4d5c88faa5
heavily fragmented files. Also fixing some (rare) allocation bugs and function name streamlining. Tested on harddisc, CD-RW and CD-R i.e. all three basic backend classes.
702 lines
19 KiB
C
702 lines
19 KiB
C
/* $NetBSD: udf_strat_sequential.c,v 1.2 2008/07/07 18:45:27 reinoud Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 2006, 2008 Reinoud Zandijk
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
#ifndef lint
|
|
__KERNEL_RCSID(0, "$NetBSD: udf_strat_sequential.c,v 1.2 2008/07/07 18:45:27 reinoud Exp $");
|
|
#endif /* not lint */
|
|
|
|
|
|
#if defined(_KERNEL_OPT)
|
|
#include "opt_quota.h"
|
|
#include "opt_compat_netbsd.h"
|
|
#endif
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/namei.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/vnode.h>
|
|
#include <miscfs/genfs/genfs_node.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/file.h>
|
|
#include <sys/device.h>
|
|
#include <sys/disklabel.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/dirent.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/kauth.h>
|
|
#include <sys/kthread.h>
|
|
#include <dev/clock_subr.h>
|
|
|
|
#include <fs/udf/ecma167-udf.h>
|
|
#include <fs/udf/udf_mount.h>
|
|
|
|
#if defined(_KERNEL_OPT)
|
|
#include "opt_udf.h"
|
|
#endif
|
|
|
|
#include "udf.h"
|
|
#include "udf_subr.h"
|
|
#include "udf_bswap.h"
|
|
|
|
|
|
#define VTOI(vnode) ((struct udf_node *) vnode->v_data)
|
|
#define PRIV(ump) ((struct strat_private *) ump->strategy_private)
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/* BUFQ's */
|
|
#define UDF_SHED_MAX 3
|
|
|
|
#define UDF_SHED_READING 0
|
|
#define UDF_SHED_WRITING 1
|
|
#define UDF_SHED_SEQWRITING 2
|
|
|
|
struct strat_private {
|
|
struct pool desc_pool; /* node descriptors */
|
|
|
|
lwp_t *queue_lwp;
|
|
kcondvar_t discstrat_cv; /* to wait on */
|
|
kmutex_t discstrat_mutex; /* disc strategy */
|
|
|
|
int run_thread; /* thread control */
|
|
int cur_queue;
|
|
|
|
struct disk_strategy old_strategy_setting;
|
|
struct bufq_state *queues[UDF_SHED_MAX];
|
|
struct timespec last_queued[UDF_SHED_MAX];
|
|
};
|
|
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
static void
|
|
udf_wr_nodedscr_callback(struct buf *buf)
|
|
{
|
|
struct udf_node *udf_node;
|
|
|
|
KASSERT(buf);
|
|
KASSERT(buf->b_data);
|
|
|
|
/* called when write action is done */
|
|
DPRINTF(WRITE, ("udf_wr_nodedscr_callback(): node written out\n"));
|
|
|
|
udf_node = VTOI(buf->b_vp);
|
|
if (udf_node == NULL) {
|
|
putiobuf(buf);
|
|
printf("udf_wr_node_callback: NULL node?\n");
|
|
return;
|
|
}
|
|
|
|
/* XXX right flags to mark dirty again on error? */
|
|
if (buf->b_error) {
|
|
udf_node->i_flags |= IN_MODIFIED | IN_ACCESSED;
|
|
/* XXX TODO reshedule on error */
|
|
}
|
|
|
|
/* decrement outstanding_nodedscr */
|
|
KASSERT(udf_node->outstanding_nodedscr >= 1);
|
|
udf_node->outstanding_nodedscr--;
|
|
if (udf_node->outstanding_nodedscr == 0) {
|
|
/* first unlock the node */
|
|
KASSERT(udf_node->i_flags & IN_CALLBACK_ULK);
|
|
UDF_UNLOCK_NODE(udf_node, IN_CALLBACK_ULK);
|
|
|
|
wakeup(&udf_node->outstanding_nodedscr);
|
|
}
|
|
|
|
/* unreference the vnode so it can be recycled */
|
|
holdrele(udf_node->vnode);
|
|
|
|
putiobuf(buf);
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
