bd52d17906
too large to list, but see: http://gcc.gnu.org/gcc-3.4/changes.html http://gcc.gnu.org/gcc-4.0/changes.html http://gcc.gnu.org/gcc-4.1/changes.html for the details.
1209 lines
42 KiB
C++
1209 lines
42 KiB
C++
/* Definitions of target machine for GNU compiler.
|
||
Renesas H8/300 (generic)
|
||
Copyright (C) 1992, 1993, 1994, 1995, 1996, 1996, 1997, 1998, 1999,
|
||
2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
|
||
Contributed by Steve Chamberlain (sac@cygnus.com),
|
||
Jim Wilson (wilson@cygnus.com), and Doug Evans (dje@cygnus.com).
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GCC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
|
||
Boston, MA 02110-1301, USA. */
|
||
|
||
#ifndef GCC_H8300_H
|
||
#define GCC_H8300_H
|
||
|
||
/* Which CPU to compile for.
|
||
We use int for CPU_TYPE to avoid lots of casts. */
|
||
#if 0 /* defined in insn-attr.h, here for documentation */
|
||
enum attr_cpu { CPU_H8300, CPU_H8300H };
|
||
#endif
|
||
extern int cpu_type;
|
||
|
||
/* Various globals defined in h8300.c. */
|
||
|
||
extern const char *h8_push_op, *h8_pop_op, *h8_mov_op;
|
||
extern const char * const *h8_reg_names;
|
||
|
||
/* Target CPU builtins. */
|
||
#define TARGET_CPU_CPP_BUILTINS() \
|
||
do \
|
||
{ \
|
||
if (TARGET_H8300H) \
|
||
{ \
|
||
builtin_define ("__H8300H__"); \
|
||
builtin_assert ("cpu=h8300h"); \
|
||
builtin_assert ("machine=h8300h"); \
|
||
if (TARGET_NORMAL_MODE) \
|
||
{ \
|
||
builtin_define ("__NORMAL_MODE__"); \
|
||
} \
|
||
} \
|
||
else if (TARGET_H8300SX) \
|
||
{ \
|
||
builtin_define ("__H8300SX__"); \
|
||
if (TARGET_NORMAL_MODE) \
|
||
{ \
|
||
builtin_define ("__NORMAL_MODE__"); \
|
||
} \
|
||
} \
|
||
else if (TARGET_H8300S) \
|
||
{ \
|
||
builtin_define ("__H8300S__"); \
|
||
builtin_assert ("cpu=h8300s"); \
|
||
builtin_assert ("machine=h8300s"); \
|
||
if (TARGET_NORMAL_MODE) \
|
||
{ \
|
||
builtin_define ("__NORMAL_MODE__"); \
|
||
} \
|
||
} \
|
||
else \
|
||
{ \
|
||
builtin_define ("__H8300__"); \
|
||
builtin_assert ("cpu=h8300"); \
|
||
builtin_assert ("machine=h8300"); \
|
||
} \
|
||
} \
|
||
while (0)
|
||
|
||
#define LINK_SPEC "%{mh:%{mn:-m h8300hn}} %{mh:%{!mn:-m h8300h}} %{ms:%{mn:-m h8300sn}} %{ms:%{!mn:-m h8300s}}"
|
||
|
||
#define LIB_SPEC "%{mrelax:-relax} %{g:-lg} %{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}"
|
||
|
||
#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
|
||
do \
|
||
{ \
|
||
/* Basic block reordering is only beneficial on targets with cache \
|
||
and/or variable-cycle branches where (cycle count taken != \
|
||
cycle count not taken). */ \
|
||
flag_reorder_blocks = 0; \
|
||
} \
|
||
while (0)
|
||
|
||
/* Print subsidiary information on the compiler version in use. */
|
||
|
||
#define TARGET_VERSION fprintf (stderr, " (Renesas H8/300)");
|
||
|
||
/* Macros used in the machine description to test the flags. */
|
||
|
||
/* Select between the H8/300 and H8/300H CPUs. */
|
||
#define TARGET_H8300 (! TARGET_H8300H && ! TARGET_H8300S)
|
||
#define TARGET_H8300S (TARGET_H8300S_1 || TARGET_H8300SX)
|
||
/* Some multiply instructions are not available in all H8SX variants.
|
||
Use this macro instead of TARGET_H8300SX to indicate this, even
|
||
though we don't actually generate different code for now. */
|
||
#define TARGET_H8300SXMUL TARGET_H8300SX
|
||
|
||
#ifdef IN_LIBGCC2
|
||
#undef TARGET_H8300H
|
||
#undef TARGET_H8300S
|
||
#undef TARGET_NORMAL_MODE
|
||
/* If compiling libgcc2, make these compile time constants based on what
|
||
flags are we actually compiling with. */
|
||
#ifdef __H8300H__
|
||
#define TARGET_H8300H 1
|
||
#else
|
||
#define TARGET_H8300H 0
|
||
#endif
|
||
#ifdef __H8300S__
|
||
#define TARGET_H8300S 1
|
||
#else
|
||
#define TARGET_H8300S 0
|
||
#endif
|
||
#ifdef __NORMAL_MODE__
|
||
#define TARGET_NORMAL_MODE 1
|
||
#else
|
||
#define TARGET_NORMAL_MODE 0
|
||
#endif
|
||
#endif /* !IN_LIBGCC2 */
|
||
|
||
/* Do things that must be done once at start up. */
|
||
|
||
#define OVERRIDE_OPTIONS \
|
||
do \
|
||
{ \
|
||
h8300_init_once (); \
|
||
} \
|
||
while (0)
|
||
|
||
/* Default target_flags if no switches specified. */
|
||
|
||
#ifndef TARGET_DEFAULT
|
||
#define TARGET_DEFAULT (MASK_QUICKCALL)
|
||
#endif
|
||
|
||
/* Show we can debug even without a frame pointer. */
|
||
/* #define CAN_DEBUG_WITHOUT_FP */
|
||
|
||
/* Define this if addresses of constant functions
|
||
shouldn't be put through pseudo regs where they can be cse'd.
|
||
Desirable on machines where ordinary constants are expensive
|
||
but a CALL with constant address is cheap.
|
||
|
||
Calls through a register are cheaper than calls to named
|
||
functions; however, the register pressure this causes makes
|
||
CSEing of function addresses generally a lose. */
|
||
#define NO_FUNCTION_CSE
|
||
|
||
/* Target machine storage layout */
|
||
|
||
/* Define this if most significant bit is lowest numbered
|
||
in instructions that operate on numbered bit-fields.
