922 lines
23 KiB
C
922 lines
23 KiB
C
/* $NetBSD: if_vlan.c,v 1.44 2005/02/26 22:45:09 perry Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Andrew Doran, and by Jason R. Thorpe of Zembu Labs, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the NetBSD
|
|
* Foundation, Inc. and its contributors.
|
|
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Copyright 1998 Massachusetts Institute of Technology
|
|
*
|
|
* Permission to use, copy, modify, and distribute this software and
|
|
* its documentation for any purpose and without fee is hereby
|
|
* granted, provided that both the above copyright notice and this
|
|
* permission notice appear in all copies, that both the above
|
|
* copyright notice and this permission notice appear in all
|
|
* supporting documentation, and that the name of M.I.T. not be used
|
|
* in advertising or publicity pertaining to distribution of the
|
|
* software without specific, written prior permission. M.I.T. makes
|
|
* no representations about the suitability of this software for any
|
|
* purpose. It is provided "as is" without express or implied
|
|
* warranty.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS
|
|
* ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
|
|
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
|
|
* SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
|
|
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
|
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
|
|
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from FreeBSD: if_vlan.c,v 1.16 2000/03/26 15:21:40 charnier Exp
|
|
* via OpenBSD: if_vlan.c,v 1.4 2000/05/15 19:15:00 chris Exp
|
|
*/
|
|
|
|
/*
|
|
* if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs. Might be
|
|
* extended some day to also handle IEEE 802.1P priority tagging. This is
|
|
* sort of sneaky in the implementation, since we need to pretend to be
|
|
* enough of an Ethernet implementation to make ARP work. The way we do
|
|
* this is by telling everyone that we are an Ethernet interface, and then
|
|
* catch the packets that ether_output() left on our output queue when it
|
|
* calls if_start(), rewrite them for use by the real outgoing interface,
|
|
* and ask it to send them.
|
|
*
|
|
* TODO:
|
|
*
|
|
* - Need some way to notify vlan interfaces when the parent
|
|
* interface changes MTU.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: if_vlan.c,v 1.44 2005/02/26 22:45:09 perry Exp $");
|
|
|
|
#include "opt_inet.h"
|
|
#include "bpfilter.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/proc.h>
|
|
|
|
#if NBPFILTER > 0
|
|
#include <net/bpf.h>
|
|
#endif
|
|
#include <net/if.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_types.h>
|
|
#include <net/if_ether.h>
|
|
#include <net/if_vlanvar.h>
|
|
|
|
#ifdef INET
|
|
#include <netinet/in.h>
|
|
#include <netinet/if_inarp.h>
|
|
#endif
|
|
|
|
struct vlan_mc_entry {
|
|
LIST_ENTRY(vlan_mc_entry) mc_entries;
|
|
/*
|
|
* A key to identify this entry. The mc_addr below can't be
|
|
* used since multiple sockaddr may mapped into the same
|
|
* ether_multi (e.g., AF_UNSPEC).
