NetBSD/sys/arch/sparc/sparc/pmap.c

7337 lines
179 KiB
C

/* $NetBSD: pmap.c,v 1.176 2001/01/21 07:48:30 christos Exp $ */
/*
* Copyright (c) 1996
* The President and Fellows of Harvard College. All rights reserved.
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This software was developed by the Computer Systems Engineering group
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
* contributed to Berkeley.
*
* All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Harvard University.
* This product includes software developed by the University of
* California, Lawrence Berkeley Laboratory.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Aaron Brown and
* Harvard University.
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)pmap.c 8.4 (Berkeley) 2/5/94
*
*/
/*
* SPARC physical map management code.
* Does not function on multiprocessors (yet).
*/
#include "opt_ddb.h"
#include "opt_multiprocessor.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/proc.h>
#include <sys/queue.h>
#include <sys/malloc.h>
#include <sys/lock.h>
#include <sys/pool.h>
#include <sys/exec.h>
#include <sys/core.h>
#include <sys/kcore.h>
#include <uvm/uvm.h>
#include <machine/autoconf.h>
#include <machine/bsd_openprom.h>
#include <machine/oldmon.h>
#include <machine/cpu.h>
#include <machine/ctlreg.h>
#include <machine/kcore.h>
#include <sparc/sparc/asm.h>
#include <sparc/sparc/cache.h>
#include <sparc/sparc/vaddrs.h>
#include <sparc/sparc/cpuvar.h>
/*
* The SPARCstation offers us the following challenges:
*
* 1. A virtual address cache. This is, strictly speaking, not
* part of the architecture, but the code below assumes one.
* This is a write-through cache on the 4c and a write-back cache
* on others.
*
* 2. (4/4c only) An MMU that acts like a cache. There is not enough
* space in the MMU to map everything all the time. Instead, we need
* to load MMU with the `working set' of translations for each
* process. The sun4m does not act like a cache; tables are maintained
* in physical memory.
*
* 3. Segmented virtual and physical spaces. The upper 12 bits of
* a virtual address (the virtual segment) index a segment table,
* giving a physical segment. The physical segment selects a
* `Page Map Entry Group' (PMEG) and the virtual page number---the
* next 5 or 6 bits of the virtual address---select the particular
* `Page Map Entry' for the page. We call the latter a PTE and
* call each Page Map Entry Group a pmeg (for want of a better name).
* Note that the sun4m has an unsegmented 36-bit physical space.
*
* Since there are no valid bits in the segment table, the only way
* to have an invalid segment is to make one full pmeg of invalid PTEs.
* We use the last one (since the ROM does as well) (sun4/4c only)
*
* 4. Discontiguous physical pages. The Mach VM expects physical pages
* to be in one sequential lump.
*
* 5. The MMU is always on: it is not possible to disable it. This is
* mainly a startup hassle.
*/
struct pmap_stats {
int ps_unlink_pvfirst; /* # of pv_unlinks on head */
int ps_unlink_pvsearch; /* # of pv_unlink searches */
int ps_changeprots; /* # of calls to changeprot */
int ps_useless_changeprots; /* # of changeprots for wiring */
int ps_enter_firstpv; /* pv heads entered */
int ps_enter_secondpv; /* pv nonheads entered */
int ps_useless_changewire; /* useless wiring changes */
int ps_npg_prot_all; /* # of active pages protected */
int ps_npg_prot_actual; /* # pages actually affected */
int ps_npmeg_free; /* # of free pmegs */
int ps_npmeg_locked; /* # of pmegs on locked list */
int ps_npmeg_lru; /* # of pmegs on lru list */
} pmap_stats;
#ifdef DEBUG
#define PDB_CREATE 0x0001
#define PDB_DESTROY 0x0002
#define PDB_REMOVE 0x0004
#define PDB_CHANGEPROT 0x0008
#define PDB_ENTER 0x0010
#define PDB_FOLLOW 0x0020
#define PDB_MMU_ALLOC 0x0100
#define PDB_MMU_STEAL 0x0200
#define PDB_CTX_ALLOC 0x0400
#define PDB_CTX_STEAL 0x0800
#define PDB_MMUREG_ALLOC 0x1000
#define PDB_MMUREG_STEAL 0x2000
#define PDB_CACHESTUFF 0x4000
#define PDB_SWITCHMAP 0x8000
#define PDB_SANITYCHK 0x10000
int pmapdebug = 0;
#endif
/*
* First and last managed physical addresses.
*/
paddr_t vm_first_phys, vm_num_phys;
/*
* For each managed physical page, there is a list of all currently
* valid virtual mappings of that page. Since there is usually one
* (or zero) mapping per page, the table begins with an initial entry,
* rather than a pointer; this head entry is empty iff its pv_pmap
* field is NULL.
*
* Note that these are per machine independent page (so there may be
* only one for every two hardware pages, e.g.). Since the virtual
* address is aligned on a page boundary, the low order bits are free
* for storing flags. Only the head of each list has flags.
*
* THIS SHOULD BE PART OF THE CORE MAP
*/
struct pvlist {
struct pvlist *pv_next; /* next pvlist, if any */
struct pmap *pv_pmap; /* pmap of this va */
vaddr_t pv_va; /* virtual address */
int pv_flags; /* flags (below) */
};
/*
* Flags in pv_flags. Note that PV_MOD must be 1 and PV_REF must be 2
* since they must line up with the bits in the hardware PTEs (see pte.h).
* SUN4M bits are at a slightly different location in the PTE.
* Note: the REF, MOD and ANC flag bits occur only in the head of a pvlist.
* The cacheable bit (either PV_NC or PV_C4M) is meaningful in each
* individual pv entry.
*/
#define PV_MOD 1 /* page modified */
#define PV_REF 2 /* page referenced */
#define PV_NC 4 /* page cannot be cached */
#define PV_REF4M 1 /* page referenced (SRMMU) */
#define PV_MOD4M 2 /* page modified (SRMMU) */
#define PV_C4M 4 /* page _can_ be cached (SRMMU) */
#define PV_ANC 0x10 /* page has incongruent aliases */
struct pvlist *pv_table; /* array of entries, one per physical page */
#define pvhead(pa) (&pv_table[(pa) >> PGSHIFT])
static psize_t pv_table_map __P((paddr_t));
static struct pool pv_pool;
/*
* Each virtual segment within each pmap is either valid or invalid.
* It is valid if pm_npte[VA_VSEG(va)] is not 0. This does not mean
* it is in the MMU, however; that is true iff pm_segmap[VA_VSEG(va)]
* does not point to the invalid PMEG.
