & ~PG_PROT) | PG_KW | PG_V;
adder = (struct adder *) qdmap[unit].adder;
qdflags[unit].adder_ie &= ~FRAME_SYNC;
adder->interrupt_enable = qdflags[unit].adder_ie;
}
/*
* re-protect color map write buffer area and kill intrpts
*/
if (qdflags[unit].mapped & MAPCOLOR) {
ptep = (int *) ((VTOP(color_buf[unit]) * 4)
+ (mfpr(SBR) | 0x80000000));
*ptep = (*ptep & ~PG_PROT) | PG_KW | PG_V; ptep++;
*ptep = (*ptep & ~PG_PROT) | PG_KW | PG_V;
color_buf[unit]->status = 0;
adder = (struct adder *) qdmap[unit].adder;
qdflags[unit].adder_ie &= ~VSYNC;
adder->interrupt_enable = qdflags[unit].adder_ie;
}
mtpr(TBIA, 0);
/* flag everything now unmapped */
qdflags[unit].mapped = 0;
qdflags[unit].inuse &= ~GRAPHIC_DEV;
qdflags[unit].curs_acc = ACC_OFF;
qdflags[unit].curs_thr = 128;
/*
* restore the console
*/
dga = (struct dga *) qdmap[unit].dga;
adder = (struct adder *) qdmap[unit].adder;
dga->csr &= ~DMA_IE;
dga->csr &= ~0x0600; /* halt the DMA! (just in case...) */
dga->csr |= DMA_ERR; /* clear error condition */
adder->command = CANCEL;
/*
* if DMA was running, flush spurious intrpt
*/
if (dga->bytcnt_lo != 0) {
dga->bytcnt_lo = 0;
dga->bytcnt_hi = 0;
DMA_SETIGNORE(DMAheader[unit]);
dga->csr |= DMA_IE;
dga->csr &= ~DMA_IE;
}
init_shared(unit); /* init shared memory */
setup_dragon(unit); /* init ADDER/VIPER */
ldcursor(unit, cons_cursor); /* load default cursor map */
setup_input(unit); /* init the DUART */
ldfont(unit);
cursor[unit].x = 0;
cursor[unit].y = 0;
/*
* shut off the mouse rcv intrpt and turn on kbd intrpts
*/
duart = (struct duart *) qdmap[unit].duart;
qdflags[unit].duart_imask &= ~(0x20);
qdflags[unit].duart_imask |= 0x02;
duart->imask = qdflags[unit].duart_imask;
/*
* shut off interrupts if all is closed
*/
if (!(qdflags[unit].inuse & CONS_DEV)) {
dga = (struct dga *) qdmap[unit].dga;
dga->csr &= ~(GLOBAL_IE | DMA_IE);
}
} else {
/*
* this is the console
*/
tp = &qd_tty[minor_dev];
(*linesw[tp->t_line].l_close)(tp, flag);
ttyclose(tp);
tp->t_state = 0;
qdflags[unit].inuse &= ~CONS_DEV;
/*
* if graphics device is closed, kill interrupts
*/
if (!(qdflags[unit].inuse & GRAPHIC_DEV)) {
dga = (struct dga *) qdmap[unit].dga;
dga->csr &= ~(GLOBAL_IE | DMA_IE);
}
}
return(0);
} /* qdclose */
qdioctl(dev, cmd, datap, flags)
dev_t dev;
int cmd;
register caddr_t datap;
int flags;
{
register int *ptep; /* page table entry pointer */
register int mapix; /* QVmap[] page table index */
register struct _vs_event *event;
register struct tty *tp;
register i;
struct qdmap *qd; /* pointer to device map struct */
struct dga *dga; /* Gate Array reg structure pntr */
struct duart *duart; /* DUART reg structure pointer */
struct adder *adder; /* ADDER reg structure pointer */
struct prgkbd *cmdbuf;
struct prg_cursor *curs;
struct _vs_cursor *pos;
int unit = minor(dev) >> 2; /* number of caller's QDSS */
u_int minor_dev = minor(dev);
int error;
int s;
short *temp; /* a pointer to template RAM */
/*
* service graphic device ioctl commands
*/
switch (cmd) {
case QD_GETEVENT:
/*
* extract the oldest event from the event queue
*/
if (ISEMPTY(eq_header[unit])) {
event = (struct _vs_event *) datap;
event->vse_device = VSE_NULL;
break;
}
event = (struct _vs_event *) GETBEGIN(eq_header[unit]);
s = spl5();
GETEND(eq_header[unit]);
splx(s);
bcopy((caddr_t)event, datap, sizeof(struct _vs_event));
break;
case QD_RESET:
/*
* init the dragon stuff, DUART, and driver variables
*/
init_shared(unit); /* init shared memory */
setup_dragon(unit); /* init the ADDER/VIPER stuff */
clear_qd_screen(unit);
ldcursor(unit, cons_cursor); /* load default cursor map */
ldfont(unit); /* load the console font */
setup_input(unit); /* init the DUART */
break;
case QD_SET:
/*
* init the DUART and driver variables
*/
init_shared(unit);
setup_input(unit);
break;
case QD_CLRSCRN:
/*
* clear the QDSS screen. (NOTE that this reinits the dragon)
*/
#ifdef notdef /* has caused problems and isn't necessary */
setup_dragon(unit);
clear_qd_screen(unit);
#endif
break;
case QD_WTCURSOR:
/*
* load a cursor into template RAM
*/
ldcursor(unit, (short *)datap);
break;
case QD_RDCURSOR:
temp = (short *) qdmap[unit].template;
/*
* cursor is 32 WORDS from the end of the 8k WORD...
* ...template space
*/
temp += (8 * 1024) - 32;
for (i = 0; i < 32; ++i, datap += sizeof(short))
*(short *)datap = *temp++;
break;
case QD_POSCURSOR:
/*
* position the mouse cursor
*/
dga = (struct dga *) qdmap[unit].dga;
pos = (struct _vs_cursor *) datap;
s = spl5();
dga->x_cursor = TRANX(pos->x);
dga->y_cursor = TRANY(pos->y);
eq_header[unit]->curs_pos.x = pos->x;
eq_header[unit]->curs_pos.y = pos->y;
splx(s);
break;
case QD_PRGCURSOR:
/*
* set the cursor acceleration factor
*/
curs = (struct prg_cursor *) datap;
s = spl5();
qdflags[unit].curs_acc = curs->acc_factor;
qdflags[unit].curs_thr = curs->threshold;
splx(s);
break;
case QD_MAPDEVICE:
/*
* enable 'user write' to device pages
*/
qdflags[unit].mapped |= MAPDEV;
qd = (struct qdmap *) &qdmap[unit];
/*
* enable user write to template RAM
*/
mapix = VTOP((int)qd->template) - VTOP(qvmem[0]);
ptep = (int *)(QVmap[0] + mapix);
for (i = 0; i < btop(TMPSIZE); i++, ptep++)
*ptep = (*ptep & ~PG_PROT) | PG_UW | PG_V;
/*
* enable user write to registers
*/
mapix = VTOP((int)qd->adder) - VTOP(qvmem[0]);
ptep = (int *)(QVmap[0] + mapix);
for (i = 0; i < btop(REGSIZE); i++, ptep++)
*ptep = (*ptep & ~PG_PROT) | PG_UW | PG_V;
/*
* enable user write to color maps
*/
mapix = VTOP((int)qd->red) - VTOP(qvmem[0]);
ptep = (int *)(QVmap[0] + mapix);
for (i = 0; i < btop(CLRSIZE); i++, ptep++)
*ptep = (*ptep & ~PG_PROT) | PG_UW | PG_V;
/*
* enable user write to DUART
*/
mapix = VTOP((int)qd->duart) - VTOP(qvmem[0]);
ptep = (int *)(QVmap[0] + mapix);
*ptep = (*ptep & ~PG_PROT) | PG_UW | PG_V; /* duart page */
mtpr(TBIA, 0); /* invalidate translation buffer */
/*
* stuff qdmap structure in return buffer
*/
bcopy((caddr_t)qd, datap, sizeof(struct qdmap));
break;
case QD_MAPIOBUF:
/*
* do setup for DMA by user process
*
* set 'user write enable' bits for DMA buffer
*/
qdflags[unit].mapped |= MAPDMA;
ptep = (int *) ((VTOP(DMAheader[unit]) * 4)
+ (mfpr(SBR) | 0x80000000));
for (i = 0; i < btop(DMAbuf_size); i++, ptep++)
*ptep = (*ptep & ~PG_PROT) | PG_UW | PG_V;
mtpr(TBIA, 0); /* invalidate translation buffer */
/*
* set up QBUS map registers for DMA
*/
DMAheader[unit]->QBAreg =
uballoc(0, (caddr_t)DMAheader[unit], DMAbuf_size, 0);
if (DMAheader[unit]->QBAreg == 0)
printf("qd%d: qdioctl: QBA setup error\n", unit);
Qbus_unmap[unit] = DMAheader[unit]->QBAreg;
DMAheader[unit]->QBAreg &= 0x3FFFF;
/*
* return I/O buf adr
*/
*(int *)datap = (int) DMAheader[unit];
break;
case QD_MAPSCROLL:
/*
* map the shared scroll param area and enable scroll interpts
*/
qdflags[unit].mapped |= MAPSCR;
ptep = (int *) ((VTOP(scroll[unit]) * 4)
+ (mfpr(SBR) | 0x80000000));
/*
* allow user write to scroll area
*/
*ptep = (*ptep & ~PG_PROT) | PG_UW | PG_V;
mtpr(TBIA, 0); /* invalidate translation buf */
scroll[unit]->status = 0;
adder = (struct adder *) qdmap[unit].adder;
qdflags[unit].adder_ie |= FRAME_SYNC;
adder->interrupt_enable = qdflags[unit].adder_ie;
*(int *)datap = (int) scroll[unit]; /* return scroll area */
break;
case QD_UNMAPSCROLL:
/*
* unmap shared scroll param area and disable scroll intrpts
*/
if (qdflags[unit].mapped & MAPSCR) {
qdflags[unit].mapped &= ~MAPSCR;
ptep = (int *) ((VTOP(scroll[unit]) * 4)
+ (mfpr(SBR) | 0x80000000));
/*
* re-protect 512 scroll param area
*/
*ptep = (*ptep & ~PG_PROT) | PG_KW | PG_V;
mtpr(TBIA, 0); /* smash CPU's translation buf */