static int
|
|
udf_create_logvol_dscr_seq(struct udf_strat_args *args)
|
|
{
|
|
union dscrptr **dscrptr = &args->dscr;
|
|
struct udf_mount *ump = args->ump;
|
|
struct strat_private *priv = PRIV(ump);
|
|
uint32_t lb_size;
|
|
|
|
lb_size = udf_rw32(ump->logical_vol->lb_size);
|
|
*dscrptr = pool_get(&priv->desc_pool, PR_WAITOK);
|
|
memset(*dscrptr, 0, lb_size);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void
|
|
udf_free_logvol_dscr_seq(struct udf_strat_args *args)
|
|
{
|
|
union dscrptr *dscr = args->dscr;
|
|
struct udf_mount *ump = args->ump;
|
|
struct strat_private *priv = PRIV(ump);
|
|
|
|
pool_put(&priv->desc_pool, dscr);
|
|
}
|
|
|
|
|
|
static int
|
|
udf_read_logvol_dscr_seq(struct udf_strat_args *args)
|
|
{
|
|
union dscrptr **dscrptr = &args->dscr;
|
|
union dscrptr *tmpdscr;
|
|
struct udf_mount *ump = args->ump;
|
|
struct long_ad *icb = args->icb;
|
|
struct strat_private *priv = PRIV(ump);
|
|
uint32_t lb_size;
|
|
uint32_t sector, dummy;
|
|
int error;
|
|
|
|
lb_size = udf_rw32(ump->logical_vol->lb_size);
|
|
|
|
error = udf_translate_vtop(ump, icb, §or, &dummy);
|
|
if (error)
|
|
return error;
|
|
|
|
/* try to read in fe/efe */
|
|
error = udf_read_phys_dscr(ump, sector, M_UDFTEMP, &tmpdscr);
|
|
if (error)
|
|
return error;
|
|
|
|
*dscrptr = pool_get(&priv->desc_pool, PR_WAITOK);
|
|
memcpy(*dscrptr, tmpdscr, lb_size);
|
|
free(tmpdscr, M_UDFTEMP);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
udf_write_logvol_dscr_seq(struct udf_strat_args *args)
|
|
{
|
|
union dscrptr *dscr = args->dscr;
|
|
struct udf_mount *ump = args->ump;
|
|
struct udf_node *udf_node = args->udf_node;
|
|
struct long_ad *icb = args->icb;
|
|
int waitfor = args->waitfor;
|
|
uint32_t logsectornr, sectornr, dummy;
|
|
int error, vpart;
|
|
|
|
/*
|
|
* we have to decide if we write it out sequential or at its fixed
|
|
* position by examining the partition its (to be) written on.
|
|
*/
|
|
vpart = udf_rw16(udf_node->loc.loc.part_num);
|
|
logsectornr = udf_rw32(icb->loc.lb_num);
|
|
sectornr = 0;
|
|
if (ump->vtop_tp[vpart] != UDF_VTOP_TYPE_VIRT) {
|
|
error = udf_translate_vtop(ump, icb, §ornr, &dummy);
|
|
if (error)
|
|
goto out;
|
|
}
|
|
|
|
/* add reference to the vnode to prevent recycling */
|
|
vhold(udf_node->vnode);
|
|
|
|
if (waitfor) {
|
|
DPRINTF(WRITE, ("udf_write_logvol_dscr: sync write\n"));
|
|
|
|
error = udf_write_phys_dscr_sync(ump, udf_node, UDF_C_NODE,
|
|
dscr, sectornr, logsectornr);
|
|
} else {
|
|
DPRINTF(WRITE, ("udf_write_logvol_dscr: no wait, async write\n"));
|
|
|
|
error = udf_write_phys_dscr_async(ump, udf_node, UDF_C_NODE,
|
|
dscr, sectornr, logsectornr, udf_wr_nodedscr_callback);
|
|
/* will be UNLOCKED in call back */
|
|
return error;
|
|
}
|
|
|
|
holdrele(udf_node->vnode);
|
|
out:
|
|
udf_node->outstanding_nodedscr--;
|
|
if (udf_node->outstanding_nodedscr == 0) {
|
|
UDF_UNLOCK_NODE(udf_node, 0);
|
|
wakeup(&udf_node->outstanding_nodedscr);
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/*
|
|
* Main file-system specific sheduler. Due to the nature of optical media
|
|
* sheduling can't be performed in the traditional way. Most OS
|
|
* implementations i've seen thus read or write a file atomically giving all
|
|
* kinds of side effects.