*
* In the older SPARC architectures (pre-4m), page tables are cached in the
* MMU. The following discussion applies to these architectures:
*
* If a virtual segment is valid and loaded, the correct PTEs appear
* in the MMU only. If it is valid and unloaded, the correct PTEs appear
* in the pm_pte[VA_VSEG(va)] only. However, some effort is made to keep
* the software copies consistent enough with the MMU so that libkvm can
* do user address translations. In particular, pv_changepte() and
* pmap_enu() maintain consistency, while less critical changes are
* not maintained. pm_pte[VA_VSEG(va)] always points to space for those
* PTEs, unless this is the kernel pmap, in which case pm_pte[x] is not
* used (sigh).
*
* Each PMEG in the MMU is either free or contains PTEs corresponding to
* some pmap and virtual segment. If it contains some PTEs, it also contains
* reference and modify bits that belong in the pv_table. If we need
* to steal a PMEG from some process (if we need one and none are free)
* we must copy the ref and mod bits, and update pm_segmap in the other
* pmap to show that its virtual segment is no longer in the MMU.
*
* There are 128 PMEGs in a small Sun-4, of which only a few dozen are
* tied down permanently, leaving `about' 100 to be spread among
* running processes. These are managed as an LRU cache. Before
* calling the VM paging code for a user page fault, the fault handler
* calls mmu_load(pmap, va) to try to get a set of PTEs put into the
* MMU. mmu_load will check the validity of the segment and tell whether
* it did something.
*
* Since I hate the name PMEG I call this data structure an `mmu entry'.
* Each mmuentry is on exactly one of three `usage' lists: free, LRU,
* or locked. The LRU list is for user processes; the locked list is
* for kernel entries; both are doubly linked queues headed by `mmuhd's.
* The free list is a simple list, headed by a free list pointer.
*
* In the sun4m architecture using the SPARC Reference MMU (SRMMU), three
* levels of page tables are maintained in physical memory. We use the same
* structures as with the 3-level old-style MMU (pm_regmap, pm_segmap,
* rg_segmap, sg_pte, etc) to maintain kernel-edible page tables; we also
* build a parallel set of physical tables that can be used by the MMU.
* (XXX: This seems redundant, but is it necessary for the unified kernel?)
*
* If a virtual segment is valid, its entries will be in both parallel lists.
* If it is not valid, then its entry in the kernel tables will be zero, and
* its entry in the MMU tables will either be nonexistent or zero as well.
*
* The Reference MMU generally uses a Translation Look-aside Buffer (TLB)
* to cache the result of recently executed page table walks. When
* manipulating page tables, we need to ensure consistency of the
* in-memory and TLB copies of the page table entries. This is handled
* by flushing (and invalidating) a TLB entry when appropriate before
* altering an in-memory page table entry.
*/
struct mmuentry {
TAILQ_ENTRY(mmuentry) me_list; /* usage list link */
TAILQ_ENTRY(mmuentry) me_pmchain; /* pmap owner link */
struct pmap *me_pmap; /* pmap, if in use */
u_short me_vreg; /* associated virtual region/segment */
u_short me_vseg; /* associated virtual region/segment */
u_short me_cookie; /* hardware SMEG/PMEG number */
};
struct mmuentry *mmusegments; /* allocated in pmap_bootstrap */
struct mmuentry *mmuregions; /* allocated in pmap_bootstrap */
struct mmuhd segm_freelist, segm_lru, segm_locked;
struct mmuhd region_freelist, region_lru, region_locked;
int seginval; /* [4/4c] the invalid segment number */
int reginval; /* [4/3mmu] the invalid region number */
/*
* (sun4/4c)
* A context is simply a small number that dictates which set of 4096
* segment map entries the MMU uses. The Sun 4c has eight such sets.
* These are alloted in an `almost MRU' fashion.
* (sun4m)
* A context is simply a small number that indexes the context table, the
* root-level page table mapping 4G areas. Each entry in this table points
* to a 1st-level region table. A SPARC reference MMU will usually use 16
* such contexts, but some offer as many as 64k contexts; the theoretical
* maximum is 2^32 - 1, but this would create overlarge context tables.
*
* Each context is either free or attached to a pmap.
*
* Since the virtual address cache is tagged by context, when we steal
* a context we have to flush (that part of) the cache.
*/
union ctxinfo {
union ctxinfo *c_nextfree; /* free list (if free) */
struct pmap *c_pmap; /* pmap (if busy) */
};
#define ncontext (cpuinfo.mmu_ncontext)
#define ctx_kick (cpuinfo.ctx_kick)
#define ctx_kickdir (cpuinfo.ctx_kickdir)
#define ctx_freelist (cpuinfo.ctx_freelist)
void ctx_alloc __P((struct pmap *));
void ctx_free __P((struct pmap *));
caddr_t vpage[2]; /* two reserved MD virtual pages */
#if defined(SUN4M)
int *vpage_pte[2]; /* pte location of vpage[] */
#endif
caddr_t vmmap; /* one reserved MI vpage for /dev/mem */
caddr_t vdumppages; /* 32KB worth of reserved dump pages */
smeg_t tregion; /* [4/3mmu] Region for temporary mappings */
struct pmap kernel_pmap_store; /* the kernel's pmap */
struct regmap kernel_regmap_store[NKREG]; /* the kernel's regmap */
struct segmap kernel_segmap_store[NKREG*NSEGRG];/* the kernel's segmaps */
#if defined(SUN4M)
u_int *kernel_regtable_store; /* 1k of storage to map the kernel */
u_int *kernel_segtable_store; /* 2k of storage to map the kernel */
u_int *kernel_pagtable_store; /* 128k of storage to map the kernel */
/*
* Memory pools and back-end supplier for SRMMU page tables.
* Share a pool between the level 2 and level 3 page tables,
* since these are equal in size.
*/
static struct pool L1_pool;
static struct pool L23_pool;
static void *pgt_page_alloc __P((unsigned long, int, int));
static void pgt_page_free __P((void *, unsigned long, int));
#endif
#define MA_SIZE 32 /* size of memory descriptor arrays */
struct memarr pmemarr[MA_SIZE];/* physical memory regions */
int npmemarr; /* number of entries in pmemarr */
/*static*/ paddr_t avail_start; /* first free physical page */
/*static*/ paddr_t avail_end; /* last free physical page */
/*static*/ vaddr_t virtual_avail; /* first free virtual page number */
/*static*/ vaddr_t virtual_end; /* last free virtual page number */
static void pmap_page_upload __P((void));
void pmap_release __P((pmap_t));
int mmu_has_hole;
vaddr_t prom_vstart; /* For /dev/kmem */
vaddr_t prom_vend;
/*
* Memory pool for pmap structures.