adder = (struct adder *) qdmap[unit].adder;
qdflags[unit].adder_ie &= ~FRAME_SYNC;
adder->interrupt_enable = qdflags[unit].adder_ie;
}
break;
case QD_MAPCOLOR:
/*
* map shared color map write buf and turn on vsync intrpt
*/
qdflags[unit].mapped |= MAPCOLOR;
ptep = (int *) ((VTOP(color_buf[unit]) * 4)
+ (mfpr(SBR) | 0x80000000));
/*
* allow user write to color map write buffer
*/
*ptep = (*ptep & ~PG_PROT) | PG_UW | PG_V; ptep++;
*ptep = (*ptep & ~PG_PROT) | PG_UW | PG_V;
mtpr(TBIA, 0); /* clr CPU translation buf */
adder = (struct adder *) qdmap[unit].adder;
qdflags[unit].adder_ie |= VSYNC;
adder->interrupt_enable = qdflags[unit].adder_ie;
/*
* return color area address
*/
*(int *)datap = (int) color_buf[unit];
break;
case QD_UNMAPCOLOR:
/*
* unmap shared color map write buffer and kill VSYNC intrpts
*/
if (qdflags[unit].mapped & MAPCOLOR) {
qdflags[unit].mapped &= ~MAPCOLOR;
ptep = (int *) ((VTOP(color_buf[unit]) * 4)
+ (mfpr(SBR) | 0x80000000));
/*
* re-protect color map write buffer
*/
*ptep = (*ptep & ~PG_PROT) | PG_KW | PG_V; ptep++;
*ptep = (*ptep & ~PG_PROT) | PG_KW | PG_V;
mtpr(TBIA, 0);
adder = (struct adder *) qdmap[unit].adder;
qdflags[unit].adder_ie &= ~VSYNC;
adder->interrupt_enable = qdflags[unit].adder_ie;
}
break;
case QD_MAPEVENT:
/*
* give user write access to the event queue
*/
qdflags[unit].mapped |= MAPEQ;
ptep = (int *) ((VTOP(eq_header[unit]) * 4)
+ (mfpr(SBR) | 0x80000000));
/*
* allow user write to 1K event queue
*/
*ptep = (*ptep & ~PG_PROT) | PG_UW | PG_V; ptep++;
*ptep = (*ptep & ~PG_PROT) | PG_UW | PG_V;
mtpr(TBIA, 0); /* clr CPU translation buf */
/*
* return event queue address
*/
*(int *)datap = (int)eq_header[unit];
break;
case QD_PRGKBD:
/*
* pass caller's programming commands to LK201
*/
duart = (struct duart *)qdmap[unit].duart;
cmdbuf = (struct prgkbd *)datap; /* pnt to kbd cmd buf */
/*
* send command
*/
for (i = 1000; i > 0; --i) {
if (duart->statusA&XMT_RDY) {
duart->dataA = cmdbuf->cmd;
break;
}
}
if (i == 0) {
printf("qd%d: qdioctl: timeout on XMT_RDY [1]\n", unit);
break;
}
/*
* send param1?
*/
if (cmdbuf->cmd & LAST_PARAM)
break;
for (i = 1000; i > 0; --i) {
if (duart->statusA&XMT_RDY) {
duart->dataA = cmdbuf->param1;
break;
}
}
if (i == 0) {
printf("qd%d: qdioctl: timeout on XMT_RDY [2]\n", unit);
break;
}
/*
* send param2?
*/
if (cmdbuf->param1 & LAST_PARAM)
break;
for (i = 1000; i > 0; --i) {
if (duart->statusA&XMT_RDY) {
duart->dataA = cmdbuf->param2;
break;
}
}
if (i == 0) {
printf("qd%d: qdioctl: timeout on XMT_RDY [3]\n", unit);
break;
}
break;
case QD_PRGMOUSE:
/*
* pass caller's programming commands to the mouse
*/
duart = (struct duart *) qdmap[unit].duart;
for (i = 1000; i > 0; --i) {
if (duart->statusB&XMT_RDY) {
duart->dataB = *datap;
break;
}
}
if (i == 0) {
printf("qd%d: qdioctl: timeout on XMT_RDY [4]\n", unit);
}
break;
case QD_RDCONFIG:
/*
* get QDSS configuration word and return it
*/
*(short *)datap = qdflags[unit].config;
break;
case QD_KERN_LOOP:
case QD_KERN_UNLOOP:
/*
* vestige from ultrix. BSD uses TIOCCONS to redirect
* kernel console output.
*/
break;
case QD_PRGTABLET:
/*
* program the tablet
*/
duart = (struct duart *) qdmap[unit].duart;
for (i = 1000; i > 0; --i) {
if (duart->statusB&XMT_RDY) {
duart->dataB = *datap;
break;
}
}
if (i == 0) {
printf("qd%d: qdioctl: timeout on XMT_RDY [5]\n", unit);
}
break;
case QD_PRGTABRES:
/*
* program the tablet report resolution factor
*/
qdflags[unit].tab_res = *(short *)datap;
break;
default:
/*
* service tty ioctl's
*/
if (!(minor_dev & 0x02)) {
tp = &qd_tty[minor_dev];
error =
(*linesw[tp->t_line].l_ioctl)(tp, cmd, datap, flags);
if (error >= 0) {
return(error);
}
error = ttioctl(tp, cmd, datap, flags);
if (error >= 0) {
return(error);
}
}
break;
}
return(0);
} /* qdioctl */
qdselect(dev, rw)
dev_t dev;
int rw;
{
register s;
register unit;
register struct tty *tp;
u_int minor_dev = minor(dev);
s = spl5();
unit = minor_dev >> 2;
switch (rw) {
case FREAD:
if ((minor_dev & 0x03) == 2) {
/*
* this is a graphics device, so check for events
*/
if(!(ISEMPTY(eq_header[unit]))) {
splx(s);
return(1);
}
qdrsel[unit] = u.u_procp;
qdflags[unit].selmask |= SEL_READ;
splx(s);
return(0);
} else {
/*
* this is a tty device
*/
tp = &qd_tty[minor_dev];
if (ttnread(tp))
return(1);
tp->t_rsel = u.u_procp;
splx(s);
return(0);
}
case FWRITE:
if ((minor(dev) & 0x03) == 2) {
/*
* this is a graphics device, so check for dma buffers
*/
if (DMA_ISEMPTY(DMAheader[unit]))
{
splx(s);
return(1);
}
qdrsel[unit] = u.u_procp;
qdflags[unit].selmask |= SEL_WRITE;
splx(s);
return(0);
} else {
/*
* this is a tty device
*/
tp = &qd_tty[minor_dev];
if (tp->t_outq.c_cc <= tp->t_lowat)
return(1);
tp->t_wsel = u.u_procp;
splx(s);
return(0);
}
}
splx(s);
return(0);
} /* qdselect() */
extern qd_strategy();
qdwrite(dev, uio)
dev_t dev;
struct uio *uio;
{
register struct tty *tp;
register minor_dev;
register unit;
minor_dev = minor(dev);
unit = (minor_dev >> 2) & 0x07;
if (((minor_dev&0x03) != 0x02) && (qdflags[unit].inuse&CONS_DEV)) {
/*
* this is the console...
*/
tp = &qd_tty[minor_dev];
return ((*linesw[tp->t_line].l_write)(tp, uio));
} else if (qdflags[unit].inuse & GRAPHIC_DEV) {
/*
* this is a DMA xfer from user space
*/
return (physio(qd_strategy, &qdbuf[unit],
dev, B_WRITE, minphys, uio));
}
return (ENXIO);
}
qdread(dev, uio)
dev_t dev;
struct uio *uio;
{
register struct tty *tp;
register minor_dev;
register unit;
minor_dev = minor(dev);
unit = (minor_dev >> 2) & 0x07;
if ((minor_dev & 0x03) != 0x02 && qdflags[unit].inuse & CONS_DEV) {
/*
* this is the console
*/
tp = &qd_tty[minor_dev];
return ((*linesw[tp->t_line].l_read)(tp, uio));
} else if (qdflags[unit].inuse & GRAPHIC_DEV) {
/*
* this is a bitmap-to-processor xfer
*/
return (physio(qd_strategy, &qdbuf[unit],
dev, B_READ, minphys, uio));
}
return (ENXIO);
}
/***************************************************************
*
* qd_strategy()... strategy routine to do DMA
*
***************************************************************/
qd_strategy(bp)
register struct buf *bp;
{
register struct dga *dga;
register struct adder *adder;
register unit;
int QBAreg;
int s;
int cookie;
unit = (minor(bp->b_dev) >> 2) & 0x07;
/*
* init pointers
*/
if ((QBAreg = ubasetup(0, bp, 0)) == 0) {
printf("qd%d: qd_strategy: QBA setup error\n", unit);
goto STRAT_ERR;
}
dga = (struct dga *) qdmap[unit].dga;
s = spl5();
qdflags[unit].user_dma = -1;
dga->csr |= DMA_IE;
cookie = QBAreg & 0x3FFFF;
dga->adrs_lo = (short) cookie;
dga->adrs_hi = (short) (cookie >> 16);
dga->bytcnt_lo = (short) bp->b_bcount;
dga->bytcnt_hi = (short) (bp->b_bcount >> 16);
while (qdflags[unit].user_dma) {
sleep((caddr_t)&qdflags[unit].user_dma, QDPRIOR);
}
splx(s);
ubarelse(0, &QBAreg);
if (!(dga->csr & DMA_ERR)) {
iodone(bp);
return;
}
STRAT_ERR:
adder = (struct adder *) qdmap[unit].adder;
adder->command = CANCEL; /* cancel adder activity */
dga->csr &= ~DMA_IE;
dga->csr &= ~0x0600; /* halt DMA (reset fifo) */
dga->csr |= DMA_ERR; /* clear error condition */
bp->b_flags |= B_ERROR; /* flag an error to physio() */
/*
* if DMA was running, flush spurious intrpt
*/
if (dga->bytcnt_lo != 0) {
dga->bytcnt_lo = 0;
dga->bytcnt_hi = 0;
DMA_SETIGNORE(DMAheader[unit]);
dga->csr |= DMA_IE;
}
iodone(bp);
} /* qd_strategy */
/*
* Start output to the console screen
*/
qdstart(tp)
register struct tty *tp;
{
register which_unit, unit, c;
int s;
unit = minor(tp->t_dev);
which_unit = (unit >> 2) & 0x3;
unit &= 0x03;
s = spl5();
/*
* If it's currently active, or delaying, no need to do anything.