|
|
*
|
|
* This implementation uses a kernel thread to shedule the queued requests in
|
|
* such a way that is semi-optimal for optical media; this means aproximately
|
|
* (R*|(Wr*|Ws*))* since switching between reading and writing is expensive in
|
|
* time.
|
|
*/
|
|
|
|
static void
|
|
udf_queuebuf_seq(struct udf_strat_args *args)
|
|
{
|
|
struct udf_mount *ump = args->ump;
|
|
struct buf *nestbuf = args->nestbuf;
|
|
struct strat_private *priv = PRIV(ump);
|
|
int queue;
|
|
int what;
|
|
|
|
KASSERT(ump);
|
|
KASSERT(nestbuf);
|
|
KASSERT(nestbuf->b_iodone == nestiobuf_iodone);
|
|
|
|
what = nestbuf->b_udf_c_type;
|
|
queue = UDF_SHED_READING;
|
|
if ((nestbuf->b_flags & B_READ) == 0) {
|
|
/* writing */
|
|
queue = UDF_SHED_SEQWRITING;
|
|
if (what == UDF_C_DSCR)
|
|
queue = UDF_SHED_WRITING;
|
|
if (what == UDF_C_NODE) {
|
|
if (ump->meta_alloc != UDF_ALLOC_VAT)
|
|
queue = UDF_SHED_WRITING;
|
|
}
|
|
#if 0
|
|
if (queue == UDF_SHED_SEQWRITING) {
|
|
/* TODO do add sector to uncommitted space */
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* use our own sheduler lists for more complex sheduling */
|
|
mutex_enter(&priv->discstrat_mutex);
|
|
BUFQ_PUT(priv->queues[queue], nestbuf);
|
|
vfs_timestamp(&priv->last_queued[queue]);
|
|
mutex_exit(&priv->discstrat_mutex);
|
|
|
|
/* signal our thread that there might be something to do */
|
|
cv_signal(&priv->discstrat_cv);
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/* TODO convert to lb_size */
|
|
static void
|
|
udf_VAT_mapping_update(struct udf_mount *ump, struct buf *buf)
|
|
{
|
|
union dscrptr *fdscr = (union dscrptr *) buf->b_data;
|
|
struct vnode *vp = buf->b_vp;
|
|
struct udf_node *udf_node = VTOI(vp);
|
|
struct part_desc *pdesc;
|
|
uint32_t lb_size, blks;
|
|
uint32_t lb_num, lb_map;
|
|
uint32_t udf_rw32_lbmap;
|
|
int c_type = buf->b_udf_c_type;
|
|
int error;
|
|
|
|
/* only interested when we're using a VAT */
|
|
if (ump->meta_alloc != UDF_ALLOC_VAT)
|
|
return;
|
|
KASSERT(ump->vat_node);
|
|
|
|
/* only nodes are recorded in the VAT */
|
|
/* NOTE: and the fileset descriptor (FIXME ?) */
|
|
if (c_type != UDF_C_NODE)
|
|
return;
|
|
|
|
/* we now have an UDF FE/EFE node on media with VAT (or VAT itself) */
|
|
lb_size = udf_rw32(ump->logical_vol->lb_size);
|
|
blks = lb_size / DEV_BSIZE;
|
|
|
|
/* calculate offset from base partition */
|
|
pdesc = ump->partitions[ump->vtop[ump->metadata_part]];
|
|
lb_map = buf->b_blkno / blks;
|
|
lb_map -= udf_rw32(pdesc->start_loc);
|
|
|
|
udf_rw32_lbmap = udf_rw32(lb_map);
|
|
|
|
/* if we're the VAT itself, only update our assigned sector number */
|
|
if (udf_node == ump->vat_node) {
|
|
fdscr->tag.tag_loc = udf_rw32_lbmap;
|
|
udf_validate_tag_sum(fdscr);
|
|
DPRINTF(TRANSLATE, ("VAT assigned to sector %u\n",
|
|