|
||
This is not true on the H8/300. */
|
||
#define BITS_BIG_ENDIAN 0
|
||
|
||
/* Define this if most significant byte of a word is the lowest numbered. */
|
||
/* That is true on the H8/300. */
|
||
#define BYTES_BIG_ENDIAN 1
|
||
|
||
/* Define this if most significant word of a multiword number is lowest
|
||
numbered. */
|
||
#define WORDS_BIG_ENDIAN 1
|
||
|
||
#define MAX_BITS_PER_WORD 32
|
||
|
||
/* Width of a word, in units (bytes). */
|
||
#define UNITS_PER_WORD (TARGET_H8300H || TARGET_H8300S ? 4 : 2)
|
||
#define MIN_UNITS_PER_WORD 2
|
||
|
||
#define SHORT_TYPE_SIZE 16
|
||
#define INT_TYPE_SIZE (TARGET_INT32 ? 32 : 16)
|
||
#define LONG_TYPE_SIZE 32
|
||
#define LONG_LONG_TYPE_SIZE 64
|
||
#define FLOAT_TYPE_SIZE 32
|
||
#define DOUBLE_TYPE_SIZE 32
|
||
#define LONG_DOUBLE_TYPE_SIZE DOUBLE_TYPE_SIZE
|
||
|
||
#define MAX_FIXED_MODE_SIZE 32
|
||
|
||
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
|
||
#define PARM_BOUNDARY (TARGET_H8300H || TARGET_H8300S ? 32 : 16)
|
||
|
||
/* Allocation boundary (in *bits*) for the code of a function. */
|
||
#define FUNCTION_BOUNDARY 16
|
||
|
||
/* Alignment of field after `int : 0' in a structure. */
|
||
/* One can argue this should be 32 for -mint32, but since 32 bit ints only
|
||
need 16 bit alignment, this is left as is so that -mint32 doesn't change
|
||
structure layouts. */
|
||
#define EMPTY_FIELD_BOUNDARY 16
|
||
|
||
/* No data type wants to be aligned rounder than this.
|
||
32 bit values are aligned as such on the H8/300H and H8S for speed. */
|
||
#define BIGGEST_ALIGNMENT \
|
||
(((TARGET_H8300H || TARGET_H8300S) && ! TARGET_ALIGN_300) ? 32 : 16)
|
||
|
||
/* The stack goes in 16/32 bit lumps. */
|
||
#define STACK_BOUNDARY (TARGET_H8300 ? 16 : 32)
|
||
|
||
/* Define this if move instructions will actually fail to work
|
||
when given unaligned data. */
|
||
/* On the H8/300, longs can be aligned on halfword boundaries, but not
|
||
byte boundaries. */
|
||
#define STRICT_ALIGNMENT 1
|
||
|
||
/* Standard register usage. */
|
||
|
||
/* Number of actual hardware registers.
|
||
The hardware registers are assigned numbers for the compiler
|
||
from 0 to just below FIRST_PSEUDO_REGISTER.
|
||
|
||
All registers that the compiler knows about must be given numbers,
|
||
even those that are not normally considered general registers.
|
||
|
||
Reg 9 does not correspond to any hardware register, but instead
|
||
appears in the RTL as an argument pointer prior to reload, and is
|
||
eliminated during reloading in favor of either the stack or frame
|
||
pointer. */
|
||
|
||
#define FIRST_PSEUDO_REGISTER 12
|
||
|
||
/* 1 for registers that have pervasive standard uses
|
||
and are not available for the register allocator. */
|
||
|
||
#define FIXED_REGISTERS \
|
||
/* r0 r1 r2 r3 r4 r5 r6 r7 mac ap rap fp */ \
|
||
{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1 }
|
||
|
||
/* 1 for registers not available across function calls.
|
||
These must include the FIXED_REGISTERS and also any
|
||
registers that can be used without being saved.
|
||
The latter must include the registers where values are returned
|
||
and the register where structure-value addresses are passed.
|
||
Aside from that, you can include as many other registers as you
|
||
like.
|
||
|
||
H8 destroys r0,r1,r2,r3. */
|
||
|
||
#define CALL_USED_REGISTERS \
|
||
/* r0 r1 r2 r3 r4 r5 r6 r7 mac ap rap fp */ \
|
||
{ 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1 }
|
||
|
||
#define REG_ALLOC_ORDER \
|
||
/* r0 r1 r2 r3 r4 r5 r6 r7 mac ap rap fp */ \
|
||
{ 2, 3, 0, 1, 4, 5, 6, 8, 7, 9, 10, 11 }
|
||
|
||
#define CONDITIONAL_REGISTER_USAGE \
|
||
{ \
|
||
if (!TARGET_MAC) \
|
||
fixed_regs[MAC_REG] = call_used_regs[MAC_REG] = 1; \
|
||
}
|
||
|
||
#define HARD_REGNO_NREGS(REGNO, MODE) \
|
||
h8300_hard_regno_nregs ((REGNO), (MODE))
|
||
|
||
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
|
||
h8300_hard_regno_mode_ok ((REGNO), (MODE))
|
||
|
||
/* Value is 1 if it is a good idea to tie two pseudo registers
|
||
when one has mode MODE1 and one has mode MODE2.
|
||
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
|
||
for any hard reg, then this must be 0 for correct output. */
|
||
#define MODES_TIEABLE_P(MODE1, MODE2) \
|
||
((MODE1) == (MODE2) \
|
||
|| (((MODE1) == QImode || (MODE1) == HImode \
|
||
|| ((TARGET_H8300H || TARGET_H8300S) && (MODE1) == SImode)) \
|
||
&& ((MODE2) == QImode || (MODE2) == HImode \
|
||
|| ((TARGET_H8300H || TARGET_H8300S) && (MODE2) == SImode))))
|
||
|
||
/* A C expression that is nonzero if hard register NEW_REG can be
|
||
considered for use as a rename register for OLD_REG register */
|
||
|
||
#define HARD_REGNO_RENAME_OK(OLD_REG, NEW_REG) \
|
||
h8300_hard_regno_rename_ok (OLD_REG, NEW_REG)
|
||
|
||
/* Specify the registers used for certain standard purposes.
|
||
The values of these macros are register numbers. */
|
||
|
||
/* H8/300 pc is not overloaded on a register. */
|
||
|
||
/*#define PC_REGNUM 15*/
|
||
|
||
/* Register to use for pushing function arguments. */
|
||
#define STACK_POINTER_REGNUM SP_REG
|
||
|
||
/* Base register for access to local variables of the function. */
|
||
#define HARD_FRAME_POINTER_REGNUM HFP_REG
|
||
|
||
/* Base register for access to local variables of the function. */
|
||
#define FRAME_POINTER_REGNUM FP_REG
|
||
|
||
/* Value should be nonzero if functions must have frame pointers.
|
||
Zero means the frame pointer need not be set up (and parms
|
||
may be accessed via the stack pointer) in functions that seem suitable.
|
||
This is computed in `reload', in reload1.c. */
|
||
#define FRAME_POINTER_REQUIRED 0
|
||
|
||
/* Base register for access to arguments of the function. */
|
||
#define ARG_POINTER_REGNUM AP_REG
|
||
|
||
/* Register in which static-chain is passed to a function. */
|
||
#define STATIC_CHAIN_REGNUM SC_REG
|
||
|
||
/* Fake register that holds the address on the stack of the
|
||
current function's return address. */
|
||
#define RETURN_ADDRESS_POINTER_REGNUM RAP_REG
|
||
|
||
/* A C expression whose value is RTL representing the value of the return
|
||
address for the frame COUNT steps up from the current frame.