|
|
*/
|
|
union {
|
|
struct ether_multi *mcu_enm;
|
|
} mc_u;
|
|
struct sockaddr_storage mc_addr;
|
|
};
|
|
|
|
#define mc_enm mc_u.mcu_enm
|
|
|
|
struct ifvlan {
|
|
union {
|
|
struct ethercom ifvu_ec;
|
|
} ifv_u;
|
|
struct ifnet *ifv_p; /* parent interface of this vlan */
|
|
struct ifv_linkmib {
|
|
const struct vlan_multisw *ifvm_msw;
|
|
int ifvm_encaplen; /* encapsulation length */
|
|
int ifvm_mtufudge; /* MTU fudged by this much */
|
|
int ifvm_mintu; /* min transmission unit */
|
|
u_int16_t ifvm_proto; /* encapsulation ethertype */
|
|
u_int16_t ifvm_tag; /* tag to apply on packets */
|
|
} ifv_mib;
|
|
LIST_HEAD(__vlan_mchead, vlan_mc_entry) ifv_mc_listhead;
|
|
LIST_ENTRY(ifvlan) ifv_list;
|
|
int ifv_flags;
|
|
};
|
|
|
|
#define IFVF_PROMISC 0x01 /* promiscuous mode enabled */
|
|
|
|
#define ifv_ec ifv_u.ifvu_ec
|
|
|
|
#define ifv_if ifv_ec.ec_if
|
|
|
|
#define ifv_msw ifv_mib.ifvm_msw
|
|
#define ifv_encaplen ifv_mib.ifvm_encaplen
|
|
#define ifv_mtufudge ifv_mib.ifvm_mtufudge
|
|
#define ifv_mintu ifv_mib.ifvm_mintu
|
|
#define ifv_tag ifv_mib.ifvm_tag
|
|
|
|
struct vlan_multisw {
|
|
int (*vmsw_addmulti)(struct ifvlan *, struct ifreq *);
|
|
int (*vmsw_delmulti)(struct ifvlan *, struct ifreq *);
|
|
void (*vmsw_purgemulti)(struct ifvlan *);
|
|
};
|
|
|
|
static int vlan_ether_addmulti(struct ifvlan *, struct ifreq *);
|
|
static int vlan_ether_delmulti(struct ifvlan *, struct ifreq *);
|
|
static void vlan_ether_purgemulti(struct ifvlan *);
|
|
|
|
const struct vlan_multisw vlan_ether_multisw = {
|
|
vlan_ether_addmulti,
|
|
vlan_ether_delmulti,
|
|
vlan_ether_purgemulti,
|
|
};
|
|
|
|
static int vlan_clone_create(struct if_clone *, int);
|
|
static int vlan_clone_destroy(struct ifnet *);
|
|
static int vlan_config(struct ifvlan *, struct ifnet *);
|
|
static int vlan_ioctl(struct ifnet *, u_long, caddr_t);
|
|
static void vlan_start(struct ifnet *);
|
|
static void vlan_unconfig(struct ifnet *);
|
|
|
|
void vlanattach(int);
|
|
|
|
/* XXX This should be a hash table with the tag as the basis of the key. */
|
|
static LIST_HEAD(, ifvlan) ifv_list;
|
|
|
|
struct if_clone vlan_cloner =
|
|
IF_CLONE_INITIALIZER("vlan", vlan_clone_create, vlan_clone_destroy);
|
|
|
|
/* Used to pad ethernet frames with < ETHER_MIN_LEN bytes */
|
|
static char vlan_zero_pad_buff[ETHER_MIN_LEN];
|
|
|
|
void
|
|
vlanattach(int n)
|
|
{
|
|
|
|
LIST_INIT(&ifv_list);
|
|
if_clone_attach(&vlan_cloner);
|
|
}
|
|
|
|
static void
|
|
vlan_reset_linkname(struct ifnet *ifp)
|
|
{
|
|
|
|
/*
|
|
* We start out with a "802.1Q VLAN" type and zero-length
|
|
* addresses. When we attach to a parent interface, we
|
|
* inherit its type, address length, address, and data link
|
|
* type.
|
|
*/
|
|
|
|
ifp->if_type = IFT_L2VLAN;
|
|
ifp->if_addrlen = 0;
|
|
ifp->if_dlt = DLT_NULL;
|
|
if_alloc_sadl(ifp);
|
|
}
|
|
|
|
static int
|
|
vlan_clone_create(struct if_clone *ifc, int unit)
|
|
{
|
|
struct ifvlan *ifv;
|
|
struct ifnet *ifp;
|
|
int s;
|
|
|
|
ifv = malloc(sizeof(struct ifvlan), M_DEVBUF, M_WAITOK);
|
|
memset(ifv, 0, sizeof(struct ifvlan));
|
|
ifp = &ifv->ifv_if;
|
|
LIST_INIT(&ifv->ifv_mc_listhead);
|
|
|
|
s = splnet();
|
|
LIST_INSERT_HEAD(&ifv_list, ifv, ifv_list);
|
|
splx(s);
|
|
|
|
snprintf(ifp->if_xname, sizeof(ifp->if_xname), "%s%d", ifc->ifc_name,
|
|
unit);
|
|
ifp->if_softc = ifv;
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_start = vlan_start;
|
|
ifp->if_ioctl = vlan_ioctl;
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
|
|
if_attach(ifp);
|
|
vlan_reset_linkname(ifp);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
vlan_clone_destroy(struct ifnet *ifp)
|
|
{
|
|
struct ifvlan *ifv = ifp->if_softc;
|
|
int s;
|
|
|
|
s = splnet();
|
|
LIST_REMOVE(ifv, ifv_list);
|
|
vlan_unconfig(ifp);
|
|
splx(s);
|
|
|
|
if_detach(ifp);
|
|
free(ifv, M_DEVBUF);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Configure a VLAN interface. Must be called at splnet().