udf_rw32(udf_rw32_lbmap)));
|
|
/* no use mapping the VAT node in the VAT */
|
|
return;
|
|
}
|
|
|
|
/* record new position in VAT file */
|
|
lb_num = udf_rw32(fdscr->tag.tag_loc);
|
|
|
|
/* lb_num = udf_rw32(udf_node->write_loc.loc.lb_num); */
|
|
|
|
DPRINTF(TRANSLATE, ("VAT entry change (log %u -> phys %u)\n",
|
|
lb_num, lb_map));
|
|
|
|
/* VAT should be the longer than this write, can't go wrong */
|
|
KASSERT(lb_num <= ump->vat_entries);
|
|
|
|
mutex_enter(&ump->allocate_mutex);
|
|
error = udf_vat_write(ump->vat_node,
|
|
(uint8_t *) &udf_rw32_lbmap, 4,
|
|
ump->vat_offset + lb_num * 4);
|
|
mutex_exit(&ump->allocate_mutex);
|
|
|
|
if (error)
|
|
panic( "udf_VAT_mapping_update: HELP! i couldn't "
|
|
"write in the VAT file ?\n");
|
|
}
|
|
|
|
|
|
static void
|
|
udf_issue_buf(struct udf_mount *ump, int queue, struct buf *buf)
|
|
{
|
|
struct long_ad *node_ad_cpy;
|
|
uint64_t *lmapping, *pmapping, *lmappos, blknr;
|
|
uint32_t our_sectornr, sectornr, bpos;
|
|
uint8_t *fidblk;
|
|
int sector_size = ump->discinfo.sector_size;
|
|
int blks = sector_size / DEV_BSIZE;
|
|
int len, buf_len;
|
|
|
|
/* if reading, just pass to the device's STRATEGY */
|
|
if (queue == UDF_SHED_READING) {
|
|
DPRINTF(SHEDULE, ("\nudf_issue_buf READ %p : sector %d type %d,"
|
|
"b_resid %d, b_bcount %d, b_bufsize %d\n",
|
|
buf, (uint32_t) buf->b_blkno / blks, buf->b_udf_c_type,
|
|
buf->b_resid, buf->b_bcount, buf->b_bufsize));
|
|
VOP_STRATEGY(ump->devvp, buf);
|
|
return;
|
|
}
|
|
|
|
blknr = buf->b_blkno;
|
|
our_sectornr = blknr / blks;
|
|
|
|
if (queue == UDF_SHED_WRITING) {
|
|
DPRINTF(SHEDULE, ("\nudf_issue_buf WRITE %p : sector %d "
|
|
"type %d, b_resid %d, b_bcount %d, b_bufsize %d\n",
|
|
buf, (uint32_t) buf->b_blkno / blks, buf->b_udf_c_type,
|
|
buf->b_resid, buf->b_bcount, buf->b_bufsize));
|
|
/* if we have FIDs fixup using buffer's sector number(s) */
|
|
if (buf->b_udf_c_type == UDF_C_FIDS) {
|
|
panic("UDF_C_FIDS in SHED_WRITING!\n");
|
|
buf_len = buf->b_bcount;
|
|
sectornr = our_sectornr;
|
|
bpos = 0;
|
|
while (buf_len) {
|
|
len = MIN(buf_len, sector_size);
|
|
fidblk = (uint8_t *) buf->b_data + bpos;
|
|
udf_fixup_fid_block(fidblk, sector_size,
|
|
0, len, sectornr);
|
|
sectornr++;
|
|
bpos += len;
|
|
buf_len -= len;
|
|
}
|
|
}
|
|
udf_fixup_node_internals(ump, buf->b_data, buf->b_udf_c_type);
|
|
VOP_STRATEGY(ump->devvp, buf);
|
|
return;
|
|
}
|
|
|
|
KASSERT(queue == UDF_SHED_SEQWRITING);
|
|
DPRINTF(SHEDULE, ("\nudf_issue_buf SEQWRITE %p : sector XXXX "
|
|
"type %d, b_resid %d, b_bcount %d, b_bufsize %d\n",
|
|
buf, buf->b_udf_c_type, buf->b_resid, buf->b_bcount,
|
|
buf->b_bufsize));
|
|
|
|
/*
|
|
* Buffers should not have been allocated to disc addresses yet on
|
|
* this queue. Note that a buffer can get multiple extents allocated.