*/
static struct pool pmap_pmap_pool;
#if defined(SUN4)
/*
* [sun4]: segfixmask: on some systems (4/110) "getsegmap()" returns a
* partly invalid value. getsegmap returns a 16 bit value on the sun4,
* but only the first 8 or so bits are valid (the rest are *supposed* to
* be zero. On the 4/110 the bits that are supposed to be zero are
* all one instead. e.g. KERNBASE is usually mapped by pmeg number zero.
* On a 4/300 getsegmap(KERNBASE) == 0x0000, but
* on a 4/100 getsegmap(KERNBASE) == 0xff00
*
* This confuses mmu_reservemon() and causes it to not reserve the PROM's
* pmegs. Then the PROM's pmegs get used during autoconfig and everything
* falls apart! (not very fun to debug, BTW.)
*
* solution: mask the invalid bits in the getsetmap macro.
*/
static u_long segfixmask = 0xffffffff; /* all bits valid to start */
#else
#define segfixmask 0xffffffff /* It's in getsegmap's scope */
#endif
/*
* pseudo-functions for mnemonic value
*/
#define getsegmap(va) (CPU_ISSUN4C \
? lduba(va, ASI_SEGMAP) \
: (lduha(va, ASI_SEGMAP) & segfixmask))
#define setsegmap(va, pmeg) (CPU_ISSUN4C \
? stba(va, ASI_SEGMAP, pmeg) \
: stha(va, ASI_SEGMAP, pmeg))
/* 3-level sun4 MMU only: */
#define getregmap(va) ((unsigned)lduha((va)+2, ASI_REGMAP) >> 8)
#define setregmap(va, smeg) stha((va)+2, ASI_REGMAP, (smeg << 8))
#if defined(SUN4M)
void setpgt4m __P((int *ptep, int pte));
void setpte4m __P((vaddr_t va, int pte));
#endif
/* Function pointer messiness for supporting multiple sparc architectures
* within a single kernel: notice that there are two versions of many of the
* functions within this file/module, one for the sun4/sun4c and the other
* for the sun4m. For performance reasons (since things like pte bits don't
* map nicely between the two architectures), there are separate functions
* rather than unified functions which test the cputyp variable. If only
* one architecture is being used, then the non-suffixed function calls
* are macro-translated into the appropriate xxx4_4c or xxx4m call. If
* multiple architectures are defined, the calls translate to (*xxx_p),
* i.e. they indirect through function pointers initialized as appropriate
* to the run-time architecture in pmap_bootstrap. See also pmap.h.
*/
#if defined(SUN4M)
static void mmu_setup4m_L1 __P((int, struct pmap *));
static void mmu_setup4m_L2 __P((int, struct regmap *));
static void mmu_setup4m_L3 __P((int, struct segmap *));
/*static*/ void mmu_reservemon4m __P((struct pmap *));
/*static*/ void pmap_rmk4m __P((struct pmap *, vaddr_t, vaddr_t, int, int));
/*static*/ void pmap_rmu4m __P((struct pmap *, vaddr_t, vaddr_t, int, int));
/*static*/ void pmap_enk4m __P((struct pmap *, vaddr_t, vm_prot_t,
int, struct pvlist *, int));
/*static*/ void pmap_enu4m __P((struct pmap *, vaddr_t, vm_prot_t,
int, struct pvlist *, int));
/*static*/ void pv_changepte4m __P((struct pvlist *, int, int));
/*static*/ int pv_syncflags4m __P((struct pvlist *));
/*static*/ int pv_link4m __P((struct pvlist *, struct pmap *, vaddr_t, int));
/*static*/ void pv_unlink4m __P((struct pvlist *, struct pmap *, vaddr_t));
#endif
#if defined(SUN4) || defined(SUN4C)
/*static*/ void mmu_reservemon4_4c __P((int *, int *));
/*static*/ void pmap_rmk4_4c __P((struct pmap *, vaddr_t, vaddr_t, int, int));
/*static*/ void pmap_rmu4_4c __P((struct pmap *, vaddr_t, vaddr_t, int, int));
/*static*/ void pmap_enk4_4c __P((struct pmap *, vaddr_t, vm_prot_t,
int, struct pvlist *, int));
/*static*/ void pmap_enu4_4c __P((struct pmap *, vaddr_t, vm_prot_t,
int, struct pvlist *, int));
/*static*/ void pv_changepte4_4c __P((struct pvlist *, int, int));
/*static*/ int pv_syncflags4_4c __P((struct pvlist *));
/*static*/ int pv_link4_4c __P((struct pvlist *, struct pmap *, vaddr_t, int));
/*static*/ void pv_unlink4_4c __P((struct pvlist *, struct pmap *, vaddr_t));
#endif
#if !defined(SUN4M) && (defined(SUN4) || defined(SUN4C))
#define pmap_rmk pmap_rmk4_4c
#define pmap_rmu pmap_rmu4_4c
#elif defined(SUN4M) && !(defined(SUN4) || defined(SUN4C))
#define pmap_rmk pmap_rmk4m
#define pmap_rmu pmap_rmu4m
#else /* must use function pointers */
/* function pointer declarations */
/* from pmap.h: */
boolean_t (*pmap_clear_modify_p) __P((struct vm_page *));
boolean_t (*pmap_clear_reference_p) __P((struct vm_page *));
int (*pmap_enter_p) __P((pmap_t, vaddr_t, paddr_t, vm_prot_t, int));
boolean_t (*pmap_extract_p) __P((pmap_t, vaddr_t, paddr_t *));
boolean_t (*pmap_is_modified_p) __P((struct vm_page *));
boolean_t (*pmap_is_referenced_p) __P((struct vm_page *));
void (*pmap_kenter_pa_p) __P((vaddr_t, paddr_t, vm_prot_t));
void (*pmap_kenter_pgs_p) __P((vaddr_t, struct vm_page **, int));
void (*pmap_kremove_p) __P((vaddr_t, vsize_t));
void (*pmap_page_protect_p) __P((struct vm_page *, vm_prot_t));
void (*pmap_protect_p) __P((pmap_t, vaddr_t, vaddr_t, vm_prot_t));
void (*pmap_changeprot_p) __P((pmap_t, vaddr_t, vm_prot_t, int));
/* local: */
void (*pmap_rmk_p) __P((struct pmap *, vaddr_t, vaddr_t, int, int));
void (*pmap_rmu_p) __P((struct pmap *, vaddr_t, vaddr_t, int, int));
#define pmap_rmk (*pmap_rmk_p)
#define pmap_rmu (*pmap_rmu_p)
#endif
/* --------------------------------------------------------------*/
/*
* Next we have some Sun4m-specific routines which have no 4/4c
* counterparts, or which are 4/4c macros.
