NetBSD/sbin/fsck_lfs/inode.c
perseant 369e9cadf8 Initial checkin of fsck_lfs. This version cannot do any repair (-p flag
does nothing, and one of -p or -n is required) but can be useful as a
diagnostic tool.
1999-03-18 02:02:18 +00:00

824 lines
22 KiB
C

/* $Id: inode.c,v 1.1 1999/03/18 02:02:19 perseant Exp $ */
/*
* Copyright (c) 1997, 1998
* Konrad Schroder. All rights reserved.
* Copyright (c) 1980, 1986, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/param.h>
#include <sys/time.h>
#include <ufs/ufs/dinode.h>
#include <ufs/ufs/dir.h>
#include <sys/mount.h> /* XXX */
#include <ufs/lfs/lfs.h>
#ifndef SMALL
#include <pwd.h>
#endif
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "fsck.h"
#include "fsutil.h"
#include "extern.h"
extern struct dinode **din_table;
extern SEGUSE *seg_table;
static int iblock __P((struct inodesc *, long, u_int64_t));
int blksreqd(struct lfs *, int);
int lfs_maxino(void);
SEGUSE *lfs_gseguse(int);
/* static void dump_inoblk __P((struct lfs *, struct dinode *)); */
/* stolen from lfs_inode.c */
/* Search a block for a specific dinode. */
struct dinode *
lfs_ifind(struct lfs *fs, ino_t ino, struct dinode *dip)
{
register int cnt;
for(cnt=0;cnt<INOPB(fs);cnt++)
if(dip[cnt].di_inumber == ino)
return &(dip[cnt]);
/* printf("lfs_ifind: dinode %u not found\n", ino); */
return NULL;
}
/*
* Calculate the number of blocks required to be able to address data block
* blkno (counting, of course, indirect blocks). blkno must >=0.
*/
int blksreqd(struct lfs *fs, int blkno)
{
long n = blkno;
if(blkno < NDADDR)
return blkno;
n -= NDADDR;
if(n < NINDIR(fs))
return blkno + 1;
n -= NINDIR(fs);
if(n < NINDIR(fs)*NINDIR(fs))
return blkno + 2 + n/NINDIR(fs) + 1;
n -= NINDIR(fs)*NINDIR(fs);
return blkno + 2 + NINDIR(fs) + n/(NINDIR(fs)*NINDIR(fs)) + 1;
}
#define BASE_SINDIR (NDADDR)
#define BASE_DINDIR (NDADDR+NINDIR(fs))
#define BASE_TINDIR (NDADDR+NINDIR(fs)+NINDIR(fs)*NINDIR(fs))
#define D_UNITS (NINDIR(fs))
#define T_UNITS (NINDIR(fs)*NINDIR(fs))
ufs_daddr_t lfs_bmap(struct lfs *, struct dinode *, ufs_daddr_t);
ufs_daddr_t lfs_bmap(struct lfs *fs, struct dinode *idinode, ufs_daddr_t lbn)
{
ufs_daddr_t residue, up, off=0;
struct bufarea *bp;
if(lbn > 0 && lbn > (idinode->di_size-1)/dev_bsize) {
return UNASSIGNED;
}
/*
* Indirect blocks: if it is a first-level indirect, pull its
* address from the inode; otherwise, call ourselves to find the
* address of the parent indirect block, and load that to find
* the desired address.
*/
if(lbn < 0) {
lbn *= -1;
if(lbn == NDADDR) {
/* printf("lbn %d: single indir base\n", -lbn); */
return idinode->di_ib[0]; /* single indirect */
} else if(lbn == BASE_DINDIR+1) {
/* printf("lbn %d: double indir base\n", -lbn); */
return idinode->di_ib[1]; /* double indirect */
} else if(lbn == BASE_TINDIR+2) {
/* printf("lbn %d: triple indir base\n", -lbn); */
return idinode->di_ib[2]; /* triple indirect */
}
/*
* Find the immediate parent. This is essentially finding the
* residue of modulus, and then rounding accordingly.