|
|
*
|
|
* lmapping contains lb_num relative to base partition.
|
|
* pmapping contains lb_num as used for disc adressing.
|
|
*/
|
|
lmapping = ump->la_lmapping;
|
|
pmapping = ump->la_pmapping;
|
|
node_ad_cpy = ump->la_node_ad_cpy;
|
|
|
|
/* allocate buf and get its logical and physical mappings */
|
|
udf_late_allocate_buf(ump, buf, lmapping, pmapping, node_ad_cpy);
|
|
udf_VAT_mapping_update(ump, buf); /* XXX could pass *lmapping */
|
|
|
|
/* if we have FIDs, fixup using the new allocation table */
|
|
if (buf->b_udf_c_type == UDF_C_FIDS) {
|
|
buf_len = buf->b_bcount;
|
|
bpos = 0;
|
|
lmappos = lmapping;
|
|
while (buf_len) {
|
|
sectornr = *lmappos++;
|
|
len = MIN(buf_len, sector_size);
|
|
fidblk = (uint8_t *) buf->b_data + bpos;
|
|
udf_fixup_fid_block(fidblk, sector_size,
|
|
0, len, sectornr);
|
|
bpos += len;
|
|
buf_len -= len;
|
|
}
|
|
}
|
|
udf_fixup_node_internals(ump, buf->b_data, buf->b_udf_c_type);
|
|
VOP_STRATEGY(ump->devvp, buf);
|
|
}
|
|
|
|
|
|
static void
|
|
udf_doshedule(struct udf_mount *ump)
|
|
{
|
|
struct buf *buf;
|
|
struct timespec now, *last;
|
|
struct strat_private *priv = PRIV(ump);
|
|
void (*b_callback)(struct buf *);
|
|
int new_queue;
|
|
int error;
|
|
|
|
buf = BUFQ_GET(priv->queues[priv->cur_queue]);
|
|
if (buf) {
|
|
/* transfer from the current queue to the device queue */
|
|
mutex_exit(&priv->discstrat_mutex);
|
|
|
|
/* transform buffer to synchronous; XXX needed? */
|
|
b_callback = buf->b_iodone;
|
|
buf->b_iodone = NULL;
|
|
CLR(buf->b_flags, B_ASYNC);
|
|
|
|
/* issue and wait on completion */
|
|
udf_issue_buf(ump, priv->cur_queue, buf);
|
|
biowait(buf);
|
|
|
|
mutex_enter(&priv->discstrat_mutex);
|
|
|
|
/* if there is an error, repair this error, otherwise propagate */
|
|
if (buf->b_error && ((buf->b_flags & B_READ) == 0)) {
|
|
/* check what we need to do */
|
|
panic("UDF write error, can't handle yet!\n");
|
|
}
|
|
|
|
/* propagate result to higher layers */
|
|
if (b_callback) {
|
|
buf->b_iodone = b_callback;
|
|
(*buf->b_iodone)(buf);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/* Check if we're idling in this state */
|
|
vfs_timestamp(&now);
|
|
last = &priv->last_queued[priv->cur_queue];
|
|
if (ump->discinfo.mmc_class == MMC_CLASS_CD) {
|
|
/* dont switch too fast for CD media; its expensive in time */
|
|
if (now.tv_sec - last->tv_sec < 3)
|
|
return;
|
|
}
|
|
|
|
/* check if we can/should switch */
|
|
new_queue = priv->cur_queue;
|
|
|
|
if (BUFQ_PEEK(priv->queues[UDF_SHED_READING]))
|
|
new_queue = UDF_SHED_READING;
|
|