*/
#if defined(SUN4M)
/*
* Macros which implement SRMMU TLB flushing/invalidation
*/
#define tlb_flush_page(va) \
sta(((vaddr_t)(va) & ~0xfff) | ASI_SRMMUFP_L3, ASI_SRMMUFP, 0)
#define tlb_flush_segment(vr, vs) \
sta(((vr)<<RGSHIFT) | ((vs)<<SGSHIFT) | ASI_SRMMUFP_L2, ASI_SRMMUFP,0)
#define tlb_flush_region(vr) \
sta(((vr) << RGSHIFT) | ASI_SRMMUFP_L1, ASI_SRMMUFP, 0)
#define tlb_flush_context() sta(ASI_SRMMUFP_L0, ASI_SRMMUFP, 0)
#define tlb_flush_all() sta(ASI_SRMMUFP_LN, ASI_SRMMUFP, 0)
static u_int VA2PA __P((caddr_t));
static u_long srmmu_bypass_read __P((u_long));
/*
* VA2PA(addr) -- converts a virtual address to a physical address using
* the MMU's currently-installed page tables. As a side effect, the address
* translation used may cause the associated pte to be encached. The correct
* context for VA must be set before this is called.
*
* This routine should work with any level of mapping, as it is used
* during bootup to interact with the ROM's initial L1 mapping of the kernel.
*/
static u_int
VA2PA(addr)
caddr_t addr;
{
u_int pte;
/* we'll use that handy SRMMU flush/probe! %%%: make consts below! */
/* Try each level in turn until we find a valid pte. Otherwise panic */
pte = lda(((u_int)addr & ~0xfff) | ASI_SRMMUFP_L3, ASI_SRMMUFP);
/* Unlock fault status; required on Hypersparc modules */
(void)lda(SRMMU_SFSR, ASI_SRMMU);
if ((pte & SRMMU_TETYPE) == SRMMU_TEPTE)
return (((pte & SRMMU_PPNMASK) << SRMMU_PPNPASHIFT) |
((u_int)addr & 0xfff));
/* A `TLB Flush Entire' is required before any L0, L1 or L2 probe */
tlb_flush_all();
pte = lda(((u_int)addr & ~0xfff) | ASI_SRMMUFP_L2, ASI_SRMMUFP);
if ((pte & SRMMU_TETYPE) == SRMMU_TEPTE)
return (((pte & SRMMU_PPNMASK) << SRMMU_PPNPASHIFT) |
((u_int)addr & 0x3ffff));
pte = lda(((u_int)addr & ~0xfff) | ASI_SRMMUFP_L1, ASI_SRMMUFP);
if ((pte & SRMMU_TETYPE) == SRMMU_TEPTE)
return (((pte & SRMMU_PPNMASK) << SRMMU_PPNPASHIFT) |
((u_int)addr & 0xffffff));
pte = lda(((u_int)addr & ~0xfff) | ASI_SRMMUFP_L0, ASI_SRMMUFP);
if ((pte & SRMMU_TETYPE) == SRMMU_TEPTE)
return (((pte & SRMMU_PPNMASK) << SRMMU_PPNPASHIFT) |
((u_int)addr & 0xffffffff));
#ifdef DIAGNOSTIC
panic("VA2PA: Asked to translate unmapped VA %p", addr);
#else
return (0);
#endif
}
__inline void
setpgt4m(ptep, pte)
int *ptep;
int pte;
{
swap(ptep, pte);
}
/* Set the page table entry for va to pte. */
__inline void
setpte4m(va, pte)
vaddr_t va;
int pte;
{
struct pmap *pm;
struct regmap *rm;
struct segmap *sm;
if (getcontext4m() != 0)
panic("setpte4m: user context");
pm = pmap_kernel();
/* Note: inline version of setptesw4m() */
#ifdef DEBUG
if (pm->pm_regmap == NULL)
panic("setpte4m: no regmap entry");
#endif
rm = &pm->pm_regmap[VA_VREG(va)];
sm = &rm->rg_segmap[VA_VSEG(va)];
#ifdef DEBUG
if (rm->rg_segmap == NULL)
panic("setpte4m: no segmap for va %p (rp=%p)",
(caddr_t)va, (caddr_t)rm);
if (sm->sg_pte == NULL)
panic("setpte4m: no pte for va %p (rp=%p, sp=%p)",
(caddr_t)va, rm, sm);
#endif
tlb_flush_page(va);
setpgt4m(sm->sg_pte + VA_SUN4M_VPG(va), pte);
}
/*
* Page table pool back-end.
*/
void *
pgt_page_alloc(sz, flags, mtype)
unsigned long sz;
int flags;
int mtype;
{
int cacheit = (cpuinfo.flags & CPUFLG_CACHEPAGETABLES) != 0;
struct vm_page *pg;
vaddr_t va;
paddr_t pa;
/* Allocate a page of physical memory */
if ((pg = uvm_pagealloc(NULL, 0, NULL, 0)) == NULL)
return (NULL);
/* Allocate virtual memory */
va = uvm_km_valloc(kernel_map, PAGE_SIZE);
if (va == 0) {
uvm_pagefree(pg);
return (NULL);
}
/*
* On systems with a physical data cache we need to flush this page
* from the cache if the pagetables cannot be cached.
* On systems with a virtually indexed data cache, we only need
* to map it non-cacheable, since the page is not currently mapped.
*/
pa = VM_PAGE_TO_PHYS(pg);
if (cacheit == 0)
pcache_flush_page(pa, 1);
/* Map the page */
pmap_enter(pmap_kernel(), va, pa | (cacheit ? 0 : PMAP_NC),
VM_PROT_READ|VM_PROT_WRITE,
VM_PROT_READ|VM_PROT_WRITE|PMAP_WIRED);
return ((void *)va);
}
void
pgt_page_free(v, sz, mtype)
void *v;
unsigned long sz;
int mtype;
{
uvm_km_free(kernel_map, (vaddr_t)v, sz);
}
#endif /* 4m only */
/*----------------------------------------------------------------*/
/*
* The following three macros are to be used in sun4/sun4c code only.