*/
if (tp->t_state & (TS_TIMEOUT|TS_BUSY|TS_TTSTOP))
goto out;
/*
* Display chars until the queue is empty.
* Drop input from anything but the console
* device on the floor.
*
* XXX - this loop is done at spltty.
*
*/
while (tp->t_outq.c_cc) {
c = getc(&tp->t_outq);
if (unit == 0)
blitc(which_unit, (u_char)c);
}
/*
* If there are sleepers, and output has drained below low
* water mark, wake up the sleepers.
*/
if (tp->t_outq.c_cc <= tp->t_lowat) {
if (tp->t_state & TS_ASLEEP){
tp->t_state &= ~TS_ASLEEP;
wakeup((caddr_t) &tp->t_outq);
}
}
tp->t_state &= ~TS_BUSY;
out:
splx(s);
} /* qdstart */
/*ARGSUSED*/
void
qdstop(tp, flag)
register struct tty *tp;
int flag;
{
register int s;
s = spl5(); /* block intrpts during state modification */
if (tp->t_state & TS_BUSY)
if ((tp->t_state & TS_TTSTOP) == 0)
tp->t_state |= TS_FLUSH;
else
tp->t_state &= ~TS_BUSY;
splx(s);
}
/*
* Output a character to the QDSS screen
*/
blitc(unit, chr)
register unit;
register u_char chr;
{
register struct adder *adder;
register struct dga *dga;
register int i;
int nograph = !(qdflags[unit].inuse&GRAPHIC_DEV);
static short inescape[NQD];
adder = (struct adder *)qdmap[unit].adder;
dga = (struct dga *) qdmap[unit].dga;
/*
* BSD comment: this (&=0177) defeats the extended character
* set code for the glass tty, but if i had the time i would
* spend it ripping out the code completely. This driver
* is too big for its own good.
*/
chr &= 0177;
/*
* Cursor addressing (so vi will work).
* Decode for "\E=%.%." cursor motion description.
* Corresponds to type "qdcons" in /etc/termcap:
*
* qd|qdss|qdcons|qdss glass tty (4.4 BSD):\
* :am:do=^J:le=^H:bs:cm=\E=%.%.:cl=1^Z:co#128:li#57::nd=^L:up=^K:
*
*/
if (inescape[unit] && nograph) {
switch (inescape[unit]++) {
case 1:
if (chr != '=') {
/* abort escape sequence */
inescape[unit] = 0;
blitc(unit, chr);
}
return;
case 2:
/* position row */
cursor[unit].y = CHAR_HEIGHT * chr;
if (cursor[unit].y > 863 - CHAR_HEIGHT)
cursor[unit].y = 863 - CHAR_HEIGHT;
dga->y_cursor = TRANY(cursor[unit].y);
return;
case 3:
/* position column */
cursor[unit].x = CHAR_WIDTH * chr;
if (cursor[unit].x > 1024 - CHAR_WIDTH)
cursor[unit].x = 1023 - CHAR_WIDTH;
dga->x_cursor = TRANX(cursor[unit].x);
inescape[unit] = 0;
return;
default:
inescape[unit] = 0;
blitc(unit, chr);
}
}
switch (chr) {
case '\r': /* return char */
cursor[unit].x = 0;
if (nograph)
dga->x_cursor = TRANX(cursor[unit].x);
return;
case '\t': /* tab char */
for (i = 8 - ((cursor[unit].x >> 3) & 0x07); i > 0; --i) {
blitc(unit, ' ');
}
return;
case '\n': /* line feed char */
if ((cursor[unit].y += CHAR_HEIGHT) > (863 - CHAR_HEIGHT)) {
if (nograph) {
cursor[unit].y -= CHAR_HEIGHT;
scroll_up(adder);
} else
cursor[unit].y = 0;
}
if (nograph)
dga->y_cursor = TRANY(cursor[unit].y);
return;
case '\b': /* backspace char */
if (cursor[unit].x > 0) {
cursor[unit].x -= CHAR_WIDTH;
if (nograph)
dga->x_cursor = TRANX(cursor[unit].x);
}
return;
case CTRL('k'): /* cursor up */
if (nograph && cursor[unit].y > 0) {
cursor[unit].y -= CHAR_HEIGHT;
dga->y_cursor = TRANY(cursor[unit].y);
}
return;
case CTRL('^'): /* home cursor */
if (nograph) {
cursor[unit].x = 0;
dga->x_cursor = TRANX(cursor[unit].x);
cursor[unit].y = 0;
dga->y_cursor = TRANY(cursor[unit].y);
}
return;
case CTRL('l'): /* cursor right */
if (nograph && cursor[unit].x < 1023 - CHAR_WIDTH) {
cursor[unit].x += CHAR_WIDTH;
dga->x_cursor = TRANX(cursor[unit].x);
}
return;
case CTRL('z'): /* clear screen */
if (nograph) {
setup_dragon(unit);
clear_qd_screen(unit);
/* home cursor - termcap seems to assume this */
cursor[unit].x = 0;
dga->x_cursor = TRANX(cursor[unit].x);
cursor[unit].y = 0;
dga->y_cursor = TRANY(cursor[unit].y);
}
return;
case '\033': /* start escape sequence */
if (nograph)
inescape[unit] = 1;
return;
default:
if ((chr < ' ') || (chr > '~'))
return;
}
/*
* setup VIPER operand control registers
*/
write_ID(adder, CS_UPDATE_MASK, 0x0001); /* select plane #0 */
write_ID(adder, SRC1_OCR_B,
EXT_NONE | INT_SOURCE | ID | BAR_SHIFT_DELAY);
write_ID(adder, CS_UPDATE_MASK, 0x00FE); /* select other planes */
write_ID(adder, SRC1_OCR_B,
EXT_SOURCE | INT_NONE | NO_ID | BAR_SHIFT_DELAY);
write_ID(adder, CS_UPDATE_MASK, 0x00FF); /* select all planes */
write_ID(adder, DST_OCR_B,
EXT_NONE | INT_NONE | NO_ID | NO_BAR_SHIFT_DELAY);
write_ID(adder, MASK_1, 0xFFFF);
write_ID(adder, VIPER_Z_LOAD | FOREGROUND_COLOR_Z, 1);
write_ID(adder, VIPER_Z_LOAD | BACKGROUND_COLOR_Z, 0);
adder->x_clip_min = 0;
adder->x_clip_max = 1024;
adder->y_clip_min = 0;
adder->y_clip_max = 864;
/*
* load DESTINATION origin and vectors
*/
adder->fast_dest_dy = 0;
adder->slow_dest_dx = 0;
adder->error_1 = 0;
adder->error_2 = 0;
adder->rasterop_mode = DST_WRITE_ENABLE | NORMAL;
(void)wait_status(adder, RASTEROP_COMPLETE);
adder->destination_x = cursor[unit].x;
adder->fast_dest_dx = CHAR_WIDTH;
adder->destination_y = cursor[unit].y;
adder->slow_dest_dy = CHAR_HEIGHT;
/*
* load SOURCE origin and vectors
*/
if ((chr - ' ') > (CHARS - 1)) {
printf("Invalid character (x)%x in blitc\n",chr);
chr = ' ';
}
/*
* X position is modulo the number of characters per line
*/
adder->source_1_x = FONT_X +
(((chr - ' ') % (MAX_SCREEN_X/CHAR_WIDTH)) * CHAR_WIDTH);
/*
* Point to either first or second row
*/
adder->source_1_y = 2048 - 15 *
(((chr - ' ')/(MAX_SCREEN_X/CHAR_WIDTH)) + 1);
adder->source_1_dx = CHAR_WIDTH;
adder->source_1_dy = CHAR_HEIGHT;
write_ID(adder, LU_FUNCTION_R1, FULL_SRC_RESOLUTION | LF_SOURCE);
adder->cmd = RASTEROP | OCRB | 0 | S1E | DTE;
/*
* update console cursor coordinates
*/
cursor[unit].x += CHAR_WIDTH;
if (nograph)
dga->x_cursor = TRANX(cursor[unit].x);
if (cursor[unit].x > (1024 - CHAR_WIDTH)) {
blitc(unit, '\r');
blitc(unit, '\n');
}
} /* blitc */
qdreset() { }
/*
* INTERRUPT SERVICE ROUTINES
*/
/*
* Service "DMA DONE" interrupt condition
*/
qddint(qd)
register qd;
{
register struct DMAreq_header *header;
register struct DMAreq *request;
register struct dga *dga;
struct adder *adder;
int cookie; /* DMA adrs for QDSS */
(void)spl4(); /* allow interval timer in */
/*
* init pointers
*/
header = DMAheader[qd]; /* register for optimization */
dga = (struct dga *) qdmap[qd].dga;
adder = (struct adder *) qdmap[qd].adder;
/*
* if this interrupt flagged as bogus for interrupt flushing purposes..
*/
if (DMA_ISIGNORE(header)) {
DMA_CLRIGNORE(header);
return;
}
/*
* dump a DMA hardware error message if appropriate
*/
if (dga->csr & DMA_ERR) {
if (dga->csr & PARITY_ERR)
printf("qd%d: qddint: DMA hardware parity fault.\n", qd);
if (dga->csr & BUS_ERR)
printf("qd%d: qddint: DMA hardware bus error.\n", qd);
}
/*
* if this was a DMA from user space...