|
|
*/
|
|
static int
|
|
vlan_config(struct ifvlan *ifv, struct ifnet *p)
|
|
{
|
|
struct ifnet *ifp = &ifv->ifv_if;
|
|
int error;
|
|
|
|
if (ifv->ifv_p != NULL)
|
|
return (EBUSY);
|
|
|
|
switch (p->if_type) {
|
|
case IFT_ETHER:
|
|
{
|
|
struct ethercom *ec = (void *) p;
|
|
|
|
ifv->ifv_msw = &vlan_ether_multisw;
|
|
ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
|
|
ifv->ifv_mintu = ETHERMIN;
|
|
|
|
/*
|
|
* If the parent supports the VLAN_MTU capability,
|
|
* i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
|
|
* enable it.
|
|
*/
|
|
if (ec->ec_nvlans++ == 0 &&
|
|
(ec->ec_capabilities & ETHERCAP_VLAN_MTU) != 0) {
|
|
/*
|
|
* Enable Tx/Rx of VLAN-sized frames.
|
|
*/
|
|
ec->ec_capenable |= ETHERCAP_VLAN_MTU;
|
|
if (p->if_flags & IFF_UP) {
|
|
struct ifreq ifr;
|
|
|
|
ifr.ifr_flags = p->if_flags;
|
|
error = (*p->if_ioctl)(p, SIOCSIFFLAGS,
|
|
(caddr_t) &ifr);
|
|
if (error) {
|
|
if (ec->ec_nvlans-- == 1)
|
|
ec->ec_capenable &=
|
|
~ETHERCAP_VLAN_MTU;
|
|
return (error);
|
|
}
|
|
}
|
|
ifv->ifv_mtufudge = 0;
|
|
} else if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0) {
|
|
/*
|
|
* Fudge the MTU by the encapsulation size. This
|
|
* makes us incompatible with strictly compliant
|
|
* 802.1Q implementations, but allows us to use
|
|
* the feature with other NetBSD implementations,
|
|
* which might still be useful.
|
|
*/
|
|
ifv->ifv_mtufudge = ifv->ifv_encaplen;
|
|
}
|
|
|
|
/*
|
|
* If the parent interface can do hardware-assisted
|
|
* VLAN encapsulation, then propagate its hardware-
|
|
* assisted checksumming flags.
|
|
*/
|
|
if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING)
|
|
ifp->if_capabilities = p->if_capabilities &
|
|
(IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|
|
|
IFCAP_CSUM_UDPv4|IFCAP_CSUM_TCPv6|
|
|
IFCAP_CSUM_UDPv6);
|
|
|
|
/*
|
|
* We inherit the parent's Ethernet address.
|
|
*/
|
|
ether_ifattach(ifp, LLADDR(p->if_sadl));
|
|
ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* XXX? */
|
|
break;
|
|
}
|
|
|
|
default:
|
|
return (EPROTONOSUPPORT);
|
|
}
|
|
|
|
ifv->ifv_p = p;
|
|
ifv->ifv_if.if_mtu = p->if_mtu - ifv->ifv_mtufudge;
|
|
ifv->ifv_if.if_flags = p->if_flags &
|
|
(IFF_UP | IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
|
|
|
|
/*
|
|
* Inherit the if_type from the parent. This allows us
|
|
* to participate in bridges of that type.
|
|
*/
|
|
ifv->ifv_if.if_type = p->if_type;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Unconfigure a VLAN interface. Must be called at splnet().