if (BUFQ_PEEK(priv->queues[UDF_SHED_SEQWRITING]))
|
|
new_queue = UDF_SHED_SEQWRITING;
|
|
if (BUFQ_PEEK(priv->queues[UDF_SHED_WRITING])) /* only for unmount */
|
|
new_queue = UDF_SHED_WRITING;
|
|
if (priv->cur_queue == UDF_SHED_READING) {
|
|
if (new_queue == UDF_SHED_SEQWRITING) {
|
|
/* TODO use flag to signal if this is needed */
|
|
mutex_exit(&priv->discstrat_mutex);
|
|
|
|
/* update trackinfo for data and metadata */
|
|
error = udf_update_trackinfo(ump,
|
|
&ump->data_track);
|
|
assert(error == 0);
|
|
error = udf_update_trackinfo(ump,
|
|
&ump->metadata_track);
|
|
assert(error == 0);
|
|
mutex_enter(&priv->discstrat_mutex);
|
|
}
|
|
}
|
|
|
|
if (new_queue != priv->cur_queue) {
|
|
DPRINTF(SHEDULE, ("switching from %d to %d\n",
|
|
priv->cur_queue, new_queue));
|
|
}
|
|
|
|
priv->cur_queue = new_queue;
|
|
}
|
|
|
|
|
|
static void
|
|
udf_discstrat_thread(void *arg)
|
|
{
|
|
struct udf_mount *ump = (struct udf_mount *) arg;
|
|
struct strat_private *priv = PRIV(ump);
|
|
int empty;
|
|
|
|
empty = 1;
|
|
mutex_enter(&priv->discstrat_mutex);
|
|
while (priv->run_thread || !empty) {
|
|
/* process the current selected queue */
|
|
udf_doshedule(ump);
|
|
empty = (BUFQ_PEEK(priv->queues[UDF_SHED_READING]) == NULL);
|
|
empty &= (BUFQ_PEEK(priv->queues[UDF_SHED_WRITING]) == NULL);
|
|
empty &= (BUFQ_PEEK(priv->queues[UDF_SHED_SEQWRITING]) == NULL);
|
|
|
|
/* wait for more if needed */
|
|
if (empty)
|
|
cv_timedwait(&priv->discstrat_cv,
|
|
&priv->discstrat_mutex, hz/8);
|
|
}
|
|
mutex_exit(&priv->discstrat_mutex);
|
|
|
|
wakeup(&priv->run_thread);
|
|
kthread_exit(0);
|
|
/* not reached */
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
static void
|
|
udf_discstrat_init_seq(struct udf_strat_args *args)
|
|
{
|
|
struct udf_mount *ump = args->ump;
|
|
struct strat_private *priv = PRIV(ump);
|
|
struct disk_strategy dkstrat;
|
|
uint32_t lb_size;
|
|
|
|
KASSERT(ump);
|
|
KASSERT(ump->logical_vol);
|
|
KASSERT(priv == NULL);
|
|
|
|
lb_size = udf_rw32(ump->logical_vol->lb_size);
|
|
KASSERT(lb_size > 0);
|
|
|
|
/* initialise our memory space */
|
|
ump->strategy_private = malloc(sizeof(struct strat_private),
|
|
M_UDFTEMP, M_WAITOK);
|
|
priv = ump->strategy_private;
|
|
memset(priv, 0 , sizeof(struct strat_private));
|
|
|
|
/* initialise locks */
|
|
cv_init(&priv->discstrat_cv, "udfstrat");
|
|
mutex_init(&priv->discstrat_mutex, MUTEX_DEFAULT, IPL_NONE);
|
|
|
|
/*
|
|
* Initialise pool for descriptors associated with nodes. This is done
|
|
* in lb_size units though currently lb_size is dictated to be
|
|
* sector_size.