*/
if (qdflags[qd].user_dma) {
qdflags[qd].user_dma = 0;
wakeup((caddr_t)&qdflags[qd].user_dma);
return;
}
/*
* if we're doing DMA request queue services, field the error condition
*/
if (dga->csr & DMA_ERR) {
dga->csr &= ~0x0600; /* halt DMA (reset fifo) */
dga->csr |= DMA_ERR; /* clear error condition */
adder->command = CANCEL; /* cancel adder activity */
DMA_SETERROR(header); /* flag error in header status word */
DMA_CLRACTIVE(header);
header->DMAreq[header->oldest].DMAdone |= HARD_ERROR;
header->newest = header->oldest;
header->used = 0;
if (qdrsel[qd] && qdflags[qd].selmask & SEL_WRITE) {
selwakeup(qdrsel[qd], 0);
qdrsel[qd] = 0;
qdflags[qd].selmask &= ~SEL_WRITE;
}
if (dga->bytcnt_lo != 0) {
dga->bytcnt_lo = 0;
dga->bytcnt_hi = 0;
DMA_SETIGNORE(header);
}
return;
}
/*
* if the DMA request queue is now becoming non-full,
* wakeup "select" client.
*/
if (DMA_ISFULL(header)) {
if (qdrsel[qd] && qdflags[qd].selmask & SEL_WRITE) {
selwakeup(qdrsel[qd], 0);
qdrsel[qd] = 0;
qdflags[qd].selmask &= ~SEL_WRITE;
}
}
header->DMAreq[header->oldest].DMAdone |= REQUEST_DONE;
QDlast_DMAtype = header->DMAreq[header->oldest].DMAtype;
/* check for unexpected interrupt */
if (DMA_ISEMPTY(header))
return;
DMA_GETEND(header); /* update request queue indices */
/*
* if no more DMA pending, wake up "select" client and exit
*/
if (DMA_ISEMPTY(header)) {
if (qdrsel[qd] && qdflags[qd].selmask & SEL_WRITE) {
selwakeup(qdrsel[qd], 0);
qdrsel[qd] = 0;
qdflags[qd].selmask &= ~SEL_WRITE;
}
DMA_CLRACTIVE(header); /* flag DMA done */
return;
}
/*
* initiate next DMA xfer
*/
request = DMA_GETBEGIN(header);
if (request->DMAtype != QDlast_DMAtype) {
dga->csr &= ~0x0600; /* halt DMA (reset fifo) */
adder->command = CANCEL; /* cancel adder activity */
}
switch (request->DMAtype) {
case DISPLIST:
if (request->DMAtype != QDlast_DMAtype) {
dga->csr |= DL_ENB;
dga->csr &= ~(BTOP_ENB | BYTE_DMA);
}
break;
case PTOB:
if (request->DMAtype != QDlast_DMAtype) {
if (request->DMAdone & BYTE_PACK)
dga->csr |= (PTOB_ENB | BYTE_DMA);
else {
dga->csr |= PTOB_ENB;
dga->csr &= ~BYTE_DMA;
}
}
break;
case BTOP:
if (request->DMAtype != QDlast_DMAtype) {
if (request->DMAdone & BYTE_PACK) {
dga->csr &= ~DL_ENB;
dga->csr |= (BTOP_ENB | BYTE_DMA);
}
else {
dga->csr |= BTOP_ENB;
dga->csr &= ~(BYTE_DMA | DL_ENB);
}
}
break;
default:
printf("qd%d: qddint: illegal DMAtype parameter.\n", qd);
DMA_CLRACTIVE(header); /* flag DMA done */
return;
}
if (request->DMAdone & COUNT_ZERO) {
dga->csr &= ~SET_DONE_FIFO;
}
else if (request->DMAdone & FIFO_EMPTY) {
dga->csr |= SET_DONE_FIFO;
}
if (request->DMAdone & WORD_PACK)
dga->csr &= ~BYTE_DMA;
else if (request->DMAdone & BYTE_PACK)
dga->csr |= BYTE_DMA;
dga->csr |= DMA_IE;
QDlast_DMAtype = request->DMAtype;
cookie = ((int)request->bufp - (int)header) + (int)header->QBAreg;
dga->adrs_lo = (short) cookie;
dga->adrs_hi = (short) (cookie >> 16);
dga->bytcnt_lo = (short) request->length;
dga->bytcnt_hi = (short) (request->length >> 16);
return;
}
/*
* ADDER interrupt service routine
*/
qdaint(qd)
register qd;
{
register struct adder *adder;
struct color_buf *cbuf;
int i;
register struct rgb *rgbp;
register short *red;
register short *green;
register short *blue;
(void)spl4(); /* allow interval timer in */
adder = (struct adder *) qdmap[qd].adder;
/*
* service the vertical blank interrupt (VSYNC bit) by loading
* any pending color map load request
*/
if (adder->status & VSYNC) {
adder->status &= ~VSYNC; /* clear the interrupt */
cbuf = color_buf[qd];
if (cbuf->status & LOAD_COLOR_MAP) {
red = (short *) qdmap[qd].red;
green = (short *) qdmap[qd].green;
blue = (short *) qdmap[qd].blue;
for (i = cbuf->count, rgbp = cbuf->rgb;
--i >= 0; rgbp++) {
red[rgbp->offset] = (short) rgbp->red;
green[rgbp->offset] = (short) rgbp->green;
blue[rgbp->offset] = (short) rgbp->blue;
}
cbuf->status &= ~LOAD_COLOR_MAP;
}
}
/*
* service the scroll interrupt (FRAME_SYNC bit)
*/
if (adder->status & FRAME_SYNC) {
adder->status &= ~FRAME_SYNC; /* clear the interrupt */
if (scroll[qd]->status & LOAD_REGS) {
for (i = 1000, adder->status = 0; i > 0 &&
!(adder->status&ID_SCROLL_READY); --i)
;
if (i == 0) {
printf("qd%d: qdaint: timeout on ID_SCROLL_READY\n",
qd);
return;
}
adder->ID_scroll_data = scroll[qd]->viper_constant;
adder->ID_scroll_command = ID_LOAD | SCROLL_CONSTANT;
adder->y_scroll_constant =
scroll[qd]->y_scroll_constant;
adder->y_offset_pending = scroll[qd]->y_offset;
if (scroll[qd]->status & LOAD_INDEX) {
adder->x_index_pending =
scroll[qd]->x_index_pending;
adder->y_index_pending =
scroll[qd]->y_index_pending;
}
scroll[qd]->status = 0x00;
}
}
}
/*
* DUART input interrupt service routine
*
* XXX - this routine should be broken out - it is essentially
* straight line code.
*/
qdiint(qd)
register qd;
{
register struct _vs_event *event;
register struct qdinput *eqh;
struct dga *dga;
struct duart *duart;
struct mouse_report *new_rep;
struct uba_device *ui;
struct tty *tp;
u_short chr;
u_short status;
u_short data;
u_short key;
char do_wakeup = 0; /* flag to do a select wakeup call */
char a, b, c; /* mouse button test variables */
(void)spl4(); /* allow interval timer in */
eqh = eq_header[qd]; /* optimized as a register */
new_rep = &current_rep[qd];
duart = (struct duart *) qdmap[qd].duart;
/*
* if the graphic device is turned on..