|
||
FRAMEADDR is already the frame pointer of the COUNT frame, assuming
|
||
a stack layout with the frame pointer as the first saved register. */
|
||
#define RETURN_ADDR_RTX(COUNT, FRAME) h8300_return_addr_rtx ((COUNT), (FRAME))
|
||
|
||
/* Define the classes of registers for register constraints in the
|
||
machine description. Also define ranges of constants.
|
||
|
||
One of the classes must always be named ALL_REGS and include all hard regs.
|
||
If there is more than one class, another class must be named NO_REGS
|
||
and contain no registers.
|
||
|
||
The name GENERAL_REGS must be the name of a class (or an alias for
|
||
another name such as ALL_REGS). This is the class of registers
|
||
that is allowed by "g" or "r" in a register constraint.
|
||
Also, registers outside this class are allocated only when
|
||
instructions express preferences for them.
|
||
|
||
The classes must be numbered in nondecreasing order; that is,
|
||
a larger-numbered class must never be contained completely
|
||
in a smaller-numbered class.
|
||
|
||
For any two classes, it is very desirable that there be another
|
||
class that represents their union. */
|
||
|
||
enum reg_class {
|
||
NO_REGS, COUNTER_REGS, SOURCE_REGS, DESTINATION_REGS,
|
||
GENERAL_REGS, MAC_REGS, ALL_REGS, LIM_REG_CLASSES
|
||
};
|
||
|
||
#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
|
||
|
||
/* Give names of register classes as strings for dump file. */
|
||
|
||
#define REG_CLASS_NAMES \
|
||
{ "NO_REGS", "COUNTER_REGS", "SOURCE_REGS", "DESTINATION_REGS", \
|
||
"GENERAL_REGS", "MAC_REGS", "ALL_REGS", "LIM_REGS" }
|
||
|
||
/* Define which registers fit in which classes.
|
||
This is an initializer for a vector of HARD_REG_SET
|
||
of length N_REG_CLASSES. */
|
||
|
||
#define REG_CLASS_CONTENTS \
|
||
{ {0}, /* No regs */ \
|
||
{0x010}, /* COUNTER_REGS */ \
|
||
{0x020}, /* SOURCE_REGS */ \
|
||
{0x040}, /* DESTINATION_REGS */ \
|
||
{0xeff}, /* GENERAL_REGS */ \
|
||
{0x100}, /* MAC_REGS */ \
|
||
{0xfff}, /* ALL_REGS */ \
|
||
}
|
||
|
||
/* The same information, inverted:
|
||
Return the class number of the smallest class containing
|
||
reg number REGNO. This could be a conditional expression
|
||
or could index an array. */
|
||
|
||
#define REGNO_REG_CLASS(REGNO) \
|
||
((REGNO) == MAC_REG ? MAC_REGS \
|
||
: (REGNO) == COUNTER_REG ? COUNTER_REGS \
|
||
: (REGNO) == SOURCE_REG ? SOURCE_REGS \
|
||
: (REGNO) == DESTINATION_REG ? DESTINATION_REGS \
|
||
: GENERAL_REGS)
|
||
|
||
/* The class value for index registers, and the one for base regs. */
|
||
|
||
#define INDEX_REG_CLASS (TARGET_H8300SX ? GENERAL_REGS : NO_REGS)
|
||
#define BASE_REG_CLASS GENERAL_REGS
|
||
|
||
/* Get reg_class from a letter such as appears in the machine description.
|
||
|
||
'a' is the MAC register. */
|
||
|
||
#define REG_CLASS_FROM_LETTER(C) (h8300_reg_class_from_letter (C))
|
||
|
||
/* The letters I, J, K, L, M, N, O, P in a register constraint string
|
||
can be used to stand for particular ranges of immediate operands.
|
||
This macro defines what the ranges are.
|
||
C is the letter, and VALUE is a constant value.
|
||
Return 1 if VALUE is in the range specified by C. */
|
||
|
||
#define CONST_OK_FOR_I(VALUE) ((VALUE) == 0)
|
||
#define CONST_OK_FOR_J(VALUE) (((VALUE) & 0xff) == 0)
|
||
#define CONST_OK_FOR_L(VALUE) \
|
||
(TARGET_H8300H || TARGET_H8300S \
|
||
? (VALUE) == 1 || (VALUE) == 2 || (VALUE) == 4 \
|
||
: (VALUE) == 1 || (VALUE) == 2)
|
||
#define CONST_OK_FOR_M(VALUE) \
|
||
((VALUE) == 1 || (VALUE) == 2)
|
||
#define CONST_OK_FOR_N(VALUE) \
|
||
(TARGET_H8300H || TARGET_H8300S \
|
||
? (VALUE) == -1 || (VALUE) == -2 || (VALUE) == -4 \
|
||
: (VALUE) == -1 || (VALUE) == -2)
|
||
#define CONST_OK_FOR_O(VALUE) \
|
||
((VALUE) == -1 || (VALUE) == -2)
|
||
|
||
/* Multi-letter constraints for constant are always started with P
|
||
(just because it was the only letter in the range left. New
|
||
constraints for constants should be added here. */
|
||
#define CONST_OK_FOR_Ppositive(VALUE, NBITS) \
|
||
((VALUE) > 0 && (VALUE) < (1 << (NBITS)))
|
||
#define CONST_OK_FOR_Pnegative(VALUE, NBITS) \
|
||
((VALUE) < 0 && (VALUE) > -(1 << (NBITS)))
|
||
#define CONST_OK_FOR_P(VALUE, STR) \
|
||
((STR)[1] >= '1' && (STR)[1] <= '9' && (STR)[2] == '<' \
|
||
? (((STR)[3] == '0' || ((STR)[3] == 'X' && TARGET_H8300SX)) \
|
||
&& CONST_OK_FOR_Pnegative ((VALUE), (STR)[1] - '0')) \
|
||
: ((STR)[1] >= '1' && (STR)[1] <= '9' && (STR)[2] == '>') \
|
||
? (((STR)[3] == '0' || ((STR)[3] == 'X' && TARGET_H8300SX)) \
|
||
&& CONST_OK_FOR_Ppositive ((VALUE), (STR)[1] - '0')) \
|
||
: 0)
|
||
#define CONSTRAINT_LEN_FOR_P(STR) \
|
||
((((STR)[1] >= '1' && (STR)[1] <= '9') \
|
||
&& ((STR)[2] == '<' || (STR)[2] == '>') \
|
||
&& ((STR)[3] == 'X' || (STR)[3] == '0')) ? 4 \
|
||
: 0)
|
||
|
||
#define CONST_OK_FOR_CONSTRAINT_P(VALUE, C, STR) \
|
||
((C) == 'P' ? CONST_OK_FOR_P ((VALUE), (STR)) \
|
||
: CONST_OK_FOR_LETTER_P ((VALUE), (C)))
|
||
|
||
#define CONST_OK_FOR_LETTER_P(VALUE, C) \
|
||
((C) == 'I' ? CONST_OK_FOR_I (VALUE) : \
|
||
(C) == 'J' ? CONST_OK_FOR_J (VALUE) : \
|
||
(C) == 'L' ? CONST_OK_FOR_L (VALUE) : \
|
||
(C) == 'M' ? CONST_OK_FOR_M (VALUE) : \
|
||
(C) == 'N' ? CONST_OK_FOR_N (VALUE) : \
|
||
(C) == 'O' ? CONST_OK_FOR_O (VALUE) : \
|
||
0)
|
||
|
||
/* Similar, but for floating constants, and defining letters G and H.