|
|
*/
|
|
static void
|
|
vlan_unconfig(struct ifnet *ifp)
|
|
{
|
|
struct ifvlan *ifv = ifp->if_softc;
|
|
|
|
if (ifv->ifv_p == NULL)
|
|
return;
|
|
|
|
/*
|
|
* Since the interface is being unconfigured, we need to empty the
|
|
* list of multicast groups that we may have joined while we were
|
|
* alive and remove them from the parent's list also.
|
|
*/
|
|
(*ifv->ifv_msw->vmsw_purgemulti)(ifv);
|
|
|
|
/* Disconnect from parent. */
|
|
switch (ifv->ifv_p->if_type) {
|
|
case IFT_ETHER:
|
|
{
|
|
struct ethercom *ec = (void *) ifv->ifv_p;
|
|
|
|
if (ec->ec_nvlans-- == 1) {
|
|
/*
|
|
* Disable Tx/Rx of VLAN-sized frames.
|
|
*/
|
|
ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
|
|
if (ifv->ifv_p->if_flags & IFF_UP) {
|
|
struct ifreq ifr;
|
|
|
|
ifr.ifr_flags = ifv->ifv_p->if_flags;
|
|
(void) (*ifv->ifv_p->if_ioctl)(ifv->ifv_p,
|
|
SIOCSIFFLAGS, (caddr_t) &ifr);
|
|
}
|
|
}
|
|
|
|
ether_ifdetach(ifp);
|
|
vlan_reset_linkname(ifp);
|
|
break;
|
|
}
|
|
|
|
#ifdef DIAGNOSTIC
|
|
default:
|
|
panic("vlan_unconfig: impossible");
|
|
#endif
|
|
}
|
|
|
|
ifv->ifv_p = NULL;
|
|
ifv->ifv_if.if_mtu = 0;
|
|
ifv->ifv_flags = 0;
|
|
|
|
if_down(ifp);
|
|
ifp->if_flags &= ~(IFF_UP|IFF_RUNNING);
|
|
ifp->if_capabilities = 0;
|
|
}
|
|
|
|
/*
|
|
* Called when a parent interface is detaching; destroy any VLAN
|
|
* configuration for the parent interface.
|
|
*/
|
|
void
|
|
vlan_ifdetach(struct ifnet *p)
|
|
{
|
|
struct ifvlan *ifv;
|
|
int s;
|
|
|
|
s = splnet();
|
|
|
|
for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
|
|
ifv = LIST_NEXT(ifv, ifv_list)) {
|
|
if (ifv->ifv_p == p)
|
|
vlan_unconfig(&ifv->ifv_if);
|
|
}
|
|
|
|
splx(s);
|
|
}
|
|
|
|
static int
|
|
vlan_set_promisc(struct ifnet *ifp)
|
|
{
|
|
struct ifvlan *ifv = ifp->if_softc;
|
|
int error = 0;
|
|
|
|
if ((ifp->if_flags & IFF_PROMISC) != 0) {
|
|
if ((ifv->ifv_flags & IFVF_PROMISC) == 0) {
|
|
error = ifpromisc(ifv->ifv_p, 1);
|
|
if (error == 0)
|
|
ifv->ifv_flags |= IFVF_PROMISC;
|
|
}
|
|
} else {
|
|
if ((ifv->ifv_flags & IFVF_PROMISC) != 0) {
|
|
error = ifpromisc(ifv->ifv_p, 0);
|
|
if (error == 0)
|
|
ifv->ifv_flags &= ~IFVF_PROMISC;
|
|
}
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
|
|
{
|
|
struct proc *p = curproc; /* XXX */
|
|
struct ifvlan *ifv = ifp->if_softc;
|
|
struct ifaddr *ifa = (struct ifaddr *) data;
|
|
struct ifreq *ifr = (struct ifreq *) data;
|
|
struct ifnet *pr;
|
|
struct vlanreq vlr;
|
|
struct sockaddr *sa;
|
|
int s, error = 0;
|
|
|
|
s = splnet();
|
|
|
|
switch (cmd) {
|
|
case SIOCSIFADDR:
|
|
if (ifv->ifv_p != NULL) {
|
|
ifp->if_flags |= IFF_UP;
|
|
|
|
switch (ifa->ifa_addr->sa_family) {
|
|
#ifdef INET
|
|