*/
if (qdflags[qd].inuse & GRAPHIC_DEV) {
/*
* empty DUART
*/
while (duart->statusA&RCV_RDY || duart->statusB&RCV_RDY) {
/*
* pick up LK-201 input (if any)
*/
if (duart->statusA&RCV_RDY) {
/* if error condition, then reset it */
if (duart->statusA&0x70) {
duart->cmdA = 0x40;
continue;
}
/* event queue full now? (overflow condition) */
if (ISFULL(eqh) == TRUE) {
printf(
"qd%d: qdiint: event queue overflow\n",
qd);
break;
}
/*
* Check for various keyboard errors */
key = duart->dataA & 0xFF;
if (key==LK_POWER_ERROR ||
key==LK_KDOWN_ERROR ||
key == LK_INPUT_ERROR ||
key == LK_OUTPUT_ERROR) {
printf(
"qd%d: qdiint: keyboard error, code = %x\n",
qd,key);
return;
}
if (key < LK_LOWEST)
return;
++do_wakeup; /* request a select wakeup call */
event = PUTBEGIN(eqh);
PUTEND(eqh);
event->vse_key = key;
event->vse_key &= 0x00FF;
event->vse_x = eqh->curs_pos.x;
event->vse_y = eqh->curs_pos.y;
event->vse_time = TOY;
event->vse_type = VSE_BUTTON;
event->vse_direction = VSE_KBTRAW;
event->vse_device = VSE_DKB;
}
/*
* pick up the mouse input (if any) */
if ((status = duart->statusB) & RCV_RDY &&
qdflags[qd].pntr_id == MOUSE_ID) {
if (status & 0x70) {
duart->cmdB = 0x40;
continue;
}
/* event queue full now? (overflow condition) */
if (ISFULL(eqh) == TRUE) {
printf(
"qd%d: qdiint: event queue overflow\n",
qd);
break;
}
data = duart->dataB; /* get report byte */
++new_rep->bytcnt; /* bump report byte count */
/*
* if 1st byte of report.. */
if ( data & START_FRAME) {
new_rep->state = data;
if (new_rep->bytcnt > 1) {
/* start of new frame */
new_rep->bytcnt = 1;
/* ..continue looking */
continue;
}
}
/*
* if 2nd byte of report.. */
else if (new_rep->bytcnt == 2) {
new_rep->dx = data & 0x00FF;
}
/*
* if 3rd byte of report, load input event queue */
else if (new_rep->bytcnt == 3) {
new_rep->dy = data & 0x00FF;
new_rep->bytcnt = 0;
/*
* if mouse position has changed.. */
if (new_rep->dx != 0 || new_rep->dy != 0) {
/*
* calculate acceleration factor, if needed */
if (qdflags[qd].curs_acc > ACC_OFF) {
if (qdflags[qd].curs_thr <= new_rep->dx)
new_rep->dx +=
(new_rep->dx - qdflags[qd].curs_thr)
* qdflags[qd].curs_acc;
if (qdflags[qd].curs_thr <= new_rep->dy)
new_rep->dy +=
(new_rep->dy - qdflags[qd].curs_thr)
* qdflags[qd].curs_acc;
}
/*
* update cursor position coordinates */
if (new_rep->state & X_SIGN) {
eqh->curs_pos.x += new_rep->dx;
if (eqh->curs_pos.x > 1023)
eqh->curs_pos.x = 1023;
}
else {
eqh->curs_pos.x -= new_rep->dx;
if (eqh->curs_pos.x < -15)
eqh->curs_pos.x = -15;
}
if (new_rep->state & Y_SIGN) {
eqh->curs_pos.y -= new_rep->dy;
if (eqh->curs_pos.y < -15)
eqh->curs_pos.y = -15;
}
else {
eqh->curs_pos.y += new_rep->dy;
if (eqh->curs_pos.y > 863)
eqh->curs_pos.y = 863;
}
/*
* update cursor screen position */
dga = (struct dga *) qdmap[qd].dga;
dga->x_cursor = TRANX(eqh->curs_pos.x);
dga->y_cursor = TRANY(eqh->curs_pos.y);
/*
* if cursor is in the box, no event report */
if (eqh->curs_pos.x <= eqh->curs_box.right &&
eqh->curs_pos.x >= eqh->curs_box.left &&
eqh->curs_pos.y >= eqh->curs_box.top &&
eqh->curs_pos.y <= eqh->curs_box.bottom ) {
goto GET_MBUTTON;
}
/*
* report the mouse motion event */
event = PUTBEGIN(eqh);
PUTEND(eqh);
++do_wakeup; /* request a select wakeup call */
event->vse_x = eqh->curs_pos.x;
event->vse_y = eqh->curs_pos.y;
event->vse_device = VSE_MOUSE; /* mouse */
event->vse_type = VSE_MMOTION; /* pos changed */
event->vse_key = 0;
event->vse_direction = 0;
event->vse_time = TOY; /* time stamp */
}
GET_MBUTTON:
/*
* if button state has changed */
a = new_rep->state & 0x07; /*mask nonbutton bits */
b = last_rep[qd].state & 0x07;
if (a ^ b) {
for ( c = 1; c < 8; c <<= 1) {
if (!( c & (a ^ b))) /* this button change? */
continue;
/* event queue full? (overflow condition) */
if (ISFULL(eqh) == TRUE) {
printf("qd%d: qdiint: event queue overflow\n", qd);
break;
}
event = PUTBEGIN(eqh); /* get new event */
PUTEND(eqh);
++do_wakeup; /* request select wakeup */
event->vse_x = eqh->curs_pos.x;
event->vse_y = eqh->curs_pos.y;
event->vse_device = VSE_MOUSE; /* mouse */
event->vse_type = VSE_BUTTON; /* new button */
event->vse_time = TOY; /* time stamp */
/* flag changed button and if up or down */
if (c == RIGHT_BUTTON)
event->vse_key = VSE_RIGHT_BUTTON;
else if (c == MIDDLE_BUTTON)
event->vse_key = VSE_MIDDLE_BUTTON;
else if (c == LEFT_BUTTON)
event->vse_key = VSE_LEFT_BUTTON;
/* set bit = button depressed */
if (c & a)
event->vse_direction = VSE_KBTDOWN;
else
event->vse_direction = VSE_KBTUP;
}
}
/* refresh last report */
last_rep[qd] = current_rep[qd];
} /* get last byte of report */
} else if ((status = duart->statusB)&RCV_RDY &&
qdflags[qd].pntr_id == TABLET_ID) {
/*
* pickup tablet input, if any
*/
if (status&0x70) {
duart->cmdB = 0x40;
continue;
}
/*
* event queue full now? (overflow condition)
*/
if (ISFULL(eqh) == TRUE) {
printf("qd%d: qdiint: event queue overflow\n", qd);
break;
}
data = duart->dataB; /* get report byte */
++new_rep->bytcnt; /* bump report byte count */
/*
* if 1st byte of report.. */
if (data & START_FRAME) {
new_rep->state = data;
if (new_rep->bytcnt > 1) {
new_rep->bytcnt = 1; /* start of new frame */
continue; /* ..continue looking */
}
}
/*
* if 2nd byte of report.. */
else if (new_rep->bytcnt == 2) {
new_rep->dx = data & 0x3F;
}
/*
* if 3rd byte of report.. */
else if (new_rep->bytcnt == 3) {
new_rep->dx |= (data & 0x3F) << 6;
}
/*
* if 4th byte of report.. */
else if (new_rep->bytcnt == 4) {
new_rep->dy = data & 0x3F;
}
/*
* if 5th byte of report, load input event queue */
else if (new_rep->bytcnt == 5) {
new_rep->dy |= (data & 0x3F) << 6;
new_rep->bytcnt = 0;
/*
* update cursor position coordinates */
new_rep->dx /= qdflags[qd].tab_res;
new_rep->dy = (2200 - new_rep->dy)
/ qdflags[qd].tab_res;
if (new_rep->dx > 1023) {
new_rep->dx = 1023;
}
if (new_rep->dy > 863) {
new_rep->dy = 863;
}
/*
* report an event if the puck/stylus has moved
*/
if (eqh->curs_pos.x != new_rep->dx ||
eqh->curs_pos.y != new_rep->dy) {
eqh->curs_pos.x = new_rep->dx;
eqh->curs_pos.y = new_rep->dy;
/*
* update cursor screen position */
dga = (struct dga *) qdmap[qd].dga;
dga->x_cursor = TRANX(eqh->curs_pos.x);
dga->y_cursor = TRANY(eqh->curs_pos.y);
/*
* if cursor is in the box, no event report
*/
if (eqh->curs_pos.x <= eqh->curs_box.right &&
eqh->curs_pos.x >= eqh->curs_box.left &&
eqh->curs_pos.y >= eqh->curs_box.top &&
eqh->curs_pos.y <= eqh->curs_box.bottom ) {
goto GET_TBUTTON;
}
/*
* report the tablet motion event */
event = PUTBEGIN(eqh);
PUTEND(eqh);
++do_wakeup; /* request a select wakeup call */
event->vse_x = eqh->curs_pos.x;
event->vse_y = eqh->curs_pos.y;
event->vse_device = VSE_TABLET; /* tablet */
/*
* right now, X handles tablet motion the same
* as mouse motion
*/
event->vse_type = VSE_MMOTION; /* pos changed */
event->vse_key = 0;
event->vse_direction = 0;
event->vse_time = TOY; /* time stamp */
}
GET_TBUTTON:
/*
* if button state has changed */
a = new_rep->state & 0x1E; /* mask nonbutton bits */
b = last_rep[qd].state & 0x1E;
if (a ^ b) {
/* event queue full now? (overflow condition) */
if (ISFULL(eqh) == TRUE) {
printf("qd%d: qdiint: event queue overflow\n",qd);
break;
}
event = PUTBEGIN(eqh); /* get new event */
PUTEND(eqh);
++do_wakeup; /* request a select wakeup call */
event->vse_x = eqh->curs_pos.x;
event->vse_y = eqh->curs_pos.y;
event->vse_device = VSE_TABLET; /* tablet */
event->vse_type = VSE_BUTTON; /* button changed */
event->vse_time = TOY; /* time stamp */
/* define the changed button and if up or down */
for ( c = 1; c <= 0x10; c <<= 1) {
if (c & (a ^ b)) {
if (c == T_LEFT_BUTTON)
event->vse_key = VSE_T_LEFT_BUTTON;
else if (c == T_FRONT_BUTTON)
event->vse_key = VSE_T_FRONT_BUTTON;
else if (c == T_RIGHT_BUTTON)
event->vse_key = VSE_T_RIGHT_BUTTON;
else if (c == T_BACK_BUTTON)
event->vse_key = VSE_T_BACK_BUTTON;
break;
}
}
/* set bit = button depressed */
if (c & a)
event->vse_direction = VSE_KBTDOWN;
else
event->vse_direction = VSE_KBTUP;
}
/* refresh last report */
last_rep[qd] = current_rep[qd];
} /* get last byte of report */
} /* pick up tablet input */
} /* while input available.. */
/*
* do select wakeup
*/
if (qdrsel[qd] && do_wakeup && qdflags[qd].selmask & SEL_READ) {
selwakeup(qdrsel[qd], 0);
qdrsel[qd] = 0;
qdflags[qd].selmask &= ~SEL_READ;
do_wakeup = 0;
}
} else {
/*
* if the graphic device is not turned on, this is console input
*/
if (qdpolling)
return;
ui = qdinfo[qd];
if (ui == 0 || ui->ui_alive == 0)
return;
tp = &qd_tty[qd << 2];
/*
* Get a character from the keyboard.
*/
while (duart->statusA&RCV_RDY) {
key = duart->dataA;
key &= 0xFF;
/*
* Check for various keyboard errors
*/
if (key == LK_POWER_ERROR || key == LK_KDOWN_ERROR ||
key == LK_INPUT_ERROR || key == LK_OUTPUT_ERROR) {
printf("qd%d: qdiint: Keyboard error, code = %x\n",qd,key);
return;
}
if (key < LK_LOWEST)
return;
/*
* See if its a state change key */
switch (key) {
case LOCK:
q_keyboard.lock ^= 0xffff; /* toggle */
if (q_keyboard.lock)
(void)led_control(qd, LK_LED_ENABLE,
LK_LED_LOCK);
else
(void)led_control(qd, LK_LED_DISABLE,
LK_LED_LOCK);
return;
case SHIFT:
q_keyboard.shift ^= 0xFFFF;
return;
case CNTRL:
q_keyboard.cntrl ^= 0xFFFF;
return;
case ALLUP:
q_keyboard.cntrl = 0;
q_keyboard.shift = 0;
return;
case REPEAT:
chr = q_keyboard.last;
break;
/*
* Test for cntrl characters. If set, see if the character
* is elligible to become a control character. */
default:
if (q_keyboard.cntrl) {
chr = q_key[key];
if (chr >= ' ' && chr <= '~')
chr &= 0x1F;
else if (chr >= 0xA1 && chr <= 0xFE)
chr &= 0x9F;
}
else if( q_keyboard.lock || q_keyboard.shift )
chr = q_shift_key[key];
else
chr = q_key[key];
break;
}
q_keyboard.last = chr;
/*
* Check for special function keys */
if (chr & 0x100) {
char *string;
string = q_special[chr & 0x7F];
while(*string)
(*linesw[tp->t_line].l_rint)(*string++, tp);
}
else {
#ifdef KADB
if (!kdbrintr(chr&0177, tp))
#endif
(*linesw[tp->t_line].l_rint)(chr&0177, tp);
}
}
}
} /* qdiint */
/*
*
* Clear the QDSS screen
*
* >>> NOTE <<<
*
* This code requires that certain adder initialization be valid. To
* assure that this requirement is satisfied, this routine should be
* called only after calling the "setup_dragon()" function.