|
||
Here VALUE is the CONST_DOUBLE rtx itself.
|
||
|
||
`G' is a floating-point zero. */
|
||
|
||
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
|
||
((C) == 'G' ? (VALUE) == CONST0_RTX (SFmode) \
|
||
: 0)
|
||
|
||
/* Given an rtx X being reloaded into a reg required to be
|
||
in class CLASS, return the class of reg to actually use.
|
||
In general this is just CLASS; but on some machines
|
||
in some cases it is preferable to use a more restrictive class. */
|
||
|
||
#define PREFERRED_RELOAD_CLASS(X, CLASS) (CLASS)
|
||
|
||
/* Return the maximum number of consecutive registers
|
||
needed to represent mode MODE in a register of class CLASS. */
|
||
|
||
/* On the H8, this is the size of MODE in words. */
|
||
|
||
#define CLASS_MAX_NREGS(CLASS, MODE) \
|
||
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
|
||
|
||
/* Any SI register-to-register move may need to be reloaded,
|
||
so define REGISTER_MOVE_COST to be > 2 so that reload never
|
||
shortcuts. */
|
||
|
||
#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
|
||
(CLASS1 == MAC_REGS || CLASS2 == MAC_REGS ? 6 : 3)
|
||
|
||
/* Stack layout; function entry, exit and calling. */
|
||
|
||
/* Define this if pushing a word on the stack
|
||
makes the stack pointer a smaller address. */
|
||
|
||
#define STACK_GROWS_DOWNWARD
|
||
|
||
/* Define this to nonzero if the nominal address of the stack frame
|
||
is at the high-address end of the local variables;
|
||
that is, each additional local variable allocated
|
||
goes at a more negative offset in the frame. */
|
||
|
||
#define FRAME_GROWS_DOWNWARD 1
|
||
|
||
/* Offset within stack frame to start allocating local variables at.
|
||
If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
|
||
first local allocated. Otherwise, it is the offset to the BEGINNING
|
||
of the first local allocated. */
|
||
|
||
#define STARTING_FRAME_OFFSET 0
|
||
|
||
/* If we generate an insn to push BYTES bytes,
|
||
this says how many the stack pointer really advances by.
|
||
|
||
On the H8/300, @-sp really pushes a byte if you ask it to - but that's
|
||
dangerous, so we claim that it always pushes a word, then we catch
|
||
the mov.b rx,@-sp and turn it into a mov.w rx,@-sp on output.
|
||
|
||
On the H8/300H, we simplify TARGET_QUICKCALL by setting this to 4
|
||
and doing a similar thing. */
|
||
|
||
#define PUSH_ROUNDING(BYTES) \
|
||
(((BYTES) + PARM_BOUNDARY / 8 - 1) & -PARM_BOUNDARY / 8)
|
||
|
||
/* Offset of first parameter from the argument pointer register value. */
|
||
/* Is equal to the size of the saved fp + pc, even if an fp isn't
|
||
saved since the value is used before we know. */
|
||
|
||
#define FIRST_PARM_OFFSET(FNDECL) 0
|
||
|
||
/* Value is the number of bytes of arguments automatically
|
||
popped when returning from a subroutine call.
|
||
FUNDECL is the declaration node of the function (as a tree),
|
||
FUNTYPE is the data type of the function (as a tree),
|
||
or for a library call it is an identifier node for the subroutine name.
|
||
SIZE is the number of bytes of arguments passed on the stack.
|
||
|
||
On the H8 the return does not pop anything. */
|
||
|
||
#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) 0
|
||
|
||
/* Definitions for register eliminations.
|
||
|
||
This is an array of structures. Each structure initializes one pair
|
||
of eliminable registers. The "from" register number is given first,
|
||
followed by "to". Eliminations of the same "from" register are listed
|
||
in order of preference.
|
||
|
||
We have three registers that can be eliminated on the h8300.
|
||
First, the frame pointer register can often be eliminated in favor
|
||
of the stack pointer register. Secondly, the argument pointer
|
||
register and the return address pointer register are always
|
||
eliminated; they are replaced with either the stack or frame
|
||
pointer. */
|
||
|
||
#define ELIMINABLE_REGS \
|
||
{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
|
||
{ ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
|
||
{ RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
|
||
{ RETURN_ADDRESS_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
|
||
{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
|
||
{ FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
|
||
|
||
/* Given FROM and TO register numbers, say whether this elimination is allowed.
|
||
Frame pointer elimination is automatically handled.
|
||
|
||
For the h8300, if frame pointer elimination is being done, we would like to
|
||
convert ap and rp into sp, not fp.
|
||
|
||
All other eliminations are valid. */
|
||
|
||
#define CAN_ELIMINATE(FROM, TO) \
|
||
((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
|
||
|
||
/* Define the offset between two registers, one to be eliminated, and the other
|
||
its replacement, at the start of a routine. */
|
||
|
||
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
|
||
((OFFSET) = h8300_initial_elimination_offset ((FROM), (TO)))
|
||
|
||
/* Define how to find the value returned by a function.
|
||
VALTYPE is the data type of the value (as a tree).
|
||
If the precise function being called is known, FUNC is its FUNCTION_DECL;
|
||
otherwise, FUNC is 0.
|
||
|
||
On the H8 the return value is in R0/R1. */
|
||
|
||
#define FUNCTION_VALUE(VALTYPE, FUNC) \
|
||
gen_rtx_REG (TYPE_MODE (VALTYPE), R0_REG)
|
||
|
||
/* Define how to find the value returned by a library function
|
||
assuming the value has mode MODE. */
|
||
|
||
/* On the H8 the return value is in R0/R1. */
|
||
|
||
#define LIBCALL_VALUE(MODE) \
|
||
gen_rtx_REG (MODE, R0_REG)
|
||
|
||
/* 1 if N is a possible register number for a function value.
|
||
On the H8, R0 is the only register thus used. */
|
||
|
||
#define FUNCTION_VALUE_REGNO_P(N) ((N) == R0_REG)
|
||
|
||
/* Define this if PCC uses the nonreentrant convention for returning
|
||
structure and union values. */
|
||
|
||
/*#define PCC_STATIC_STRUCT_RETURN*/
|
||
|
||
/* 1 if N is a possible register number for function argument passing.