case AF_INET:
|
|
arp_ifinit(ifp, ifa);
|
|
break;
|
|
#endif
|
|
default:
|
|
break;
|
|
}
|
|
} else {
|
|
error = EINVAL;
|
|
}
|
|
break;
|
|
|
|
case SIOCGIFADDR:
|
|
sa = (struct sockaddr *)&ifr->ifr_data;
|
|
memcpy(sa->sa_data, LLADDR(ifp->if_sadl), ifp->if_addrlen);
|
|
break;
|
|
|
|
case SIOCSIFMTU:
|
|
if (ifv->ifv_p != NULL) {
|
|
if (ifr->ifr_mtu >
|
|
(ifv->ifv_p->if_mtu - ifv->ifv_mtufudge) ||
|
|
ifr->ifr_mtu <
|
|
(ifv->ifv_mintu - ifv->ifv_mtufudge))
|
|
error = EINVAL;
|
|
else
|
|
ifp->if_mtu = ifr->ifr_mtu;
|
|
} else
|
|
error = EINVAL;
|
|
break;
|
|
|
|
case SIOCSETVLAN:
|
|
if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
|
|
break;
|
|
if ((error = copyin(ifr->ifr_data, &vlr, sizeof(vlr))) != 0)
|
|
break;
|
|
if (vlr.vlr_parent[0] == '\0') {
|
|
vlan_unconfig(ifp);
|
|
break;
|
|
}
|
|
if (vlr.vlr_tag != EVL_VLANOFTAG(vlr.vlr_tag)) {
|
|
error = EINVAL; /* check for valid tag */
|
|
break;
|
|
}
|
|
if ((pr = ifunit(vlr.vlr_parent)) == 0) {
|
|
error = ENOENT;
|
|
break;
|
|
}
|
|
if ((error = vlan_config(ifv, pr)) != 0)
|
|
break;
|
|
ifv->ifv_tag = vlr.vlr_tag;
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
|
|
/* Update promiscuous mode, if necessary. */
|
|
vlan_set_promisc(ifp);
|
|
break;
|
|
|
|
case SIOCGETVLAN:
|
|
memset(&vlr, 0, sizeof(vlr));
|
|
if (ifv->ifv_p != NULL) {
|
|
snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent), "%s",
|
|
ifv->ifv_p->if_xname);
|
|
vlr.vlr_tag = ifv->ifv_tag;
|
|
}
|
|
error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
|
|
break;
|
|
|
|
case SIOCSIFFLAGS:
|
|
/*
|
|
* For promiscuous mode, we enable promiscuous mode on
|
|
* the parent if we need promiscuous on the VLAN interface.
|
|
*/
|
|
if (ifv->ifv_p != NULL)
|
|
error = vlan_set_promisc(ifp);
|
|
break;
|
|
|
|
case SIOCADDMULTI:
|
|
error = (ifv->ifv_p != NULL) ?
|
|
(*ifv->ifv_msw->vmsw_addmulti)(ifv, ifr) : EINVAL;
|
|
break;
|
|
|
|
case SIOCDELMULTI:
|
|
error = (ifv->ifv_p != NULL) ?
|
|
(*ifv->ifv_msw->vmsw_delmulti)(ifv, ifr) : EINVAL;
|
|
break;
|
|
|
|
default:
|
|
error = EINVAL;
|
|
}
|
|
|
|
splx(s);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
vlan_ether_addmulti(struct ifvlan *ifv, struct ifreq *ifr)
|
|
{
|
|
struct vlan_mc_entry *mc;
|
|
u_int8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
|
|
int error;
|
|
|
|
if (ifr->ifr_addr.sa_len > sizeof(struct sockaddr_storage))
|
|
return (EINVAL);
|
|
|
|
error = ether_addmulti(ifr, &ifv->ifv_ec);
|
|
if (error != ENETRESET)
|
|
return (error);
|
|
|
|
/*
|
|
* This is new multicast address. We have to tell parent
|
|
* about it. Also, remember this multicast address so that
|
|
* we can delete them on unconfigure.