*/
#if defined(SUN4_MMU3L)
#define CTX_USABLE(pm,rp) ( \
((pm)->pm_ctx != NULL && \
(!HASSUN4_MMU3L || (rp)->rg_smeg != reginval)) \
)
#else
#define CTX_USABLE(pm,rp) ((pm)->pm_ctx != NULL )
#endif
#define GAP_WIDEN(pm,vr) do if (CPU_ISSUN4OR4C) { \
if (vr + 1 == pm->pm_gap_start) \
pm->pm_gap_start = vr; \
if (vr == pm->pm_gap_end) \
pm->pm_gap_end = vr + 1; \
} while (0)
#define GAP_SHRINK(pm,vr) do if (CPU_ISSUN4OR4C) { \
int x; \
x = pm->pm_gap_start + (pm->pm_gap_end - pm->pm_gap_start) / 2; \
if (vr > x) { \
if (vr < pm->pm_gap_end) \
pm->pm_gap_end = vr; \
} else { \
if (vr >= pm->pm_gap_start && x != pm->pm_gap_start) \
pm->pm_gap_start = vr + 1; \
} \
} while (0)
static void get_phys_mem __P((void));
static void sortm __P((struct memarr *, int));
void pv_flushcache __P((struct pvlist *));
void kvm_iocache __P((caddr_t, int));
#ifdef DEBUG
void pm_check __P((char *, struct pmap *));
void pm_check_k __P((char *, struct pmap *));
void pm_check_u __P((char *, struct pmap *));
#endif
/*
* Grab physical memory list and use it to compute `physmem' and
* `avail_end'. The latter is used in conjunction with
* `avail_start' to dispatch left-over physical pages to the
* VM system.
*/
void
get_phys_mem()
{
struct memarr *mp;
int i;
npmemarr = makememarr(pmemarr, MA_SIZE, MEMARR_AVAILPHYS);
sortm(pmemarr, npmemarr);
if (pmemarr[0].addr != 0)
panic("pmap_bootstrap: no memory?!");
avail_end = pmemarr[npmemarr-1].addr + pmemarr[npmemarr-1].len;
for (physmem = 0, mp = pmemarr, i = npmemarr; --i >= 0; mp++)
physmem += btoc(mp->len);
}
/*
* Sort a memory array by address.
*/
static void
sortm(mp, n)
struct memarr *mp;
int n;
{
struct memarr *mpj;
int i, j;
paddr_t addr;
psize_t len;
/* Insertion sort. This is O(n^2), but so what? */
for (i = 1; i < n; i++) {
/* save i'th entry */
addr = mp[i].addr;
len = mp[i].len;
/* find j such that i'th entry goes before j'th */
for (j = 0, mpj = mp; j < i; j++, mpj++)
if (addr < mpj->addr)
break;
/* slide up any additional entries */
memmove(mpj + 1, mpj, (i - j) * sizeof(*mp));
mpj->addr = addr;
mpj->len = len;
}
}
/*
* Support functions for vm_page_bootstrap().
*/
/*
* How much virtual space does this kernel have?
* (After mapping kernel text, data, etc.)
*/
void
pmap_virtual_space(v_start, v_end)
vaddr_t *v_start;
vaddr_t *v_end;
{
*v_start = virtual_avail;
*v_end = virtual_end;
}
/*
* Helper routine that hands off available physical pages to the VM system.
*/
static void
pmap_page_upload()
{
int n = 0;
paddr_t start, end;
for (n = 0; n < npmemarr; n++) {
/*
* Assume `avail_start' is always in the first segment; we
* already made that assumption in pmap_bootstrap()..
*/
start = (n == 0) ? avail_start : pmemarr[n].addr;
end = pmemarr[n].addr + pmemarr[n].len;
if (start == end)
continue;
uvm_page_physload(
atop(start),
atop(end),
atop(start),
atop(end), VM_FREELIST_DEFAULT);
}
}
int
pmap_pa_exists(pa)
paddr_t pa;
{
int nmem;
struct memarr *mp;
for (mp = pmemarr, nmem = npmemarr; --nmem >= 0; mp++) {
if (pa >= mp->addr && pa < mp->addr + mp->len)
return 1;
}
return 0;
}
/* update pv_flags given a valid pte */
#define MR4_4C(pte) (((pte) >> PG_M_SHIFT) & (PV_MOD | PV_REF))
#define MR4M(pte) (((pte) >> PG_M_SHIFT4M) & (PV_MOD4M | PV_REF4M))
/*----------------------------------------------------------------*/
/*
* Agree with the monitor ROM as to how many MMU entries are
* to be reserved, and map all of its segments into all contexts.
*
* Unfortunately, while the Version 0 PROM had a nice linked list of
* taken virtual memory, the Version 2 PROM provides instead a convoluted
* description of *free* virtual memory. Rather than invert this, we
* resort to two magic constants from the PROM vector description file.
*/
#if defined(SUN4) || defined(SUN4C)
void
mmu_reservemon4_4c(nrp, nsp)
int *nrp, *nsp;
{
u_int va = 0, eva = 0;
int mmuseg, i, nr, ns, vr, lastvr;
#if defined(SUN4_MMU3L)
int mmureg;
#endif
struct regmap *rp;
#if defined(SUN4M)
if (CPU_ISSUN4M) {
panic("mmu_reservemon4_4c called on Sun4M machine");
return;
}
#endif
#if defined(SUN4)
if (CPU_ISSUN4) {
prom_vstart = va = OLDMON_STARTVADDR;
prom_vend = eva = OLDMON_ENDVADDR;
}
#endif
#if defined(SUN4C)
if (CPU_ISSUN4C) {
prom_vstart = va = OPENPROM_STARTVADDR;
prom_vend = eva = OPENPROM_ENDVADDR;
}
#endif
ns = *nsp;
nr = *nrp;
lastvr = 0;
while (va < eva) {
vr = VA_VREG(va);
rp = &pmap_kernel()->pm_regmap[vr];
#if defined(SUN4_MMU3L)
if (HASSUN4_MMU3L && vr != lastvr) {
lastvr = vr;
mmureg = getregmap(va);
if (mmureg < nr)
rp->rg_smeg = nr = mmureg;
/*
* On 3-level MMU machines, we distribute regions,
* rather than segments, amongst the contexts.
*/
for (i = ncontext; --i > 0;)
prom_setcontext(i, (caddr_t)va, mmureg);
}
#endif
mmuseg = getsegmap(va);
if (mmuseg < ns)
ns = mmuseg;
if (!HASSUN4_MMU3L)
for (i = ncontext; --i > 0;)
prom_setcontext(i, (caddr_t)va, mmuseg);
if (mmuseg == seginval) {
va += NBPSG;
continue;
}
/*
* Another PROM segment. Enter into region map.
* Assume the entire segment is valid.