|
|
*/
|
|
pool_init(&priv->desc_pool, lb_size, 0, 0, 0, "udf_desc_pool", NULL,
|
|
IPL_NONE);
|
|
|
|
/*
|
|
* remember old device strategy method and explicit set method
|
|
* `discsort' since we have our own more complex strategy that is not
|
|
* implementable on the CD device and other strategies will get in the
|
|
* way.
|
|
*/
|
|
memset(&priv->old_strategy_setting, 0,
|
|
sizeof(struct disk_strategy));
|
|
VOP_IOCTL(ump->devvp, DIOCGSTRATEGY, &priv->old_strategy_setting,
|
|
FREAD | FKIOCTL, NOCRED);
|
|
memset(&dkstrat, 0, sizeof(struct disk_strategy));
|
|
strcpy(dkstrat.dks_name, "discsort");
|
|
VOP_IOCTL(ump->devvp, DIOCSSTRATEGY, &dkstrat, FWRITE | FKIOCTL,
|
|
NOCRED);
|
|
|
|
/* initialise our internal sheduler */
|
|
priv->cur_queue = UDF_SHED_READING;
|
|
bufq_alloc(&priv->queues[UDF_SHED_READING], "disksort",
|
|
BUFQ_SORT_RAWBLOCK);
|
|
bufq_alloc(&priv->queues[UDF_SHED_WRITING], "disksort",
|
|
BUFQ_SORT_RAWBLOCK);
|
|
bufq_alloc(&priv->queues[UDF_SHED_SEQWRITING], "fcfs", 0);
|
|
vfs_timestamp(&priv->last_queued[UDF_SHED_READING]);
|
|
vfs_timestamp(&priv->last_queued[UDF_SHED_WRITING]);
|
|
vfs_timestamp(&priv->last_queued[UDF_SHED_SEQWRITING]);
|
|
|
|
/* create our disk strategy thread */
|
|
priv->run_thread = 1;
|
|
if (kthread_create(PRI_NONE, 0 /* KTHREAD_MPSAFE*/, NULL /* cpu_info*/,
|
|
udf_discstrat_thread, ump, &priv->queue_lwp,
|
|
"%s", "udf_rw")) {
|
|
panic("fork udf_rw");
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
udf_discstrat_finish_seq(struct udf_strat_args *args)
|
|
{
|
|
struct udf_mount *ump = args->ump;
|
|
struct strat_private *priv = PRIV(ump);
|
|
int error;
|
|
|
|
if (ump == NULL)
|
|
return;
|
|
|
|
/* stop our sheduling thread */
|
|
KASSERT(priv->run_thread == 1);
|
|
priv->run_thread = 0;
|
|
wakeup(priv->queue_lwp);
|
|
do {
|
|
error = tsleep(&priv->run_thread, PRIBIO+1,
|
|
"udfshedfin", hz);
|
|
} while (error);
|
|
/* kthread should be finished now */
|
|
|
|
/* set back old device strategy method */
|
|
VOP_IOCTL(ump->devvp, DIOCSSTRATEGY, &priv->old_strategy_setting,
|
|
FWRITE, NOCRED);
|
|
|
|
/* destroy our pool */
|
|
pool_destroy(&priv->desc_pool);
|
|
|
|
/* free our private space */
|
|
free(ump->strategy_private, M_UDFTEMP);
|
|
ump->strategy_private = NULL;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
struct udf_strategy udf_strat_sequential =
|
|
{
|
|
udf_create_logvol_dscr_seq,
|
|
udf_free_logvol_dscr_seq,
|
|
udf_read_logvol_dscr_seq,
|
|
udf_write_logvol_dscr_seq,
|
|
udf_queuebuf_seq,
|
|
udf_discstrat_init_seq,
|
|
udf_discstrat_finish_seq
|
|
};
|
|
|
|
|