|
|
*/
|
|
MALLOC(mc, struct vlan_mc_entry *, sizeof(struct vlan_mc_entry),
|
|
M_DEVBUF, M_NOWAIT);
|
|
if (mc == NULL) {
|
|
error = ENOMEM;
|
|
goto alloc_failed;
|
|
}
|
|
|
|
/*
|
|
* As ether_addmulti() returns ENETRESET, following two
|
|
* statement shouldn't fail.
|
|
*/
|
|
(void)ether_multiaddr(&ifr->ifr_addr, addrlo, addrhi);
|
|
ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, mc->mc_enm);
|
|
memcpy(&mc->mc_addr, &ifr->ifr_addr, ifr->ifr_addr.sa_len);
|
|
LIST_INSERT_HEAD(&ifv->ifv_mc_listhead, mc, mc_entries);
|
|
|
|
error = (*ifv->ifv_p->if_ioctl)(ifv->ifv_p, SIOCADDMULTI,
|
|
(caddr_t)ifr);
|
|
if (error != 0)
|
|
goto ioctl_failed;
|
|
return (error);
|
|
|
|
ioctl_failed:
|
|
LIST_REMOVE(mc, mc_entries);
|
|
FREE(mc, M_DEVBUF);
|
|
alloc_failed:
|
|
(void)ether_delmulti(ifr, &ifv->ifv_ec);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
vlan_ether_delmulti(struct ifvlan *ifv, struct ifreq *ifr)
|
|
{
|
|
struct ether_multi *enm;
|
|
struct vlan_mc_entry *mc;
|
|
u_int8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
|
|
int error;
|
|
|
|
/*
|
|
* Find a key to lookup vlan_mc_entry. We have to do this
|
|
* before calling ether_delmulti for obvious reason.
|
|
*/
|
|
if ((error = ether_multiaddr(&ifr->ifr_addr, addrlo, addrhi)) != 0)
|
|
return (error);
|
|
ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, enm);
|
|
|
|
error = ether_delmulti(ifr, &ifv->ifv_ec);
|
|
if (error != ENETRESET)
|
|
return (error);
|
|
|
|
/* We no longer use this multicast address. Tell parent so. */
|
|
error = (*ifv->ifv_p->if_ioctl)(ifv->ifv_p, SIOCDELMULTI,
|
|
(caddr_t)ifr);
|
|
if (error == 0) {
|
|
/* And forget about this address. */
|
|
for (mc = LIST_FIRST(&ifv->ifv_mc_listhead); mc != NULL;
|
|
mc = LIST_NEXT(mc, mc_entries)) {
|
|
if (mc->mc_enm == enm) {
|
|
LIST_REMOVE(mc, mc_entries);
|
|
FREE(mc, M_DEVBUF);
|
|
break;
|
|
}
|
|
}
|
|
KASSERT(mc != NULL);
|
|
} else
|
|
(void)ether_addmulti(ifr, &ifv->ifv_ec);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Delete any multicast address we have asked to add from parent
|
|
* interface. Called when the vlan is being unconfigured.
|
|
*/
|
|
static void
|
|
vlan_ether_purgemulti(struct ifvlan *ifv)
|
|
{
|
|
struct ifnet *ifp = ifv->ifv_p; /* Parent. */
|
|
struct vlan_mc_entry *mc;
|
|
union {
|
|
struct ifreq ifreq;
|
|
struct {
|
|
char ifr_name[IFNAMSIZ];
|
|
struct sockaddr_storage ifr_ss;
|
|
} ifreq_storage;
|
|
} ifreq;
|
|
struct ifreq *ifr = &ifreq.ifreq;
|
|
|
|
memcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
|
|
while ((mc = LIST_FIRST(&ifv->ifv_mc_listhead)) != NULL) {
|
|
memcpy(&ifr->ifr_addr, &mc->mc_addr, mc->mc_addr.ss_len);
|
|
(void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, (caddr_t)ifr);
|
|
LIST_REMOVE(mc, mc_entries);
|
|
FREE(mc, M_DEVBUF);
|
|
}
|
|
}
|
|
|
|
static void
|
|
vlan_start(struct ifnet *ifp)
|
|
{
|
|
struct ifvlan *ifv = ifp->if_softc;
|
|
struct ifnet *p = ifv->ifv_p;
|
|
struct ethercom *ec = (void *) ifv->ifv_p;
|
|
struct mbuf *m;
|
|
int error;
|
|
ALTQ_DECL(struct altq_pktattr pktattr;)
|
|
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
|
|
for (;;) {
|
|
IFQ_DEQUEUE(&ifp->if_snd, m);
|
|
if (m == NULL)
|
|
break;
|
|
|
|
#ifdef ALTQ
|
|
/*
|
|
* If ALTQ is enabled on the parent interface, do
|
|
* classification; the queueing discipline might
|
|
* not require classification, but might require
|
|
* the address family/header pointer in the pktattr.