|
||
On the H8, no registers are used in this way. */
|
||
|
||
#define FUNCTION_ARG_REGNO_P(N) (TARGET_QUICKCALL ? N < 3 : 0)
|
||
|
||
/* When defined, the compiler allows registers explicitly used in the
|
||
rtl to be used as spill registers but prevents the compiler from
|
||
extending the lifetime of these registers. */
|
||
|
||
#define SMALL_REGISTER_CLASSES 1
|
||
|
||
/* Define a data type for recording info about an argument list
|
||
during the scan of that argument list. This data type should
|
||
hold all necessary information about the function itself
|
||
and about the args processed so far, enough to enable macros
|
||
such as FUNCTION_ARG to determine where the next arg should go.
|
||
|
||
On the H8/300, this is a two item struct, the first is the number
|
||
of bytes scanned so far and the second is the rtx of the called
|
||
library function if any. */
|
||
|
||
#define CUMULATIVE_ARGS struct cum_arg
|
||
struct cum_arg
|
||
{
|
||
int nbytes;
|
||
struct rtx_def *libcall;
|
||
};
|
||
|
||
/* Initialize a variable CUM of type CUMULATIVE_ARGS
|
||
for a call to a function whose data type is FNTYPE.
|
||
For a library call, FNTYPE is 0.
|
||
|
||
On the H8/300, the offset starts at 0. */
|
||
|
||
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
|
||
((CUM).nbytes = 0, (CUM).libcall = LIBNAME)
|
||
|
||
/* Update the data in CUM to advance over an argument
|
||
of mode MODE and data type TYPE.
|
||
(TYPE is null for libcalls where that information may not be available.) */
|
||
|
||
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
|
||
((CUM).nbytes += ((MODE) != BLKmode \
|
||
? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD \
|
||
: (int_size_in_bytes (TYPE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD))
|
||
|
||
/* Define where to put the arguments to a function.
|
||
Value is zero to push the argument on the stack,
|
||
or a hard register in which to store the argument.
|
||
|
||
MODE is the argument's machine mode.
|
||
TYPE is the data type of the argument (as a tree).
|
||
This is null for libcalls where that information may
|
||
not be available.
|
||
CUM is a variable of type CUMULATIVE_ARGS which gives info about
|
||
the preceding args and about the function being called.
|
||
NAMED is nonzero if this argument is a named parameter
|
||
(otherwise it is an extra parameter matching an ellipsis). */
|
||
|
||
/* On the H8/300 all normal args are pushed, unless -mquickcall in which
|
||
case the first 3 arguments are passed in registers.
|
||
See function `function_arg'. */
|
||
|
||
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
|
||
function_arg (&CUM, MODE, TYPE, NAMED)
|
||
|
||
/* Output assembler code to FILE to increment profiler label # LABELNO
|
||
for profiling a function entry. */
|
||
|
||
#define FUNCTION_PROFILER(FILE, LABELNO) \
|
||
fprintf (FILE, "\t%s\t#LP%d,%s\n\tjsr @mcount\n", \
|
||
h8_mov_op, (LABELNO), h8_reg_names[0]);
|
||
|
||
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
|
||
the stack pointer does not matter. The value is tested only in
|
||
functions that have frame pointers.
|
||
No definition is equivalent to always zero. */
|
||
|
||
#define EXIT_IGNORE_STACK 0
|
||
|
||
/* We emit the entire trampoline with INITIALIZE_TRAMPOLINE.
|
||
Depending on the pointer size, we use a different trampoline.
|
||
|
||
Pmode == HImode
|
||
vvvv context
|
||
1 0000 7903xxxx mov.w #0x1234,r3
|
||
2 0004 5A00xxxx jmp @0x1234
|
||
^^^^ function
|
||
|
||
Pmode == SImode
|
||
vvvvvvvv context
|
||
2 0000 7A03xxxxxxxx mov.l #0x12345678,er3
|
||
3 0006 5Axxxxxx jmp @0x123456
|
||
^^^^^^ function
|
||
*/
|
||
|
||
/* Length in units of the trampoline for entering a nested function. */
|
||
|
||
#define TRAMPOLINE_SIZE ((Pmode == HImode) ? 8 : 12)
|
||
|
||
/* Emit RTL insns to build a trampoline.
|
||
FNADDR is an RTX for the address of the function's pure code.
|
||
CXT is an RTX for the static chain value for the function. */
|
||
|
||
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
|
||
do \
|
||
{ \
|
||
if (Pmode == HImode) \
|
||
{ \
|
||
emit_move_insn (gen_rtx_MEM (HImode, (TRAMP)), GEN_INT (0x7903)); \
|
||
emit_move_insn (gen_rtx_MEM (Pmode, plus_constant ((TRAMP), 2)), \
|
||
(CXT)); \
|
||
emit_move_insn (gen_rtx_MEM (Pmode, plus_constant ((TRAMP), 4)), \
|
||
GEN_INT (0x5a00)); \
|
||
emit_move_insn (gen_rtx_MEM (Pmode, plus_constant ((TRAMP), 6)), \
|
||
(FNADDR)); \
|
||
} \
|
||
else \
|
||
{ \
|
||
rtx tem = gen_reg_rtx (Pmode); \
|
||
\
|
||
emit_move_insn (gen_rtx_MEM (HImode, (TRAMP)), GEN_INT (0x7a03)); \
|
||
emit_move_insn (gen_rtx_MEM (Pmode, plus_constant ((TRAMP), 2)), \
|
||
(CXT)); \
|
||
emit_move_insn (tem, (FNADDR)); \
|
||
emit_insn (gen_andsi3 (tem, tem, GEN_INT (0x00ffffff))); \
|
||
emit_insn (gen_iorsi3 (tem, tem, GEN_INT (0x5a000000))); \
|
||
emit_move_insn (gen_rtx_MEM (Pmode, plus_constant ((TRAMP), 6)), \
|
||
tem); \
|
||
} \
|
||
} \
|
||
while (0)
|
||
|
||
/* Addressing modes, and classification of registers for them. */
|
||
|
||
#define HAVE_POST_INCREMENT 1
|
||
#define HAVE_PRE_DECREMENT 1
|
||
#define HAVE_POST_DECREMENT TARGET_H8300SX
|
||
#define HAVE_PRE_INCREMENT TARGET_H8300SX
|
||
|
||
/* Macros to check register numbers against specific register classes. */
|
||
|
||
/* These assume that REGNO is a hard or pseudo reg number.
|
||
They give nonzero only if REGNO is a hard reg of the suitable class
|
||
or a pseudo reg currently allocated to a suitable hard reg.
|
||
Since they use reg_renumber, they are safe only once reg_renumber
|
||
has been allocated, which happens in local-alloc.c. */
|
||
|
||
#define REGNO_OK_FOR_INDEX_P(regno) 0
|
||
|
||
#define REGNO_OK_FOR_BASE_P(regno) \
|
||
(((regno) < FIRST_PSEUDO_REGISTER && regno != MAC_REG) \
|
||
|| reg_renumber[regno] >= 0)
|
||
|
||
/* Maximum number of registers that can appear in a valid memory address. */
|
||
|
||
#define MAX_REGS_PER_ADDRESS 1
|
||
|
||
/* 1 if X is an rtx for a constant that is a valid address. */
|
||
|
||
#define CONSTANT_ADDRESS_P(X) \
|
||
(GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
|
||
|| (GET_CODE (X) == CONST_INT \
|
||
/* We handle signed and unsigned offsets here. */ \
|
||
&& INTVAL (X) > (TARGET_H8300 ? -0x10000 : -0x1000000) \
|
||
&& INTVAL (X) < (TARGET_H8300 ? 0x10000 : 0x1000000)) \
|
||
|| (GET_CODE (X) == HIGH || GET_CODE (X) == CONST))
|
||
|
||
/* Nonzero if the constant value X is a legitimate general operand.