*/
residue = (lbn-NDADDR) % NINDIR(fs);
if(residue == 1) {
/* Double indirect. Parent is the triple. */
up = idinode->di_ib[2];
off = (lbn-2-BASE_TINDIR)/(NINDIR(fs)*NINDIR(fs));
if(up == UNASSIGNED || up == LFS_UNUSED_DADDR)
return UNASSIGNED;
/* printf("lbn %d: parent is the triple\n", -lbn); */
bp = getddblk(up,sblock.lfs_bsize);
bp->b_flags &= ~B_INUSE;
return ((daddr_t *)(bp->b_un.b_buf))[off];
} else /* residue == 0 */ {
/* Single indirect. Two cases. */
if(lbn < BASE_TINDIR) {
/* Parent is the double, simple */
up = -(BASE_DINDIR) - 1;
off = (lbn-BASE_DINDIR) / D_UNITS;
/* printf("lbn %d: parent is %d/%d\n", -lbn, up,off); */
} else {
/* Ancestor is the triple, more complex */
up = ((lbn-BASE_TINDIR) / T_UNITS)
* T_UNITS + BASE_TINDIR + 1;
off = (lbn/D_UNITS) - (up/D_UNITS);
up = -up;
/* printf("lbn %d: parent is %d/%d\n", -lbn, up,off); */
}
}
} else {
/* Direct block. Its parent must be a single indirect. */
if(lbn < NDADDR)
return idinode->di_db[lbn];
else {
/* Parent is an indirect block. */
up = -(((lbn-NDADDR) / D_UNITS) * D_UNITS + NDADDR);
off = (lbn-NDADDR) % D_UNITS;
/* printf("lbn %d: parent is %d/%d\n", lbn,up,off); */
}
}
up = lfs_bmap(fs,idinode,up);
if(up == UNASSIGNED || up == LFS_UNUSED_DADDR)
return UNASSIGNED;
bp = getddblk(up,sblock.lfs_bsize);
bp->b_flags &= ~B_INUSE;
return ((daddr_t *)(bp->b_un.b_buf))[off];
}
/*
* This is kind of gross. We use this to find the nth block
* from a file whose inode has disk address idaddr. In practice
* we will only use this to find blocks of the ifile.
*/
struct bufarea *
getfileblk(struct lfs *fs, struct dinode *idinode, ino_t lbn)
{
struct bufarea *bp;
ufs_daddr_t blkno;
static struct bufarea empty;
static char empty_buf[65536];
empty.b_un.b_buf = &(empty_buf[0]);
blkno = lfs_bmap(fs,idinode,lbn);
if(blkno == UNASSIGNED || blkno == LFS_UNUSED_DADDR) {
printf("Warning: ifile lbn %d unassigned!\n",lbn);
return &empty;
}
bp = getddblk(blkno,sblock.lfs_bsize);
return bp;
}
int lfs_maxino(void)
{
#if 1
struct dinode *idinode;
idinode = lfs_ifind(&sblock,sblock.lfs_ifile,&ifblock);
return ((idinode->di_size
- (sblock.lfs_cleansz + sblock.lfs_segtabsz) * sblock.lfs_bsize)
/ sblock.lfs_bsize) * sblock.lfs_ifpb - 1;
#else
return sblock.lfs_nfiles;
#endif
}
static struct dinode *gidinode(void)
{
static struct dinode *idinode;
if(!idinode) { /* only need to do this once */
idinode = lfs_ifind(&sblock,sblock.lfs_ifile,&ifblock);
if(din_table[LFS_IFILE_INUM]
&& din_table[LFS_IFILE_INUM]->di_gen > idinode->di_gen) {