*/
rp->rg_nsegmap += 1;
rp->rg_segmap[VA_VSEG(va)].sg_pmeg = mmuseg;
rp->rg_segmap[VA_VSEG(va)].sg_npte = NPTESG;
/* PROM maps its memory user-accessible: fix it. */
for (i = NPTESG; --i >= 0; va += NBPG)
setpte4(va, getpte4(va) | PG_S);
}
*nsp = ns;
*nrp = nr;
return;
}
#endif
#if defined(SUN4M) /* Sun4M versions of above */
u_long
srmmu_bypass_read(paddr)
u_long paddr;
{
unsigned long v;
if (cpuinfo.mxcc) {
/*
* We're going to have to use MMU passthrough. If we're on
* a Viking SuperSPARC with a MultiCache Controller, we
* need to set the AC (Alternate Cacheable) bit in the MMU's
* control register in order to not by-pass the cache.
*/
unsigned long s = lda(SRMMU_PCR, ASI_SRMMU);
/* set MMU AC bit */
sta(SRMMU_PCR, ASI_SRMMU, s | VIKING_PCR_AC);
v = lda(paddr, ASI_BYPASS);
sta(SRMMU_PCR, ASI_SRMMU, s);
} else
v = lda(paddr, ASI_BYPASS);
return (v);
}
/*
* Take the monitor's initial page table layout, convert it to 3rd-level pte's
* (it starts out as a L1 mapping), and install it along with a set of kernel
* mapping tables as the kernel's initial page table setup. Also create and
* enable a context table. I suppose we also want to block user-mode access
* to the new kernel/ROM mappings.
*/
/*
* mmu_reservemon4m(): Copies the existing (ROM) page tables to kernel space,
* converting any L1/L2 PTEs to L3 PTEs. Does *not* copy the L1 entry mapping
* the kernel at KERNBASE since we don't want to map 16M of physical
* memory for the kernel. Thus the kernel must be installed later!
* Also installs ROM mappings into the kernel pmap.
* NOTE: This also revokes all user-mode access to the mapped regions.
*/
void
mmu_reservemon4m(kpmap)
struct pmap *kpmap;
{
unsigned int rom_ctxtbl;
int te;
prom_vstart = OPENPROM_STARTVADDR;
prom_vend = OPENPROM_ENDVADDR;
/*
* XXX: although the Sun4M can handle 36 bits of physical
* address space, we assume that all these page tables, etc
* are in the lower 4G (32-bits) of address space, i.e. out of I/O
* space. Eventually this should be changed to support the 36 bit
* physical addressing, in case some crazed ROM designer decides to
* stick the pagetables up there. In that case, we should use MMU
* transparent mode, (i.e. ASI 0x20 to 0x2f) to access
* physical memory.
*/
rom_ctxtbl = (lda(SRMMU_CXTPTR,ASI_SRMMU) << SRMMU_PPNPASHIFT);
te = srmmu_bypass_read(rom_ctxtbl); /* i.e. context 0 */
switch (te & SRMMU_TETYPE) {
case SRMMU_TEINVALID:
cpuinfo.ctx_tbl[0] = SRMMU_TEINVALID;
panic("mmu_reservemon4m: no existing L0 mapping! "
"(How are we running?");
break;
case SRMMU_TEPTE:
#ifdef DEBUG
printf("mmu_reservemon4m: trying to remap 4G segment!\n");
#endif
panic("mmu_reservemon4m: can't handle ROM 4G page size");
/* XXX: Should make this work, however stupid it is */
break;
case SRMMU_TEPTD:
mmu_setup4m_L1(te, kpmap);
break;
default:
panic("mmu_reservemon4m: unknown pagetable entry type");
}
}
void
mmu_setup4m_L1(regtblptd, kpmap)
int regtblptd; /* PTD for region table to be remapped */
struct pmap *kpmap;
{
unsigned int regtblrover;
int i;
unsigned int te;
struct regmap *rp;
int j, k;
/*
* Here we scan the region table to copy any entries which appear.
* We are only concerned with regions in kernel space and above
* (i.e. regions VA_VREG(KERNBASE)+1 to 0xff). We ignore the first
* region (at VA_VREG(KERNBASE)), since that is the 16MB L1 mapping
* that the ROM used to map the kernel in initially. Later, we will
* rebuild a new L3 mapping for the kernel and install it before
* switching to the new pagetables.
*/
regtblrover =
((regtblptd & ~SRMMU_TETYPE) << SRMMU_PPNPASHIFT) +
(VA_VREG(KERNBASE)+1) * sizeof(long); /* kernel only */
for (i = VA_VREG(KERNBASE) + 1; i < SRMMU_L1SIZE;
i++, regtblrover += sizeof(long)) {
/* The region we're dealing with */
rp = &kpmap->pm_regmap[i];
te = srmmu_bypass_read(regtblrover);
switch(te & SRMMU_TETYPE) {
case SRMMU_TEINVALID:
break;
case SRMMU_TEPTE:
#ifdef DEBUG
printf("mmu_setup4m_L1: "
"converting region 0x%x from L1->L3\n", i);
#endif
/*
* This region entry covers 64MB of memory -- or
* (NSEGRG * NPTESG) pages -- which we must convert
* into a 3-level description.
*/
for (j = 0; j < SRMMU_L2SIZE; j++) {
struct segmap *sp = &rp->rg_segmap[j];
for (k = 0; k < SRMMU_L3SIZE; k++) {
sp->sg_npte++;
setpgt4m(&sp->sg_pte[k],
(te & SRMMU_L1PPNMASK) |
(j << SRMMU_L2PPNSHFT) |
(k << SRMMU_L3PPNSHFT) |
(te & SRMMU_PGBITSMSK) |
((te & SRMMU_PROT_MASK) |
PPROT_U2S_OMASK) |
SRMMU_TEPTE);
}
}
break;
case SRMMU_TEPTD:
mmu_setup4m_L2(te, rp);
break;
default:
panic("mmu_setup4m_L1: unknown pagetable entry type");
}
}
}
void
mmu_setup4m_L2(segtblptd, rp)
int segtblptd;
struct regmap *rp;
{
unsigned int segtblrover;
int i, k;
unsigned int te;
struct segmap *sp;
segtblrover = (segtblptd & ~SRMMU_TETYPE) << SRMMU_PPNPASHIFT;
for (i = 0; i < SRMMU_L2SIZE; i++, segtblrover += sizeof(long)) {
sp = &rp->rg_segmap[i];
te = srmmu_bypass_read(segtblrover);
switch(te & SRMMU_TETYPE) {
case SRMMU_TEINVALID:
break;
case SRMMU_TEPTE:
#ifdef DEBUG
printf("mmu_setup4m_L2: converting L2 entry at segment 0x%x to L3\n",i);
#endif
/*
* This segment entry covers 256KB of memory -- or
* (NPTESG) pages -- which we must convert
* into a 3-level description.