|
||
It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
|
||
|
||
#define LEGITIMATE_CONSTANT_P(X) (h8300_legitimate_constant_p (X))
|
||
|
||
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
|
||
and check its validity for a certain class.
|
||
We have two alternate definitions for each of them.
|
||
The usual definition accepts all pseudo regs; the other rejects
|
||
them unless they have been allocated suitable hard regs.
|
||
The symbol REG_OK_STRICT causes the latter definition to be used.
|
||
|
||
Most source files want to accept pseudo regs in the hope that
|
||
they will get allocated to the class that the insn wants them to be in.
|
||
Source files for reload pass need to be strict.
|
||
After reload, it makes no difference, since pseudo regs have
|
||
been eliminated by then. */
|
||
|
||
/* Non-strict versions. */
|
||
#define REG_OK_FOR_INDEX_NONSTRICT_P(X) 0
|
||
/* Don't use REGNO_OK_FOR_BASE_P here because it uses reg_renumber. */
|
||
#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
|
||
(REGNO (X) >= FIRST_PSEUDO_REGISTER || REGNO (X) != MAC_REG)
|
||
|
||
/* Strict versions. */
|
||
#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
|
||
#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
|
||
|
||
#ifndef REG_OK_STRICT
|
||
|
||
#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
|
||
#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
|
||
|
||
#else
|
||
|
||
#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
|
||
#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
|
||
|
||
#endif
|
||
|
||
/* Extra constraints. */
|
||
|
||
#define OK_FOR_Q(OP) \
|
||
(TARGET_H8300SX && memory_operand ((OP), VOIDmode))
|
||
|
||
#define OK_FOR_R(OP) \
|
||
(GET_CODE (OP) == CONST_INT \
|
||
? !h8300_shift_needs_scratch_p (INTVAL (OP), QImode) \
|
||
: 0)
|
||
|
||
#define OK_FOR_S(OP) \
|
||
(GET_CODE (OP) == CONST_INT \
|
||
? !h8300_shift_needs_scratch_p (INTVAL (OP), HImode) \
|
||
: 0)
|
||
|
||
#define OK_FOR_T(OP) \
|
||
(GET_CODE (OP) == CONST_INT \
|
||
? !h8300_shift_needs_scratch_p (INTVAL (OP), SImode) \
|
||
: 0)
|
||
|
||
/* 'U' if valid for a bset destination;
|
||
i.e. a register, register indirect, or the eightbit memory region
|
||
(a SYMBOL_REF with an SYMBOL_REF_FLAG set).
|
||
|
||
On the H8S 'U' can also be a 16bit or 32bit absolute. */
|
||
#define OK_FOR_U(OP) \
|
||
((GET_CODE (OP) == REG && REG_OK_FOR_BASE_P (OP)) \
|
||
|| (GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
|
||
&& REG_OK_FOR_BASE_P (XEXP (OP, 0))) \
|
||
|| (GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == SYMBOL_REF \
|
||
&& TARGET_H8300S) \
|
||
|| (GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == CONST \
|
||
&& GET_CODE (XEXP (XEXP (OP, 0), 0)) == PLUS \
|
||
&& GET_CODE (XEXP (XEXP (XEXP (OP, 0), 0), 0)) == SYMBOL_REF \
|
||
&& GET_CODE (XEXP (XEXP (XEXP (OP, 0), 0), 1)) == CONST_INT \
|
||
&& (TARGET_H8300S \
|
||
|| SYMBOL_REF_FLAG (XEXP (XEXP (XEXP (OP, 0), 0), 0)))) \
|
||
|| (GET_CODE (OP) == MEM \
|
||
&& h8300_eightbit_constant_address_p (XEXP (OP, 0))) \
|
||
|| (GET_CODE (OP) == MEM && TARGET_H8300S \
|
||
&& GET_CODE (XEXP (OP, 0)) == CONST_INT))
|
||
|
||
/* Multi-letter constraints starting with W are to be used for
|
||
operands that require a memory operand, i.e,. that are never used
|
||
along with register constraints (see EXTRA_MEMORY_CONSTRAINTS).
|
||
For operands that require a memory operand (or not) but that always
|
||
accept a register, a multi-letter constraint starting with Y should
|
||
be used instead. */
|
||
|
||
#define OK_FOR_WU(OP) \
|
||
(GET_CODE (OP) == MEM && OK_FOR_U (OP))
|
||
|
||
#define OK_FOR_W(OP, STR) \
|
||
((STR)[1] == 'U' ? OK_FOR_WU (OP) \
|
||
: 0)
|
||
|
||
#define CONSTRAINT_LEN_FOR_W(STR) \
|
||
((STR)[1] == 'U' ? 2 \
|
||
: 0)
|
||
|
||
/* We don't have any constraint starting with Y yet, but before
|
||
someone uses it for a one-letter constraint and we're left without
|
||
any upper-case constraints left, we reserve it for extensions
|
||
here. */
|
||
#define OK_FOR_Y(OP, STR) \
|
||
(0)
|
||
|
||
#define CONSTRAINT_LEN_FOR_Y(STR) \
|
||
(0)
|
||
|
||
#define OK_FOR_Z(OP) \
|
||
(TARGET_H8300SX \
|
||
&& GET_CODE (OP) == MEM \
|
||
&& CONSTANT_P (XEXP ((OP), 0)))
|
||
|
||
#define EXTRA_CONSTRAINT_STR(OP, C, STR) \
|
||
((C) == 'Q' ? OK_FOR_Q (OP) : \
|
||
(C) == 'R' ? OK_FOR_R (OP) : \
|
||
(C) == 'S' ? OK_FOR_S (OP) : \
|
||
(C) == 'T' ? OK_FOR_T (OP) : \
|
||
(C) == 'U' ? OK_FOR_U (OP) : \
|
||
(C) == 'W' ? OK_FOR_W ((OP), (STR)) : \
|
||
(C) == 'Y' ? OK_FOR_Y ((OP), (STR)) : \
|
||
(C) == 'Z' ? OK_FOR_Z (OP) : \
|
||
0)
|
||
|
||
#define CONSTRAINT_LEN(C, STR) \
|
||
((C) == 'P' ? CONSTRAINT_LEN_FOR_P (STR) \
|
||
: (C) == 'W' ? CONSTRAINT_LEN_FOR_W (STR) \
|
||
: (C) == 'Y' ? CONSTRAINT_LEN_FOR_Y (STR) \
|
||
: DEFAULT_CONSTRAINT_LEN ((C), (STR)))
|
||
|
||
/* Experiments suggest that it's better not add 'Q' or 'U' here. No
|
||
patterns need it for correctness (no patterns use 'Q' and 'U'
|
||
without also providing a register alternative). And defining it
|
||
will mean that a spilled pseudo could be replaced by its frame
|
||
location in several consecutive insns.