printf("XXX replacing IFILE gen %d with gen %d\n",
idinode->di_gen, din_table[LFS_IFILE_INUM]->di_gen);
idinode = din_table[LFS_IFILE_INUM];
}
}
return idinode;
}
struct bufarea *
lfs_bginode(ino_t ino)
{
ino_t blkno;
/* this is almost verbatim from lfs.h LFS_IENTRY */
blkno = ino/sblock.lfs_ifpb + sblock.lfs_cleansz + sblock.lfs_segtabsz;
return getfileblk(&sblock,gidinode(),blkno);
}
struct ifile *
lfs_ientry(ino_t ino)
{
struct ifile *ifp;
struct bufarea *bp;
bp = lfs_bginode(ino);
if(bp)
{
ifp = (struct ifile *)malloc(sizeof(*ifp));
*ifp = (((struct ifile *)(bp->b_un.b_buf))[ino%sblock.lfs_ifpb]);
bp->b_flags &= ~B_INUSE;
return ifp;
}
else
return NULL;
}
SEGUSE *
lfs_gseguse(int segnum)
{
int blkno;
struct bufarea *bp;
blkno = segnum/(sblock.lfs_bsize/sizeof(SEGUSE)) + sblock.lfs_cleansz;
bp = getfileblk(&sblock,gidinode(),blkno);
bp->b_flags &= ~B_INUSE;
return ((SEGUSE *)bp->b_un.b_buf) + segnum%(sblock.lfs_bsize/sizeof(SEGUSE));
}
struct dinode *
lfs_ginode(ino_t inumber) {
struct ifile *ifp;
struct dinode *din;
if (inumber == LFS_IFILE_INUM)
return gidinode();
if (/* inumber < ROOTINO || */ inumber > maxino)
errexit("bad inode number %d to lfs_ginode\n", inumber);
/* printf("[lfs_ginode: looking up inode %ld]\n",inumber); */
ifp = lfs_ientry(inumber);
if(ifp==NULL
|| ifp->if_daddr == LFS_UNUSED_DADDR
|| ifp->if_daddr == UNASSIGNED) {
return NULL;
}
if(pbp)
pbp->b_flags &= ~B_INUSE;
if ( !(seg_table[datosn(&sblock,ifp->if_daddr)].su_flags & SEGUSE_DIRTY) )
{
printf("! INO %d: daddr 0x%x is in clean segment %d\n", inumber,
ifp->if_daddr, datosn(&sblock,ifp->if_daddr));
}
pbp = getddblk(ifp->if_daddr,sblock.lfs_bsize);
din=lfs_ifind(&sblock, inumber, pbp->b_un.b_dinode);
/* debug */
if(din && din->di_inumber != inumber)
printf("! lfs_ginode: got ino #%ld instead of %ld\n",
(long)din->di_inumber, (long)inumber);
free(ifp);
return din;
}
/* imported from lfs_vfsops.c */
int
ino_to_fsba(struct lfs *fs, ino_t ino)
{
daddr_t daddr = LFS_UNUSED_DADDR;
struct ifile *ifp;
/* Translate the inode number to a disk address. */
if (ino == LFS_IFILE_INUM)
daddr = fs->lfs_idaddr;
else {
/* LFS_IENTRY(ifp, fs, ino, bp); */
ifp = lfs_ientry(ino);
if(ifp) {
daddr = ifp->if_daddr;
free(ifp);
} else {
pwarn("Can't locate inode #%ud\n",ino);
}
}
return daddr;
}
/*
* Check validity of held (direct) blocks in an inode.
* Note that this does not check held indirect blocks (although it does
* check that the first level of indirection is valid).