|
|
*/
|
|
if (ALTQ_IS_ENABLED(&p->if_snd)) {
|
|
switch (p->if_type) {
|
|
case IFT_ETHER:
|
|
altq_etherclassify(&p->if_snd, m, &pktattr);
|
|
break;
|
|
#ifdef DIAGNOSTIC
|
|
default:
|
|
panic("vlan_start: impossible (altq)");
|
|
#endif
|
|
}
|
|
}
|
|
#endif /* ALTQ */
|
|
|
|
#if NBPFILTER > 0
|
|
if (ifp->if_bpf)
|
|
bpf_mtap(ifp->if_bpf, m);
|
|
#endif
|
|
/*
|
|
* If the parent can insert the tag itself, just mark
|
|
* the tag in the mbuf header.
|
|
*/
|
|
if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
|
|
struct m_tag *mtag;
|
|
|
|
mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
|
|
M_NOWAIT);
|
|
if (mtag == NULL) {
|
|
ifp->if_oerrors++;
|
|
m_freem(m);
|
|
continue;
|
|
}
|
|
*(u_int *)(mtag + 1) = ifv->ifv_tag;
|
|
m_tag_prepend(m, mtag);
|
|
} else {
|
|
/*
|
|
* insert the tag ourselves
|
|
*/
|
|
M_PREPEND(m, ifv->ifv_encaplen, M_DONTWAIT);
|
|
if (m == NULL) {
|
|
printf("%s: unable to prepend encap header",
|
|
ifv->ifv_p->if_xname);
|
|
ifp->if_oerrors++;
|
|
continue;
|
|
}
|
|
|
|
switch (p->if_type) {
|
|
case IFT_ETHER:
|
|
{
|
|
struct ether_vlan_header *evl;
|
|
|
|
if (m->m_len < sizeof(struct ether_vlan_header))
|
|
m = m_pullup(m,
|
|
sizeof(struct ether_vlan_header));
|
|
if (m == NULL) {
|
|
printf("%s: unable to pullup encap "
|
|
"header", ifv->ifv_p->if_xname);
|
|
ifp->if_oerrors++;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Transform the Ethernet header into an
|
|
* Ethernet header with 802.1Q encapsulation.
|
|
*/
|
|
memmove(mtod(m, caddr_t),
|
|
mtod(m, caddr_t) + ifv->ifv_encaplen,
|
|
sizeof(struct ether_header));
|
|
evl = mtod(m, struct ether_vlan_header *);
|
|
evl->evl_proto = evl->evl_encap_proto;
|
|
evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
|
|
evl->evl_tag = htons(ifv->ifv_tag);
|
|
|
|
/*
|
|
* To cater for VLAN-aware layer 2 ethernet
|
|
* switches which may need to strip the tag
|
|
* before forwarding the packet, make sure
|
|
* the packet+tag is at least 68 bytes long.
|
|
* This is necessary because our parent will
|
|
* only pad to 64 bytes (ETHER_MIN_LEN) and
|
|
* some switches will not pad by themselves
|
|
* after deleting a tag.