|
||
|
||
Instead, it seems to be better to force pseudos to be reloaded
|
||
into registers and then use peepholes to recombine insns when
|
||
beneficial.
|
||
|
||
Unfortunately, for WU (unlike plain U, that matches regs as well),
|
||
we must require a memory address. In fact, all multi-letter
|
||
constraints started with W are supposed to have this property, so
|
||
we just test for W here. */
|
||
#define EXTRA_MEMORY_CONSTRAINT(C, STR) \
|
||
((C) == 'W')
|
||
|
||
|
||
#ifndef REG_OK_STRICT
|
||
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
|
||
do \
|
||
{ \
|
||
if (h8300_legitimate_address_p ((MODE), (X), 0)) \
|
||
goto ADDR; \
|
||
} \
|
||
while (0)
|
||
#else
|
||
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
|
||
do \
|
||
{ \
|
||
if (h8300_legitimate_address_p ((MODE), (X), 1)) \
|
||
goto ADDR; \
|
||
} \
|
||
while (0)
|
||
#endif
|
||
|
||
/* Go to LABEL if ADDR (a legitimate address expression)
|
||
has an effect that depends on the machine mode it is used for.
|
||
|
||
On the H8/300, the predecrement and postincrement address depend thus
|
||
(the amount of decrement or increment being the length of the operand). */
|
||
|
||
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
|
||
if (GET_CODE (ADDR) == POST_INC \
|
||
|| GET_CODE (ADDR) == POST_DEC \
|
||
|| GET_CODE (ADDR) == PRE_INC \
|
||
|| GET_CODE (ADDR) == PRE_DEC) \
|
||
goto LABEL; \
|
||
if (GET_CODE (ADDR) == PLUS \
|
||
&& h8300_get_index (XEXP (ADDR, 0), VOIDmode, 0) != XEXP (ADDR, 0)) \
|
||
goto LABEL;
|
||
|
||
/* Specify the machine mode that this machine uses
|
||
for the index in the tablejump instruction. */
|
||
#define CASE_VECTOR_MODE Pmode
|
||
|
||
/* Define this as 1 if `char' should by default be signed; else as 0.
|
||
|
||
On the H8/300, sign extension is expensive, so we'll say that chars
|
||
are unsigned. */
|
||
#define DEFAULT_SIGNED_CHAR 0
|
||
|
||
/* This flag, if defined, says the same insns that convert to a signed fixnum
|
||
also convert validly to an unsigned one. */
|
||
#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
|
||
|
||
/* Max number of bytes we can move from memory to memory
|
||
in one reasonably fast instruction. */
|
||
#define MOVE_MAX (TARGET_H8300H || TARGET_H8300S ? 4 : 2)
|
||
#define MAX_MOVE_MAX 4
|
||
|
||
/* Nonzero if access to memory by bytes is slow and undesirable. */
|
||
#define SLOW_BYTE_ACCESS TARGET_SLOWBYTE
|
||
|
||
/* Define if shifts truncate the shift count
|
||
which implies one can omit a sign-extension or zero-extension
|
||
of a shift count. */
|
||
/* #define SHIFT_COUNT_TRUNCATED */
|
||
|
||
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
|
||
is done just by pretending it is already truncated. */
|
||
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
|
||
|
||
/* Specify the machine mode that pointers have.
|
||
After generation of rtl, the compiler makes no further distinction
|
||
between pointers and any other objects of this machine mode. */
|
||
#define Pmode \
|
||
((TARGET_H8300H || TARGET_H8300S) && !TARGET_NORMAL_MODE ? SImode : HImode)
|
||
|
||
/* ANSI C types.
|
||
We use longs for the H8/300H and the H8S because ints can be 16 or 32.
|
||
GCC requires SIZE_TYPE to be the same size as pointers. */
|
||
#define SIZE_TYPE \
|
||
(TARGET_H8300 || TARGET_NORMAL_MODE ? TARGET_INT32 ? "short unsigned int" : "unsigned int" : "long unsigned int")
|
||
#define PTRDIFF_TYPE \
|
||
(TARGET_H8300 || TARGET_NORMAL_MODE ? TARGET_INT32 ? "short int" : "int" : "long int")
|
||
|
||
#define POINTER_SIZE \
|
||
((TARGET_H8300H || TARGET_H8300S) && !TARGET_NORMAL_MODE ? 32 : 16)
|
||
|
||
#define WCHAR_TYPE "short unsigned int"
|
||
#define WCHAR_TYPE_SIZE 16
|
||
|
||
/* A function address in a call instruction
|
||
is a byte address (for indexing purposes)
|
||
so give the MEM rtx a byte's mode. */
|
||
#define FUNCTION_MODE QImode
|
||
|
||
/* Return the length of JUMP's delay slot insn (0 if it has none).
|
||
If JUMP is a delayed branch, NEXT_INSN (PREV_INSN (JUMP)) will
|
||
be the containing SEQUENCE, not JUMP itself. */
|
||
#define DELAY_SLOT_LENGTH(JUMP) \
|
||
(NEXT_INSN (PREV_INSN (JUMP)) == JUMP ? 0 : 2)
|
||
|
||
#define BRANCH_COST 0
|
||
|
||
/* Tell final.c how to eliminate redundant test instructions. */
|
||
|
||
/* Here we define machine-dependent flags and fields in cc_status
|
||
(see `conditions.h'). No extra ones are needed for the h8300. */
|
||
|
||
/* Store in cc_status the expressions
|
||
that the condition codes will describe
|
||
after execution of an instruction whose pattern is EXP.