*
* Clear the bitmap a piece at a time. Since the fast scroll clear
* only clears the current displayed portion of the bitmap put a
* temporary value in the y limit register so we can access whole
* bitmap
*
*/
clear_qd_screen(unit)
int unit;
{
register struct adder *adder;
adder = (struct adder *) qdmap[unit].adder;
adder->x_limit = 1024;
adder->y_limit = 2048 - CHAR_HEIGHT;
adder->y_offset_pending = 0;
#define WSV (void)wait_status(adder, VSYNC); (void)wait_status(adder, VSYNC)
WSV;
adder->y_scroll_constant = SCROLL_ERASE;
WSV;
adder->y_offset_pending = 864;
WSV;
adder->y_scroll_constant = SCROLL_ERASE;
WSV;
adder->y_offset_pending = 1728;
WSV;
adder->y_scroll_constant = SCROLL_ERASE;
WSV;
adder->y_offset_pending = 0; /* back to normal */
WSV;
adder->x_limit = MAX_SCREEN_X;
adder->y_limit = MAX_SCREEN_Y + FONT_HEIGHT;
#undef WSV
} /* clear_qd_screen */
/*
* kernel console output to the glass tty
*/
qdputc(chr)
register char chr;
{
/*
* if system is now physical, forget it (ie: crash DUMP)
*/
if ((mfpr(MAPEN) & 1) == 0)
return;
blitc(0, (u_char)(chr & 0xff));
if ((chr & 0177) == '\n')
blitc(0, '\r');
} /* qdputc */
/*
* load the mouse cursor's template RAM bitmap
*/
ldcursor(unit, bitmap)
int unit;
register short *bitmap;
{
register struct dga *dga;
register short *temp;
register int i;
int curs;
dga = (struct dga *) qdmap[unit].dga;
temp = (short *) qdmap[unit].template;
if (dga->csr & CURS_ENB) { /* if the cursor is enabled.. */
curs = -1; /* ..note that.. */
dga->csr &= ~CURS_ENB; /* ..and shut it off */
} else
curs = 0;
dga->csr &= ~CURS_ENB; /* shut off the cursor */
temp += (8 * 1024) - 32; /* cursor is 32 WORDS from the end */
/* ..of the 8k WORD template space */
for (i = 0; i < 32; ++i)
*temp++ = *bitmap++;
if (curs) { /* if cursor was enabled.. */
dga->csr |= CURS_ENB; /* ..turn it back on */
}
} /* ldcursor */
/*
* Put the console font in the QDSS off-screen memory
*/
ldfont(unit)
int unit;
{
register struct adder *adder;
register i, j, k, max_chars_line;
register short packed;
adder = (struct adder *) qdmap[unit].adder;
/*
* setup VIPER operand control registers
*/
write_ID(adder, MASK_1, 0xFFFF);
write_ID(adder, VIPER_Z_LOAD | FOREGROUND_COLOR_Z, 255);
write_ID(adder, VIPER_Z_LOAD | BACKGROUND_COLOR_Z, 0);
write_ID(adder, SRC1_OCR_B,
EXT_NONE | INT_NONE | ID | BAR_SHIFT_DELAY);
write_ID(adder, SRC2_OCR_B,
EXT_NONE | INT_NONE | ID | BAR_SHIFT_DELAY);
write_ID(adder, DST_OCR_B,
EXT_SOURCE | INT_NONE | NO_ID | NO_BAR_SHIFT_DELAY);
adder->rasterop_mode = DST_WRITE_ENABLE | DST_INDEX_ENABLE | NORMAL;
/*
* load destination data
*/
(void)wait_status(adder, RASTEROP_COMPLETE);
adder->destination_x = FONT_X;
adder->destination_y = FONT_Y;
#if FONT_WIDTH > MAX_SCREEN_X
adder->fast_dest_dx = MAX_SCREEN_X;
#else
adder->fast_dest_dx = FONT_WIDTH;
#endif
adder->slow_dest_dy = CHAR_HEIGHT;
/*
* setup for processor to bitmap xfer */
write_ID(adder, CS_UPDATE_MASK, 0x0001);
adder->cmd = PBT | OCRB | 2 | DTE | 2;
/*
* Figure out how many characters can be stored on one "line" of
* offscreen memory.
*/
max_chars_line = MAX_SCREEN_X/(CHAR_WIDTH*2);
if ((CHARS/2 + CHARS%2) < max_chars_line)
max_chars_line = CHARS/2 + CHARS%2;
/*
* iteratively do the processor to bitmap xfer */
for (i = 0; i < ROWS; ++i) {
/* PTOB a scan line */
for (j = 0, k = i; j < max_chars_line; ++j) {
/* PTOB one scan of a char cell */
packed = q_font[k];
k += ROWS;
packed |= ((short)q_font[k] << 8);
k += ROWS;
(void)wait_status(adder, TX_READY);
adder->id_data = packed;
}
}
/*
* (XXX XXX XXX - should remove)
*
* Copy the second row of characters. Subtract the first
* row from the total number. Divide this quantity by 2
* because 2 chars are stored in a short in the PTOB loop
* below. Figure out how many characters can be stored on
* one "line" of offscreen memory
*/
max_chars_line = MAX_SCREEN_X/(CHAR_WIDTH*2);
if ((CHARS/2 + CHARS%2) < max_chars_line)
return;
max_chars_line = (CHARS/2 + CHARS%2) - max_chars_line; /* 95 - 64 */
/* Paranoia check to see if 3rd row may be needed */
if (max_chars_line > (MAX_SCREEN_X/(CHAR_WIDTH*2)))
max_chars_line = MAX_SCREEN_X/(CHAR_WIDTH*2);
adder->destination_x = FONT_X;
adder->destination_y = FONT_Y - CHAR_HEIGHT;
adder->fast_dest_dx = max_chars_line * CHAR_WIDTH * 2;
adder->slow_dest_dy = CHAR_HEIGHT;
/*
* setup for processor to bitmap xfer
*/
write_ID(adder, CS_UPDATE_MASK, 0x0001);
adder->cmd = PBT | OCRB | 2 | DTE | 2;
/*
* iteratively do the processor to bitmap xfer
*/
for (i = 0; i < ROWS; ++i) {
/*
* PTOB a scan line
*/
for (j = 0, k = i; j < max_chars_line; ++j) {
/*
* PTOB one scan of a char cell
*/
packed = q_font[k + FONT_OFFSET];
k += ROWS;
packed |= ((short)q_font[k + FONT_OFFSET] << 8);
k += ROWS;
(void)wait_status(adder, TX_READY);
adder->id_data = packed;
}
}
} /* ldfont */
qdpoll(onoff)
{
qdpolling = onoff;
}
/*
* Get a character from the LK201 (polled)
*/
qdgetc()
{
register short key;
register char chr;
register struct duart *duart;
duart = (struct duart *) qdmap[0].duart;
/*
* Get a character from the keyboard.
*/
LOOP:
while (!(duart->statusA&RCV_RDY))
;
key = duart->dataA;
key &= 0xFF;
/*
* Check for various keyboard errors */
if (key == LK_POWER_ERROR || key == LK_KDOWN_ERROR ||
key == LK_INPUT_ERROR || key == LK_OUTPUT_ERROR) {
printf("Keyboard error, code = %x\n", key);
return(0);
}
if (key < LK_LOWEST)
return(0);
/*
* See if its a state change key
*/
switch (key) {
case LOCK:
q_keyboard.lock ^= 0xffff; /* toggle */
if (q_keyboard.lock)
(void)led_control(0, LK_LED_ENABLE, LK_LED_LOCK);
else
(void)led_control(0, LK_LED_DISABLE, LK_LED_LOCK);
goto LOOP;
case SHIFT:
q_keyboard.shift ^= 0xFFFF;
goto LOOP;
case CNTRL:
q_keyboard.cntrl ^= 0xFFFF;
goto LOOP;
case ALLUP:
q_keyboard.cntrl = 0;
q_keyboard.shift = 0;
goto LOOP;
case REPEAT:
chr = q_keyboard.last;
break;
/*
* Test for cntrl characters. If set, see if the character
* is elligible to become a control character.