|
|
*/
|
|
if (m->m_pkthdr.len <
|
|
(ETHER_MIN_LEN + ETHER_VLAN_ENCAP_LEN)) {
|
|
m_copyback(m, m->m_pkthdr.len,
|
|
(ETHER_MIN_LEN +
|
|
ETHER_VLAN_ENCAP_LEN) -
|
|
m->m_pkthdr.len,
|
|
vlan_zero_pad_buff);
|
|
}
|
|
break;
|
|
}
|
|
|
|
#ifdef DIAGNOSTIC
|
|
default:
|
|
panic("vlan_start: impossible");
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Send it, precisely as the parent's output routine
|
|
* would have. We are already running at splnet.
|
|
*/
|
|
IFQ_ENQUEUE(&p->if_snd, m, &pktattr, error);
|
|
if (error) {
|
|
/* mbuf is already freed */
|
|
ifp->if_oerrors++;
|
|
continue;
|
|
}
|
|
|
|
ifp->if_opackets++;
|
|
if ((p->if_flags & (IFF_RUNNING|IFF_OACTIVE)) == IFF_RUNNING)
|
|
(*p->if_start)(p);
|
|
}
|
|
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
}
|
|
|
|
/*
|
|
* Given an Ethernet frame, find a valid vlan interface corresponding to the
|
|
* given source interface and tag, then run the real packet through the
|
|
* parent's input routine.
|
|
*/
|
|
void
|
|
vlan_input(struct ifnet *ifp, struct mbuf *m)
|
|
{
|
|
struct ifvlan *ifv;
|
|
u_int tag;
|
|
struct m_tag *mtag;
|
|
|
|
mtag = m_tag_find(m, PACKET_TAG_VLAN, NULL);
|
|
if (mtag != NULL) {
|
|
/* m contains a normal ethernet frame, the tag is in mtag */
|
|
tag = *(u_int *)(mtag + 1);
|
|
m_tag_delete(m, mtag);
|
|
} else {
|
|
switch (ifp->if_type) {
|
|
case IFT_ETHER:
|
|
{
|
|
struct ether_vlan_header *evl;
|
|
|
|
if (m->m_len < sizeof(struct ether_vlan_header) &&
|
|
(m = m_pullup(m,
|
|
sizeof(struct ether_vlan_header))) == NULL) {
|
|
printf("%s: no memory for VLAN header, "
|
|
"dropping packet.\n", ifp->if_xname);
|
|
return;
|
|
}
|
|
evl = mtod(m, struct ether_vlan_header *);
|
|
KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN);
|
|
|
|
tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
|
|
|
|
/*
|
|
* Restore the original ethertype. We'll remove
|
|
* the encapsulation after we've found the vlan
|
|
* interface corresponding to the tag.
|
|
*/
|
|
evl->evl_encap_proto = evl->evl_proto;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
tag = (u_int) -1; /* XXX GCC */
|
|
#ifdef DIAGNOSTIC
|
|
panic("vlan_input: impossible");
|
|
#endif
|
|
}
|
|
}
|
|
|
|
for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
|
|
ifv = LIST_NEXT(ifv, ifv_list))
|
|
if (ifp == ifv->ifv_p && tag == ifv->ifv_tag)
|
|
break;
|
|
|
|
if (ifv == NULL ||
|
|
(ifv->ifv_if.if_flags & (IFF_UP|IFF_RUNNING)) !=
|
|
(IFF_UP|IFF_RUNNING)) {
|
|
m_freem(m);
|
|
ifp->if_noproto++;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Now, remove the encapsulation header. The original
|
|
* header has already been fixed up above.
|
|
*/
|
|
if (mtag == NULL) {
|
|
memmove(mtod(m, caddr_t) + ifv->ifv_encaplen,
|
|
mtod(m, caddr_t), sizeof(struct ether_header));
|
|
m_adj(m, ifv->ifv_encaplen);
|
|
}
|
|
|
|
m->m_pkthdr.rcvif = &ifv->ifv_if;
|
|
ifv->ifv_if.if_ipackets++;
|
|
|
|
#if NBPFILTER > 0
|
|
if (ifv->ifv_if.if_bpf)
|
|
bpf_mtap(ifv->ifv_if.if_bpf, m);
|
|
#endif
|
|
|
|
/* Pass it back through the parent's input routine. */
|
|
(*ifp->if_input)(&ifv->ifv_if, m);
|
|
}
|