|
||
Do not alter them if the instruction would not alter the cc's. */
|
||
|
||
#define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc (EXP, INSN)
|
||
|
||
/* The add insns don't set overflow in a usable way. */
|
||
#define CC_OVERFLOW_UNUSABLE 01000
|
||
/* The mov,and,or,xor insns don't set carry. That's OK though as the
|
||
Z bit is all we need when doing unsigned comparisons on the result of
|
||
these insns (since they're always with 0). However, conditions.h has
|
||
CC_NO_OVERFLOW defined for this purpose. Rename it to something more
|
||
understandable. */
|
||
#define CC_NO_CARRY CC_NO_OVERFLOW
|
||
|
||
/* Control the assembler format that we output. */
|
||
|
||
/* Output to assembler file text saying following lines
|
||
may contain character constants, extra white space, comments, etc. */
|
||
|
||
#define ASM_APP_ON "; #APP\n"
|
||
|
||
/* Output to assembler file text saying following lines
|
||
no longer contain unusual constructs. */
|
||
|
||
#define ASM_APP_OFF "; #NO_APP\n"
|
||
|
||
#define FILE_ASM_OP "\t.file\n"
|
||
|
||
/* The assembler op to get a word, 2 bytes for the H8/300, 4 for H8/300H. */
|
||
#define ASM_WORD_OP \
|
||
(TARGET_H8300 || TARGET_NORMAL_MODE ? "\t.word\t" : "\t.long\t")
|
||
|
||
#define TEXT_SECTION_ASM_OP "\t.section .text"
|
||
#define DATA_SECTION_ASM_OP "\t.section .data"
|
||
#define BSS_SECTION_ASM_OP "\t.section .bss"
|
||
|
||
#undef DO_GLOBAL_CTORS_BODY
|
||
#define DO_GLOBAL_CTORS_BODY \
|
||
{ \
|
||
extern func_ptr __ctors[]; \
|
||
extern func_ptr __ctors_end[]; \
|
||
func_ptr *p; \
|
||
for (p = __ctors_end; p > __ctors; ) \
|
||
{ \
|
||
(*--p)(); \
|
||
} \
|
||
}
|
||
|
||
#undef DO_GLOBAL_DTORS_BODY
|
||
#define DO_GLOBAL_DTORS_BODY \
|
||
{ \
|
||
extern func_ptr __dtors[]; \
|
||
extern func_ptr __dtors_end[]; \
|
||
func_ptr *p; \
|
||
for (p = __dtors; p < __dtors_end; p++) \
|
||
{ \
|
||
(*p)(); \
|
||
} \
|
||
}
|
||
|
||
/* How to refer to registers in assembler output.
|
||
This sequence is indexed by compiler's hard-register-number (see above). */
|
||
|
||
#define REGISTER_NAMES \
|
||
{ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "sp", "mac", "ap", "rap", "fp" }
|
||
|
||
#define ADDITIONAL_REGISTER_NAMES \
|
||
{ {"er0", 0}, {"er1", 1}, {"er2", 2}, {"er3", 3}, {"er4", 4}, \
|
||
{"er5", 5}, {"er6", 6}, {"er7", 7}, {"r7", 7} }
|
||
|
||
/* Globalizing directive for a label. */
|
||
#define GLOBAL_ASM_OP "\t.global "
|
||
|
||
#define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
|
||
ASM_OUTPUT_LABEL (FILE, NAME)
|
||
|
||
/* The prefix to add to user-visible assembler symbols. */
|
||
|
||
#define USER_LABEL_PREFIX "_"
|
||
|
||
/* This is how to store into the string LABEL
|
||
the symbol_ref name of an internal numbered label where
|
||
PREFIX is the class of label and NUM is the number within the class.
|
||
This is suitable for output with `assemble_name'.
|
||
|
||
N.B.: The h8300.md branch_true and branch_false patterns also know
|
||
how to generate internal labels. */
|
||
#define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
|
||
sprintf (LABEL, "*.%s%lu", PREFIX, (unsigned long)(NUM))
|
||
|
||
/* This is how to output an insn to push a register on the stack.
|
||
It need not be very fast code. */
|
||
|
||
#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
|
||
fprintf (FILE, "\t%s\t%s\n", h8_push_op, h8_reg_names[REGNO])
|
||
|
||
/* This is how to output an insn to pop a register from the stack.
|
||
It need not be very fast code. */
|
||
|
||
#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
|
||
fprintf (FILE, "\t%s\t%s\n", h8_pop_op, h8_reg_names[REGNO])
|
||
|
||
/* This is how to output an element of a case-vector that is absolute. */
|
||
|
||
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
|
||
fprintf (FILE, "%s.L%d\n", ASM_WORD_OP, VALUE)
|
||
|
||
/* This is how to output an element of a case-vector that is relative. */
|
||
|
||
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
|
||
fprintf (FILE, "%s.L%d-.L%d\n", ASM_WORD_OP, VALUE, REL)
|
||
|
||
/* This is how to output an assembler line
|
||
that says to advance the location counter
|
||
to a multiple of 2**LOG bytes. */
|
||
|
||
#define ASM_OUTPUT_ALIGN(FILE, LOG) \
|
||
if ((LOG) != 0) \
|
||
fprintf (FILE, "\t.align %d\n", (LOG))
|
||
|
||
#define ASM_OUTPUT_SKIP(FILE, SIZE) \
|
||
fprintf (FILE, "\t.space %d\n", (int)(SIZE))
|
||
|
||
/* This says how to output an assembler line
|
||
to define a global common symbol. */
|
||
|
||
#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
|
||
( fputs ("\t.comm ", (FILE)), \
|
||
assemble_name ((FILE), (NAME)), \
|
||
fprintf ((FILE), ",%lu\n", (unsigned long)(SIZE)))
|
||
|
||
/* This says how to output the assembler to define a global
|
||
uninitialized but not common symbol.
|
||
Try to use asm_output_bss to implement this macro. */
|
||
|
||
#define ASM_OUTPUT_BSS(FILE, DECL, NAME, SIZE, ROUNDED) \
|
||
asm_output_bss ((FILE), (DECL), (NAME), (SIZE), (ROUNDED))
|
||
|
||
#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
|
||
asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
|
||
|
||
/* This says how to output an assembler line
|
||
to define a local common symbol. */
|
||
|
||
#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
|
||
( fputs ("\t.lcomm ", (FILE)), \
|
||
assemble_name ((FILE), (NAME)), \
|
||
fprintf ((FILE), ",%d\n", (int)(SIZE)))
|
||
|
||
#define ASM_PN_FORMAT "%s___%lu"
|
||
|
||
/* Print an instruction operand X on file FILE.
|
||
Look in h8300.c for details. */
|
||
|
||
#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
|
||
((CODE) == '#')
|
||
|
||
#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
|
||
|
||
/* Print a memory operand whose address is X, on file FILE.
|
||
This uses a function in h8300.c. */
|
||
|
||
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
|
||
|
||
/* H8300 specific pragmas. */
|
||
#define REGISTER_TARGET_PRAGMAS() \
|
||
do \
|
||
{ \
|
||
c_register_pragma (0, "saveall", h8300_pr_saveall); \
|
||
c_register_pragma (0, "interrupt", h8300_pr_interrupt); \
|
||
} \
|
||
while (0)
|
||
|
||
#define FINAL_PRESCAN_INSN(insn, operand, nop) \
|
||
final_prescan_insn (insn, operand, nop)
|
||
|
||
#define MOVE_RATIO 3
|
||
extern int h8300_move_ratio;
|
||
#undef MOVE_RATIO
|
||
#define MOVE_RATIO h8300_move_ratio
|
||
|
||
/* Machine-specific symbol_ref flags. */
|
||
#define SYMBOL_FLAG_FUNCVEC_FUNCTION (SYMBOL_FLAG_MACH_DEP << 0)
|
||
#define SYMBOL_FLAG_EIGHTBIT_DATA (SYMBOL_FLAG_MACH_DEP << 1)
|
||
#define SYMBOL_FLAG_TINY_DATA (SYMBOL_FLAG_MACH_DEP << 2)
|
||
|
||
#endif /* ! GCC_H8300_H */
|