*/
int
ckinode(dp, idesc)
struct dinode *dp;
register struct inodesc *idesc;
{
register ufs_daddr_t *ap;
long ret, n, ndb, offset;
struct dinode dino;
u_int64_t remsize, sizepb;
mode_t mode;
char pathbuf[MAXPATHLEN + 1];
if (idesc->id_fix != IGNORE)
idesc->id_fix = DONTKNOW;
idesc->id_entryno = 0;
idesc->id_filesize = dp->di_size;
mode = dp->di_mode & IFMT;
if (mode == IFBLK || mode == IFCHR
|| (mode == IFLNK &&
(dp->di_size < sblock.lfs_maxsymlinklen ||
(sblock.lfs_maxsymlinklen == 0 && dp->di_blocks == 0))))
return (KEEPON);
dino = *dp;
ndb = howmany(dino.di_size, sblock.lfs_bsize);
for (ap = &dino.di_db[0]; ap < &dino.di_db[NDADDR]; ap++) {
if (--ndb == 0 && (offset = blkoff(&sblock, dino.di_size)) != 0) {
idesc->id_numfrags =
numfrags(&sblock, fragroundup(&sblock, offset));
} else
idesc->id_numfrags = sblock.lfs_frag;
if (*ap == 0) {
if (idesc->id_type == DATA && ndb >= 0) {
/* An empty block in a directory XXX */
getpathname(pathbuf, idesc->id_number,
idesc->id_number);
pfatal("DIRECTORY %s: CONTAINS EMPTY BLOCKS",
pathbuf);
if (reply("ADJUST LENGTH") == 1) {
dp = ginode(idesc->id_number);
dp->di_size = (ap - &dino.di_db[0]) *
sblock.lfs_bsize;
printf(
"YOU MUST RERUN FSCK AFTERWARDS\n");
rerun = 1;
inodirty();
}
}
continue;
}
idesc->id_blkno = *ap;
idesc->id_lblkno = ap - &dino.di_db[0];
if (idesc->id_type == ADDR) {
ret = (*idesc->id_func)(idesc);
}
else
ret = dirscan(idesc);
idesc->id_lblkno = 0;
if (ret & STOP)
return (ret);
}
idesc->id_numfrags = sblock.lfs_frag;
remsize = dino.di_size - sblock.lfs_bsize * NDADDR;
sizepb = sblock.lfs_bsize;
for (ap = &dino.di_ib[0], n = 1; n <= NIADDR; ap++, n++) {
if (*ap) {
idesc->id_blkno = *ap;
ret = iblock(idesc, n, remsize);
if (ret & STOP)
return (ret);
} else {
if (idesc->id_type == DATA && remsize > 0) {
/* An empty block in a directory XXX */
getpathname(pathbuf, idesc->id_number,
idesc->id_number);
pfatal("DIRECTORY %s: CONTAINS EMPTY BLOCKS",
pathbuf);
if (reply("ADJUST LENGTH") == 1) {
dp = ginode(idesc->id_number);
dp->di_size -= remsize;
remsize = 0;
printf(
"YOU MUST RERUN FSCK AFTERWARDS\n");
rerun = 1;
inodirty();
break;
}
}
}
sizepb *= NINDIR(&sblock);
remsize -= sizepb;
}
return (KEEPON);
}
static int
iblock(idesc, ilevel, isize)
struct inodesc *idesc;
long ilevel;
u_int64_t isize;
{
register daddr_t *ap;
register daddr_t *aplim;
register struct bufarea *bp;
int i, n, (*func) __P((struct inodesc *)), nif;
u_int64_t sizepb;
char pathbuf[MAXPATHLEN + 1], buf[BUFSIZ];
struct dinode *dp;
if (idesc->id_type == ADDR) {
func = idesc->id_func;
n = (*func)(idesc);
if ((n & KEEPON) == 0)
return (n);
} else
func = dirscan;
if (chkrange(idesc->id_blkno, idesc->id_numfrags))
return (SKIP);
bp = getddblk(idesc->id_blkno, sblock.lfs_bsize);
ilevel--;
for (sizepb = sblock.lfs_bsize, i = 0; i < ilevel; i++)
sizepb *= NINDIR(&sblock);
if (isize > sizepb * NINDIR(&sblock))
nif = NINDIR(&sblock);
else
nif = howmany(isize, sizepb);
if (idesc->id_func == pass1check && nif < NINDIR(&sblock)) {
aplim = &bp->b_un.b_indir[NINDIR(&sblock)];
for (ap = &bp->b_un.b_indir[nif]; ap < aplim; ap++) {
if (*ap == 0)
continue;
(void)sprintf(buf, "PARTIALLY TRUNCATED INODE I=%u",
idesc->id_number);
if (dofix(idesc, buf)) {
*ap = 0;
dirty(bp);
}
}
flush(fswritefd, bp);
}
aplim = &bp->b_un.b_indir[nif];
for (ap = bp->b_un.b_indir; ap < aplim; ap++) {
if (*ap) {
idesc->id_blkno = *ap;
if (ilevel == 0)
n = (*func)(idesc);
else
n = iblock(idesc, ilevel, isize);
if (n & STOP) {
bp->b_flags &= ~B_INUSE;
return (n);
}
} else {
if (idesc->id_type == DATA && isize > 0) {
/* An empty block in a directory XXX */
getpathname(pathbuf, idesc->id_number,
idesc->id_number);
pfatal("DIRECTORY %s: CONTAINS EMPTY BLOCKS",
pathbuf);
if (reply("ADJUST LENGTH") == 1) {
dp = ginode(idesc->id_number);
dp->di_size -= isize;
isize = 0;
printf(
"YOU MUST RERUN FSCK AFTERWARDS\n");
rerun = 1;
inodirty();
bp->b_flags &= ~B_INUSE;
return(STOP);
}
}
}
isize -= sizepb;
}
bp->b_flags &= ~B_INUSE;
return (KEEPON);
}
/*
* Check that a block in a legal block number.