*/
for (k = 0; k < SRMMU_L3SIZE; k++) {
sp->sg_npte++;
setpgt4m(&sp->sg_pte[k],
(te & SRMMU_L1PPNMASK) |
(te & SRMMU_L2PPNMASK) |
(k << SRMMU_L3PPNSHFT) |
(te & SRMMU_PGBITSMSK) |
((te & SRMMU_PROT_MASK) |
PPROT_U2S_OMASK) |
SRMMU_TEPTE);
}
break;
case SRMMU_TEPTD:
mmu_setup4m_L3(te, sp);
break;
default:
panic("mmu_setup4m_L2: unknown pagetable entry type");
}
}
}
void
mmu_setup4m_L3(pagtblptd, sp)
int pagtblptd;
struct segmap *sp;
{
unsigned int pagtblrover;
int i;
unsigned int te;
pagtblrover = (pagtblptd & ~SRMMU_TETYPE) << SRMMU_PPNPASHIFT;
for (i = 0; i < SRMMU_L3SIZE; i++, pagtblrover += sizeof(long)) {
te = srmmu_bypass_read(pagtblrover);
switch(te & SRMMU_TETYPE) {
case SRMMU_TEINVALID:
break;
case SRMMU_TEPTE:
sp->sg_npte++;
setpgt4m(&sp->sg_pte[i], te | PPROT_U2S_OMASK);
break;
case SRMMU_TEPTD:
panic("mmu_setup4m_L3: PTD found in L3 page table");
default:
panic("mmu_setup4m_L3: unknown pagetable entry type");
}
}
}
#endif /* defined SUN4M */
/*----------------------------------------------------------------*/
/*
* MMU management.
*/
struct mmuentry *me_alloc __P((struct mmuhd *, struct pmap *, int, int));
void me_free __P((struct pmap *, u_int));
struct mmuentry *region_alloc __P((struct mmuhd *, struct pmap *, int));
void region_free __P((struct pmap *, u_int));
/*
* Change contexts. We need the old context number as well as the new
* one. If the context is changing, we must write all user windows
* first, lest an interrupt cause them to be written to the (other)
* user whose context we set here.
*/
#define CHANGE_CONTEXTS(old, new) \
if ((old) != (new)) { \
write_user_windows(); \
setcontext(new); \
}
#if defined(SUN4) || defined(SUN4C) /* This is old sun MMU stuff */
/*
* Allocate an MMU entry (i.e., a PMEG).
* If necessary, steal one from someone else.
* Put it on the tail of the given queue
* (which is either the LRU list or the locked list).
* The locked list is not actually ordered, but this is easiest.
* Also put it on the given (new) pmap's chain,
* enter its pmeg number into that pmap's segmap,
* and store the pmeg's new virtual segment number (me->me_vseg).
*
* This routine is large and complicated, but it must be fast
* since it implements the dynamic allocation of MMU entries.
*/
struct mmuentry *
me_alloc(mh, newpm, newvreg, newvseg)
struct mmuhd *mh;
struct pmap *newpm;
int newvreg, newvseg;
{
struct mmuentry *me;
struct pmap *pm;
int i, va, pa, *pte, tpte;
int ctx;
struct regmap *rp;
struct segmap *sp;
/* try free list first */
if ((me = segm_freelist.tqh_first) != NULL) {
TAILQ_REMOVE(&segm_freelist, me, me_list);
#ifdef DEBUG
if (me->me_pmap != NULL)
panic("me_alloc: freelist entry has pmap");
if (pmapdebug & PDB_MMU_ALLOC)
printf("me_alloc: got pmeg %d\n", me->me_cookie);
#endif
TAILQ_INSERT_TAIL(mh, me, me_list);
/* onto on pmap chain; pmap is already locked, if needed */
TAILQ_INSERT_TAIL(&newpm->pm_seglist, me, me_pmchain);
#ifdef DIAGNOSTIC
pmap_stats.ps_npmeg_free--;
if (mh == &segm_locked)
pmap_stats.ps_npmeg_locked++;
else
pmap_stats.ps_npmeg_lru++;
#endif
/* into pmap segment table, with backpointers */
newpm->pm_regmap[newvreg].rg_segmap[newvseg].sg_pmeg = me->me_cookie;
me->me_pmap = newpm;
me->me_vseg = newvseg;
me->me_vreg = newvreg;
return (me);
}
/* no luck, take head of LRU list */
if ((me = segm_lru.tqh_first) == NULL)
panic("me_alloc: all pmegs gone");
pm = me->me_pmap;
if (pm == NULL)
panic("me_alloc: LRU entry has no pmap");
if (pm == pmap_kernel())
panic("me_alloc: stealing from kernel");
#ifdef DEBUG
if (pmapdebug & (PDB_MMU_ALLOC | PDB_MMU_STEAL))
printf("me_alloc: stealing pmeg 0x%x from pmap %p\n",
me->me_cookie, pm);
#endif
/*
* Remove from LRU list, and insert at end of new list
* (probably the LRU list again, but so what?).
*/
TAILQ_REMOVE(&segm_lru, me, me_list);
TAILQ_INSERT_TAIL(mh, me, me_list);
#ifdef DIAGNOSTIC
if (mh == &segm_locked) {
pmap_stats.ps_npmeg_lru--;
pmap_stats.ps_npmeg_locked++;
}
#endif
rp = &pm->pm_regmap[me->me_vreg];
if (rp->rg_segmap == NULL)
panic("me_alloc: LRU entry's pmap has no segments");
sp = &rp->rg_segmap[me->me_vseg];
pte = sp->sg_pte;
if (pte == NULL)
panic("me_alloc: LRU entry's pmap has no ptes");
/*
* The PMEG must be mapped into some context so that we can
* read its PTEs. Use its current context if it has one;
* if not, and since context 0 is reserved for the kernel,
* the simplest method is to switch to 0 and map the PMEG
* to virtual address 0---which, being a user space address,
* is by definition not in use.
*
* XXX for ncpus>1 must use per-cpu VA?
* XXX do not have to flush cache immediately
*/
ctx = getcontext4();
if (CTX_USABLE(pm,rp)) {
CHANGE_CONTEXTS(ctx, pm->pm_ctxnum);
cache_flush_segment(me->me_vreg, me->me_vseg);
va = VSTOVA(me->me_vreg,me->me_vseg);
} else {
CHANGE_CONTEXTS(ctx, 0);
if (HASSUN4_MMU3L)
setregmap(0, tregion);
setsegmap(0, me->me_cookie);
/*
* No cache flush needed: it happened earlier when
* the old context was taken.
*/
va = 0;
}
/*
* Record reference and modify bits for each page,
* and copy PTEs into kernel memory so that they can
* be reloaded later.