*/
default:
if (q_keyboard.cntrl) {
chr = q_key[key];
if (chr >= ' ' && chr <= '~')
chr &= 0x1F;
}
else if ( q_keyboard.lock || q_keyboard.shift )
chr = q_shift_key[key];
else
chr = q_key[key];
break;
}
if (chr < ' ' && chr > '~') /* if input is non-displayable */
return(0); /* ..then pitch it! */
q_keyboard.last = chr;
/*
* Check for special function keys */
if (chr & 0x80) /* pitch the function keys */
return(0);
else
return(chr);
} /* qdgetc */
/*
* led_control()... twiddle LK-201 LED's
*/
led_control(unit, cmd, led_mask)
int unit, cmd, led_mask;
{
register i;
register struct duart *duart;
duart = (struct duart *)qdmap[unit].duart;
for (i = 1000; i > 0; --i) {
if (duart->statusA&XMT_RDY) {
duart->dataA = cmd;
break;
}
}
for (i = 1000; i > 0; --i) {
if (duart->statusA&XMT_RDY) {
duart->dataA = led_mask;
break;
}
}
if (i == 0)
return(BAD);
return(GOOD);
} /* led_control */
/*
* scroll_up()... move the screen up one character height
*/
scroll_up(adder)
register struct adder *adder;
{
/*
* setup VIPER operand control registers
*/
(void)wait_status(adder, ADDRESS_COMPLETE);
write_ID(adder, CS_UPDATE_MASK, 0x00FF); /* select all planes */
write_ID(adder, MASK_1, 0xFFFF);
write_ID(adder, VIPER_Z_LOAD | FOREGROUND_COLOR_Z, 255);
write_ID(adder, VIPER_Z_LOAD | BACKGROUND_COLOR_Z, 0);
write_ID(adder, SRC1_OCR_B,
EXT_NONE | INT_SOURCE | ID | BAR_SHIFT_DELAY);
write_ID(adder, DST_OCR_B,
EXT_NONE | INT_NONE | NO_ID | NO_BAR_SHIFT_DELAY);
/*
* load DESTINATION origin and vectors
*/
adder->fast_dest_dy = 0;
adder->slow_dest_dx = 0;
adder->error_1 = 0;
adder->error_2 = 0;
adder->rasterop_mode = DST_WRITE_ENABLE | NORMAL;
adder->destination_x = 0;
adder->fast_dest_dx = 1024;
adder->destination_y = 0;
adder->slow_dest_dy = 864 - CHAR_HEIGHT;
/*
* load SOURCE origin and vectors
*/
adder->source_1_x = 0;
adder->source_1_dx = 1024;
adder->source_1_y = 0 + CHAR_HEIGHT;
adder->source_1_dy = 864 - CHAR_HEIGHT;
write_ID(adder, LU_FUNCTION_R1, FULL_SRC_RESOLUTION | LF_SOURCE);
adder->cmd = RASTEROP | OCRB | 0 | S1E | DTE;
/*
* do a rectangle clear of last screen line
*/
write_ID(adder, MASK_1, 0xffff);
write_ID(adder, SOURCE, 0xffff);
write_ID(adder,DST_OCR_B,
(EXT_NONE | INT_NONE | NO_ID | NO_BAR_SHIFT_DELAY));
write_ID(adder, VIPER_Z_LOAD | FOREGROUND_COLOR_Z, 0);
adder->error_1 = 0;
adder->error_2 = 0;
adder->slow_dest_dx = 0; /* set up the width of */
adder->slow_dest_dy = CHAR_HEIGHT; /* rectangle */
adder->rasterop_mode = (NORMAL | DST_WRITE_ENABLE) ;
(void)wait_status(adder, RASTEROP_COMPLETE);
adder->destination_x = 0;
adder->destination_y = 864 - CHAR_HEIGHT;
adder->fast_dest_dx = 1024; /* set up the height */
adder->fast_dest_dy = 0; /* of rectangle */
write_ID(adder, LU_FUNCTION_R2, (FULL_SRC_RESOLUTION | LF_SOURCE));
adder->cmd = (RASTEROP | OCRB | LF_R2 | DTE ) ;
} /* scroll_up */
/*
* init shared memory pointers and structures
*/
init_shared(unit)
register unit;
{
register struct dga *dga;
dga = (struct dga *) qdmap[unit].dga;
/*
* initialize the event queue pointers and header */
eq_header[unit] = (struct qdinput *)
((((int)event_shared & ~(0x01FF)) + 512)
+ (EVENT_BUFSIZE * unit));
eq_header[unit]->curs_pos.x = 0;
eq_header[unit]->curs_pos.y = 0;
dga->x_cursor = TRANX(eq_header[unit]->curs_pos.x);
dga->y_cursor = TRANY(eq_header[unit]->curs_pos.y);
eq_header[unit]->curs_box.left = 0;
eq_header[unit]->curs_box.right = 0;
eq_header[unit]->curs_box.top = 0;
eq_header[unit]->curs_box.bottom = 0;
/*
* assign a pointer to the DMA I/O buffer for this QDSS.
*/
DMAheader[unit] = (struct DMAreq_header *)
(((int)(&DMA_shared[0] + 512) & ~0x1FF)
+ (DMAbuf_size * unit));
DMAheader[unit]->DMAreq = (struct DMAreq *) ((int)DMAheader[unit]
+ sizeof(struct DMAreq_header));
DMAheader[unit]->QBAreg = 0;
DMAheader[unit]->status = 0;
DMAheader[unit]->shared_size = DMAbuf_size;
DMAheader[unit]->used = 0;
DMAheader[unit]->size = 10; /* default = 10 requests */
DMAheader[unit]->oldest = 0;
DMAheader[unit]->newest = 0;
/*
* assign a pointer to the scroll structure for this QDSS.
*/
scroll[unit] = (struct scroll *)
(((int)(&scroll_shared[0] + 512) & ~0x1FF)
+ (sizeof(struct scroll) * unit));
scroll[unit]->status = 0;
scroll[unit]->viper_constant = 0;
scroll[unit]->y_scroll_constant = 0;
scroll[unit]->y_offset = 0;
scroll[unit]->x_index_pending = 0;
scroll[unit]->y_index_pending = 0;
/*
* assign a pointer to the color map write buffer for this QDSS
*/
color_buf[unit] = (struct color_buf *)
(((int)(&color_shared[0] + 512) & ~0x1FF)
+ (COLOR_BUFSIZ * unit));
color_buf[unit]->status = 0;
color_buf[unit]->count = 0;
} /* init_shared */
/*
* init the ADDER, VIPER, bitmaps, & color map
*/
setup_dragon(unit)
int unit;
{
register struct adder *adder;
register struct dga *dga;
short *memcsr;
register i;
short top; /* clipping/scrolling boundaries */
short bottom;
short right;
short left;
short *red; /* color map pointers */
short *green;
short *blue;
/*
* init for setup
*/
adder = (struct adder *) qdmap[unit].adder;
dga = (struct dga *) qdmap[unit].dga;
memcsr = (short *) qdmap[unit].memcsr;
dga->csr &= ~(DMA_IE | 0x700); /* halt DMA and kill the intrpts */
*memcsr = SYNC_ON; /* blank screen and turn off LED's */
adder->command = CANCEL;
/*
* set monitor timing
*/
adder->x_scan_count_0 = 0x2800;
adder->x_scan_count_1 = 0x1020;
adder->x_scan_count_2 = 0x003A;
adder->x_scan_count_3 = 0x38F0;
adder->x_scan_count_4 = 0x6128;
adder->x_scan_count_5 = 0x093A;
adder->x_scan_count_6 = 0x313C;
adder->sync_phase_adj = 0x0100;
adder->x_scan_conf = 0x00C8;
/*
* got a bug in secound pass ADDER! lets take care of it
*
* normally, just use the code in the following bug fix code, but to
* make repeated demos look pretty, load the registers as if there was
* no bug and then test to see if we are getting sync
*/
adder->y_scan_count_0 = 0x135F;
adder->y_scan_count_1 = 0x3363;
adder->y_scan_count_2 = 0x2366;
adder->y_scan_count_3 = 0x0388;
/*
* if no sync, do the bug fix code
*/
if (wait_status(adder, VSYNC) == BAD) {
/* first load all Y scan registers with very short frame and
* wait for scroll service. This guarantees at least one SYNC
* to fix the pass 2 Adder initialization bug (synchronizes
* XCINCH with DMSEEDH)
*/
adder->y_scan_count_0 = 0x01;
adder->y_scan_count_1 = 0x01;
adder->y_scan_count_2 = 0x01;
adder->y_scan_count_3 = 0x01;
/*
* delay at least 1 full frame time
*/
(void)wait_status(adder, VSYNC);
(void)wait_status(adder, VSYNC);
/*
* now load the REAL sync values (in reverse order just to
* be safe.
*/
adder->y_scan_count_3 = 0x0388;
adder->y_scan_count_2 = 0x2366;
adder->y_scan_count_1 = 0x3363;
adder->y_scan_count_0 = 0x135F;
}
*memcsr = SYNC_ON | UNBLANK; /* turn off leds and turn on video */
/*
* zero the index registers
*/
adder->x_index_pending = 0;
adder->y_index_pending = 0;
adder->x_index_new = 0;
adder->y_index_new = 0;
adder->x_index_old = 0;
adder->y_index_old = 0;
adder->pause = 0;
/*
* set rasterop mode to normal pen down
*/
adder->rasterop_mode = DST_WRITE_ENABLE | DST_INDEX_ENABLE | NORMAL;
/*
* set the rasterop registers to a default values
*/
adder->source_1_dx = 1;
adder->source_1_dy = 1;
adder->source_1_x = 0;
adder->source_1_y = 0;
adder->destination_x = 0;
adder->destination_y = 0;
adder->fast_dest_dx = 1;
adder->fast_dest_dy = 0;
adder->slow_dest_dx = 0;
adder->slow_dest_dy = 1;
adder->error_1 = 0;
adder->error_2 = 0;
/*
* scale factor = UNITY
*/
adder->fast_scale = UNITY;
adder->slow_scale = UNITY;
/*
* set the source 2 parameters
*/
adder->source_2_x = 0;
adder->source_2_y = 0;
adder->source_2_size = 0x0022;
/*
* initialize plane addresses for eight vipers
*/
write_ID(adder, CS_UPDATE_MASK, 0x0001);
write_ID(adder, PLANE_ADDRESS, 0x0000);
write_ID(adder, CS_UPDATE_MASK, 0x0002);
write_ID(adder, PLANE_ADDRESS, 0x0001);
write_ID(adder, CS_UPDATE_MASK, 0x0004);
write_ID(adder, PLANE_ADDRESS, 0x0002);
write_ID(adder, CS_UPDATE_MASK, 0x0008);
write_ID(adder, PLANE_ADDRESS, 0x0003);
write_ID(adder, CS_UPDATE_MASK, 0x0010);
write_ID(adder, PLANE_ADDRESS, 0x0004);
write_ID(adder, CS_UPDATE_MASK, 0x0020);
write_ID(adder, PLANE_ADDRESS, 0x0005);
write_ID(adder, CS_UPDATE_MASK, 0x0040);
write_ID(adder, PLANE_ADDRESS, 0x0006);
write_ID(adder, CS_UPDATE_MASK, 0x0080);
write_ID(adder, PLANE_ADDRESS, 0x0007);
/*
* initialize the external registers.