* Return 0 if in range, 1 if out of range.
*/
int
chkrange(blk, cnt)
daddr_t blk;
int cnt;
{
if (blk > fsbtodb(&sblock,maxfsblock)) {
printf("daddr 0x%x too large\n", blk);
return (1);
}
if ( !(seg_table[datosn(&sblock,blk)].su_flags & SEGUSE_DIRTY) ) {
printf("daddr 0x%x is in clean segment 0x%x\n", blk, datosn(&sblock,blk));
return (1);
}
return (0);
}
/*
* General purpose interface for reading inodes.
*/
struct dinode *
ginode(ino_t inumber)
{
return lfs_ginode(inumber);
}
/*
* Routines to maintain information about directory inodes.
* This is built during the first pass and used during the
* second and third passes.
*
* Enter inodes into the cache.
*/
void
cacheino(dp, inumber)
register struct dinode *dp;
ino_t inumber;
{
register struct inoinfo *inp;
struct inoinfo **inpp;
unsigned int blks;
blks = howmany(dp->di_size, sblock.lfs_bsize);
if (blks > NDADDR)
blks = NDADDR + NIADDR;
inp = (struct inoinfo *)
malloc(sizeof(*inp) + (blks - 1) * sizeof(daddr_t));
if (inp == NULL)
return;
inpp = &inphead[inumber % numdirs];
inp->i_nexthash = *inpp;
*inpp = inp;
inp->i_child = inp->i_sibling = inp->i_parentp = 0;
if (inumber == ROOTINO)
inp->i_parent = ROOTINO;
else
inp->i_parent = (ino_t)0;
inp->i_dotdot = (ino_t)0;
inp->i_number = inumber;
inp->i_isize = dp->di_size;
inp->i_numblks = blks * sizeof(daddr_t);
memcpy(&inp->i_blks[0], &dp->di_db[0], (size_t)inp->i_numblks);
if (inplast == listmax) {
listmax += 100;
inpsort = (struct inoinfo **)realloc((char *)inpsort,
(unsigned)listmax * sizeof(struct inoinfo *));
if (inpsort == NULL)
errexit("cannot increase directory list");
}
inpsort[inplast++] = inp;
}
/*
* Look up an inode cache structure.
*/
struct inoinfo *
getinoinfo(inumber)
ino_t inumber;
{
register struct inoinfo *inp;
for (inp = inphead[inumber % numdirs]; inp; inp = inp->i_nexthash) {
if (inp->i_number != inumber)
continue;
return (inp);
}
errexit("cannot find inode %d\n", inumber);
return ((struct inoinfo *)0);
}
/*
* Clean up all the inode cache structure.
*/
void
inocleanup()
{
register struct inoinfo **inpp;
if (inphead == NULL)
return;
for (inpp = &inpsort[inplast - 1]; inpp >= inpsort; inpp--)
free((char *)(*inpp));
free((char *)inphead);
free((char *)inpsort);
inphead = inpsort = NULL;
}
void
inodirty()
{
dirty(pbp);
}
void
clri(idesc, type, flag)
register struct inodesc *idesc;
char *type;
int flag;
{
register struct dinode *dp;
dp = ginode(idesc->id_number);
if (flag == 1) {
pwarn("%s %s", type,
(dp->di_mode & IFMT) == IFDIR ? "DIR" : "FILE");
pinode(idesc->id_number);
}
if (preen || reply("CLEAR") == 1) {
if (preen)
printf(" (CLEARED)\n");
n_files--;
(void)ckinode(dp, idesc);
clearinode(dp);
statemap[idesc->id_number] = USTATE;
inodirty();
}
}
int
findname(idesc)
struct inodesc *idesc;
{
register struct direct *dirp = idesc->id_dirp;
if (dirp->d_ino != idesc->id_parent)
return (KEEPON);
memcpy(idesc->id_name, dirp->d_name, (size_t)dirp->d_namlen + 1);
return (STOP|FOUND);
}
int
findino(idesc)
struct inodesc *idesc;
{
register struct direct *dirp = idesc->id_dirp;
if (dirp->d_ino == 0)
return (KEEPON);
if (strcmp(dirp->d_name, idesc->id_name) == 0 &&
dirp->d_ino >= ROOTINO && dirp->d_ino <= maxino) {
idesc->id_parent = dirp->d_ino;
return (STOP|FOUND);
}
return (KEEPON);
}
void
pinode(ino)
ino_t ino;
{
register struct dinode *dp;
register char *p;
struct passwd *pw;
time_t t;
printf(" I=%u ", ino);
if (ino < ROOTINO || ino > maxino)
return;
dp = ginode(ino);
if(dp) {
printf(" OWNER=");
#ifndef SMALL
if ((pw = getpwuid((int)dp->di_uid)) != 0)
printf("%s ", pw->pw_name);
else
#endif
printf("%u ", (unsigned)dp->di_uid);
printf("MODE=%o\n", dp->di_mode);
if (preen)
printf("%s: ", cdevname());
printf("SIZE=%qu ", dp->di_size);
t = dp->di_mtime;
p = ctime(&t);
printf("MTIME=%12.12s %4.4s ", &p[4], &p[20]);
}
}
void
blkerror(ino, type, blk)
ino_t ino;
char *type;
daddr_t blk;
{
pfatal("%d %s I=%u", blk, type, ino);
printf("\n");
if(exitonfail)
exit(1);
switch (statemap[ino]) {
case FSTATE:
statemap[ino] = FCLEAR;
return;
case DSTATE:
statemap[ino] = DCLEAR;
return;
case FCLEAR:
case DCLEAR:
return;
default:
errexit("BAD STATE %d TO BLKERR", statemap[ino]);
/* NOTREACHED */
}
}
/*
* allocate an unused inode
*/
ino_t
allocino(request, type)
ino_t request;
int type;
{
register ino_t ino;
register struct dinode *dp;
time_t t;
if (request == 0)
request = ROOTINO;
else if (statemap[request] != USTATE)
return (0);
for (ino = request; ino < maxino; ino++)
if (statemap[ino] == USTATE)
break;
if (ino == maxino)
return (0);
switch (type & IFMT) {
case IFDIR:
statemap[ino] = DSTATE;
break;
case IFREG:
case IFLNK:
statemap[ino] = FSTATE;
break;
default:
return (0);
}
dp = ginode(ino);
dp->di_db[0] = allocblk((long)1);
if (dp->di_db[0] == 0) {
statemap[ino] = USTATE;
return (0);
}
dp->di_mode = type;
(void)time(&t);
dp->di_atime = t;
dp->di_mtime = dp->di_ctime = dp->di_atime;
dp->di_size = sblock.lfs_fsize;
dp->di_blocks = btodb(sblock.lfs_fsize);
n_files++;
inodirty();
if (newinofmt)
typemap[ino] = IFTODT(type);
return (ino);
}
/*
* deallocate an inode
*/
void
freeino(ino)
ino_t ino;
{
struct inodesc idesc;
struct dinode *dp;
memset(&idesc, 0, sizeof(struct inodesc));
idesc.id_type = ADDR;
idesc.id_func = pass4check;
idesc.id_number = ino;
dp = ginode(ino);
(void)ckinode(dp, &idesc);
clearinode(dp);
inodirty();
statemap[ino] = USTATE;
n_files--;
}