*/
write_ID(adder, CS_UPDATE_MASK, 0x00FF);
write_ID(adder, CS_SCROLL_MASK, 0x00FF);
/*
* initialize resolution mode
*/
write_ID(adder, MEMORY_BUS_WIDTH, 0x000C); /* bus width = 16 */
write_ID(adder, RESOLUTION_MODE, 0x0000); /* one bit/pixel */
/*
* initialize viper registers
*/
write_ID(adder, SCROLL_CONSTANT, SCROLL_ENABLE|VIPER_LEFT|VIPER_UP);
write_ID(adder, SCROLL_FILL, 0x0000);
/*
* set clipping and scrolling limits to full screen
*/
for (i = 1000, adder->status = 0;
i > 0 && !(adder->status&ADDRESS_COMPLETE); --i)
;
if (i == 0)
printf("qd%d: setup_dragon: timeout on ADDRESS_COMPLETE\n",unit);
top = 0;
bottom = 2048;
left = 0;
right = 1024;
adder->x_clip_min = left;
adder->x_clip_max = right;
adder->y_clip_min = top;
adder->y_clip_max = bottom;
adder->scroll_x_min = left;
adder->scroll_x_max = right;
adder->scroll_y_min = top;
adder->scroll_y_max = bottom;
(void)wait_status(adder, VSYNC); /* wait at LEAST 1 full frame */
(void)wait_status(adder, VSYNC);
adder->x_index_pending = left;
adder->y_index_pending = top;
adder->x_index_new = left;
adder->y_index_new = top;
adder->x_index_old = left;
adder->y_index_old = top;
for (i = 1000, adder->status = 0; i > 0 &&
!(adder->status&ADDRESS_COMPLETE) ; --i)
;
if (i == 0)
printf("qd%d: setup_dragon: timeout on ADDRESS_COMPLETE\n",unit);
write_ID(adder, LEFT_SCROLL_MASK, 0x0000);
write_ID(adder, RIGHT_SCROLL_MASK, 0x0000);
/*
* set source and the mask register to all ones (ie: white) o
*/
write_ID(adder, SOURCE, 0xFFFF);
write_ID(adder, MASK_1, 0xFFFF);
write_ID(adder, VIPER_Z_LOAD | FOREGROUND_COLOR_Z, 255);
write_ID(adder, VIPER_Z_LOAD | BACKGROUND_COLOR_Z, 0);
/*
* initialize Operand Control Register banks for fill command
*/
write_ID(adder, SRC1_OCR_A, EXT_NONE | INT_M1_M2 | NO_ID | WAIT);
write_ID(adder, SRC2_OCR_A, EXT_NONE | INT_SOURCE | NO_ID | NO_WAIT);
write_ID(adder, DST_OCR_A, EXT_NONE | INT_NONE | NO_ID | NO_WAIT);
write_ID(adder, SRC1_OCR_B, EXT_NONE | INT_SOURCE | NO_ID | WAIT);
write_ID(adder, SRC2_OCR_B, EXT_NONE | INT_M1_M2 | NO_ID | NO_WAIT);
write_ID(adder, DST_OCR_B, EXT_NONE | INT_NONE | NO_ID | NO_WAIT);
/*
* init Logic Unit Function registers, (these are just common values,
* and may be changed as required).
*/
write_ID(adder, LU_FUNCTION_R1, FULL_SRC_RESOLUTION | LF_SOURCE);
write_ID(adder, LU_FUNCTION_R2, FULL_SRC_RESOLUTION | LF_SOURCE |
INV_M1_M2);
write_ID(adder, LU_FUNCTION_R3, FULL_SRC_RESOLUTION | LF_D_OR_S);
write_ID(adder, LU_FUNCTION_R4, FULL_SRC_RESOLUTION | LF_D_XOR_S);
/*
* load the color map for black & white
*/
for (i = 0, adder->status = 0; i < 10000 && !(adder->status&VSYNC); ++i)
;
if (i == 0)
printf("qd%d: setup_dragon: timeout on VSYNC\n", unit);
red = (short *) qdmap[unit].red;
green = (short *) qdmap[unit].green;
blue = (short *) qdmap[unit].blue;
*red++ = 0x00; /* black */
*green++ = 0x00;
*blue++ = 0x00;
*red-- = 0xFF; /* white */
*green-- = 0xFF;
*blue-- = 0xFF;
/*
* set color map for mouse cursor
*/
red += 254;
green += 254;
blue += 254;
*red++ = 0x00; /* black */
*green++ = 0x00;
*blue++ = 0x00;
*red = 0xFF; /* white */
*green = 0xFF;
*blue = 0xFF;
} /* setup_dragon */
/*
* Init the DUART and set defaults in input
*/
setup_input(unit)
int unit;
{
register struct duart *duart; /* DUART register structure pointer */
register i, bits;
char id_byte;
duart = (struct duart *) qdmap[unit].duart;
duart->imask = 0;
/*
* setup the DUART for kbd & pointing device
*/
duart->cmdA = RESET_M; /* reset mode reg ptr for kbd */
duart->modeA = 0x13; /* 8 bits, no parity, rcv IE, */
/* no RTS control,char error mode */
duart->modeA = 0x07; /* 1 stop bit,CTS does not IE XMT */
/* no RTS control,no echo or loop */
duart->cmdB = RESET_M; /* reset mode reg pntr for host */
duart->modeB = 0x07; /* 8 bits, odd parity, rcv IE.. */
/* ..no RTS cntrl, char error mode */
duart->modeB = 0x07; /* 1 stop bit,CTS does not IE XMT */
/* no RTS control,no echo or loop */
duart->auxctl = 0x00; /* baud rate set 1 */
duart->clkselA = 0x99; /* 4800 baud for kbd */
duart->clkselB = 0x99; /* 4800 baud for mouse */
/* reset everything for keyboard */
for (bits = RESET_M; bits < START_BREAK; bits += 0x10)
duart->cmdA = bits;
/* reset everything for host */
for (bits = RESET_M; bits < START_BREAK; bits += 0x10)
duart->cmdB = bits;
duart->cmdA = EN_RCV | EN_XMT; /* enbl xmt & rcv for kbd */
duart->cmdB = EN_RCV | EN_XMT; /* enbl xmt & rcv for pointer device */
/*
* init keyboard defaults (DUART channel A)
*/
for (i = 500; i > 0; --i) {
if (duart->statusA&XMT_RDY) {
duart->dataA = LK_DEFAULTS;
break;
}
}
for (i = 100000; i > 0; --i) {
if (duart->statusA&RCV_RDY) {
break;
}
}
if (duart->dataA) /* flush the ACK */
;
/*
* identify the pointing device
*/
for (i = 500; i > 0; --i) {
if (duart->statusB&XMT_RDY) {
duart->dataB = SELF_TEST;
break;
}
}
/*
* wait for 1st byte of self test report */
for (i = 100000; i > 0; --i) {
if (duart->statusB&RCV_RDY) {
break;
}
}
if (i == 0) {
printf("qd[%d]: setup_input: timeout on 1st byte of self test\n"
,unit);
goto OUT;
}
if (duart->dataB)
;
/*
* wait for ID byte of self test report
*/
for (i = 100000; i > 0; --i) {
if (duart->statusB&RCV_RDY) {
break;
}
}
if (i == 0) {
printf("qd[%d]: setup_input: timeout on 2nd byte of self test\n", unit);
goto OUT;
}
id_byte = duart->dataB;
/*
* wait for other bytes to come in
*/
for (i = 100000; i > 0; --i) {
if (duart->statusB & RCV_RDY) {
if (duart->dataB)
;
break;
}
}
if (i == 0) {
printf("qd[%d]: setup_input: timeout on 3rd byte of self test\n", unit);
goto OUT;
}
for (i = 100000; i > 0; --i) {
if (duart->statusB&RCV_RDY) {
if (duart->dataB)
;
break;
}
}
if (i == 0) {
printf("qd[%d]: setup_input: timeout on 4th byte of self test\n", unit);
goto OUT;
}
/*
* flag pointing device type and set defaults
*/
for (i=100000; i>0; --i)
; /*XXX*/
if ((id_byte & 0x0F) != TABLET_ID) {
qdflags[unit].pntr_id = MOUSE_ID;
for (i = 500; i > 0; --i) {
if (duart->statusB&XMT_RDY) {
duart->dataB = INC_STREAM_MODE;
break;
}
}
}
else {
qdflags[unit].pntr_id = TABLET_ID;
for (i = 500; i > 0; --i) {
if (duart->statusB&XMT_RDY) {
duart->dataB = T_STREAM;
break;
}
}
}
OUT:
duart->imask = qdflags[unit].duart_imask;
} /* setup_input */
/*
* delay for at least one display frame time
*
* return: BAD means that we timed out without ever seeing the
* vertical sync status bit
* GOOD otherwise
*/
wait_status(adder, mask)
register struct adder *adder;
register int mask;
{
register i;
for (i = 10000, adder->status = 0 ; i > 0 &&
!(adder->status&mask) ; --i)
;
if (i == 0) {
printf("wait_status: timeout polling for 0x%x in adder->status\n", mask);
return(BAD);
}
return(GOOD);
} /* wait_status */
/*
* write out onto the ID bus
*/
write_ID(adder, adrs, data)
register struct adder *adder;
register short adrs;
register short data;
{
register i;
for (i = 100000, adder->status = 0 ;
i > 0 && !(adder->status&ADDRESS_COMPLETE) ; --i)
;
if (i == 0)
goto ERR;
for (i = 100000, adder->status = 0 ;
i > 0 && !(adder->status&TX_READY) ; --i)
;
if (i > 0) {
adder->id_data = data;
adder->command = ID_LOAD | adrs;
return ;
}
ERR:
printf("write_ID: timeout trying to write to VIPER\n");
return ;
} /* write_ID */
#endif