*/
i = NPTESG;
do {
tpte = getpte4(va);
if ((tpte & (PG_V | PG_TYPE)) == (PG_V | PG_OBMEM)) {
pa = ptoa(tpte & PG_PFNUM);
if (managed(pa))
pvhead(pa)->pv_flags |= MR4_4C(tpte);
}
*pte++ = tpte & ~(PG_U|PG_M);
va += NBPG;
} while (--i > 0);
/* update segment tables */
simple_lock(&pm->pm_lock); /* what if other cpu takes mmuentry ?? */
if (CTX_USABLE(pm,rp))
setsegmap(VSTOVA(me->me_vreg,me->me_vseg), seginval);
sp->sg_pmeg = seginval;
/* off old pmap chain */
TAILQ_REMOVE(&pm->pm_seglist, me, me_pmchain);
simple_unlock(&pm->pm_lock);
setcontext4(ctx); /* done with old context */
/* onto new pmap chain; new pmap is already locked, if needed */
TAILQ_INSERT_TAIL(&newpm->pm_seglist, me, me_pmchain);
/* into new segment table, with backpointers */
newpm->pm_regmap[newvreg].rg_segmap[newvseg].sg_pmeg = me->me_cookie;
me->me_pmap = newpm;
me->me_vseg = newvseg;
me->me_vreg = newvreg;
return (me);
}
/*
* Free an MMU entry.
*
* Assumes the corresponding pmap is already locked.
* Does NOT flush cache, but does record ref and mod bits.
* The rest of each PTE is discarded.
* CALLER MUST SET CONTEXT to pm->pm_ctxnum (if pmap has
* a context) or to 0 (if not). Caller must also update
* pm->pm_segmap and (possibly) the hardware.
*/
void
me_free(pm, pmeg)
struct pmap *pm;
u_int pmeg;
{
struct mmuentry *me = &mmusegments[pmeg];
int i, va, pa, tpte;
int vr;
struct regmap *rp;
vr = me->me_vreg;
#ifdef DEBUG
if (pmapdebug & PDB_MMU_ALLOC)
printf("me_free: freeing pmeg %d from pmap %p\n",
me->me_cookie, pm);
if (me->me_cookie != pmeg)
panic("me_free: wrong mmuentry");
if (pm != me->me_pmap)
panic("me_free: pm != me_pmap");
#endif
rp = &pm->pm_regmap[vr];
/* just like me_alloc, but no cache flush, and context already set */
if (CTX_USABLE(pm,rp)) {
va = VSTOVA(vr,me->me_vseg);
} else {
#ifdef DEBUG
if (getcontext4() != 0) panic("me_free: ctx != 0");
#endif
if (HASSUN4_MMU3L)
setregmap(0, tregion);
setsegmap(0, me->me_cookie);
va = 0;
}
i = NPTESG;
do {
tpte = getpte4(va);
if ((tpte & (PG_V | PG_TYPE)) == (PG_V | PG_OBMEM)) {
pa = ptoa(tpte & PG_PFNUM);
if (managed(pa))
pvhead(pa)->pv_flags |= MR4_4C(tpte);
}
va += NBPG;
} while (--i > 0);
/* take mmu entry off pmap chain */
TAILQ_REMOVE(&pm->pm_seglist, me, me_pmchain);
/* ... and remove from segment map */
if (rp->rg_segmap == NULL)
panic("me_free: no segments in pmap");
rp->rg_segmap[me->me_vseg].sg_pmeg = seginval;
/* off LRU or lock chain */
if (pm == pmap_kernel()) {
TAILQ_REMOVE(&segm_locked, me, me_list);
#ifdef DIAGNOSTIC
pmap_stats.ps_npmeg_locked--;
#endif
} else {
TAILQ_REMOVE(&segm_lru, me, me_list);
#ifdef DIAGNOSTIC
pmap_stats.ps_npmeg_lru--;
#endif
}
/* no associated pmap; on free list */
me->me_pmap = NULL;
TAILQ_INSERT_TAIL(&segm_freelist, me, me_list);
#ifdef DIAGNOSTIC
pmap_stats.ps_npmeg_free++;
#endif
}
#if defined(SUN4_MMU3L)
/* XXX - Merge with segm_alloc/segm_free ? */
struct mmuentry *
region_alloc(mh, newpm, newvr)
struct mmuhd *mh;
struct pmap *newpm;
int newvr;
{
struct mmuentry *me;
struct pmap *pm;
int ctx;
struct regmap *rp;
/* try free list first */
if ((me = region_freelist.tqh_first) != NULL) {
TAILQ_REMOVE(&region_freelist, me, me_list);
#ifdef DEBUG
if (me->me_pmap != NULL)
panic("region_alloc: freelist entry has pmap");
if (pmapdebug & PDB_MMUREG_ALLOC)
printf("region_alloc: got smeg 0x%x\n", me->me_cookie);
#endif
TAILQ_INSERT_TAIL(mh, me, me_list);
/* onto on pmap chain; pmap is already locked, if needed */
TAILQ_INSERT_TAIL(&newpm->pm_reglist, me, me_pmchain);
/* into pmap segment table, with backpointers */
newpm->pm_regmap[newvr].rg_smeg = me->me_cookie;
me->me_pmap = newpm;
me->me_vreg = newvr;
return (me);
}
/* no luck, take head of LRU list */
if ((me = region_lru.tqh_first) == NULL)
panic("region_alloc: all smegs gone");
pm = me->me_pmap;
if (pm == NULL)
panic("region_alloc: LRU entry has no pmap");
if (pm == pmap_kernel())
panic("region_alloc: stealing from kernel");
#ifdef DEBUG
if (pmapdebug & (PDB_MMUREG_ALLOC | PDB_MMUREG_STEAL))
printf("region_alloc: stealing smeg 0x%x from pmap %p\n",
me->me_cookie, pm);
#endif
/*
* Remove from LRU list, and insert at end of new list
* (probably the LRU list again, but so what?).
*/
TAILQ_REMOVE(&region_lru, me, me_list);
TAILQ_INSERT_TAIL(mh, me, me_list);
rp = &pm->pm_regmap[me->me_vreg];
ctx = getcontext4();
if (pm->pm_ctx) {
CHANGE_CONTEXTS(ctx, pm->pm_ctxnum);
cache_flush_region(me->me_vreg);
}
/* update region tables */
simple_lock(&pm->pm_lock); /* what if other cpu takes mmuentry ?? */
if (pm->pm_ctx)
setregmap(VRTOVA(me->me_vreg), reginval);
rp->rg_smeg = reginval;
/* off old pmap chain */
TAILQ_REMOVE(&pm->pm_reglist, me, me_pmchain);
simple_unlock(&pm->pm_lock);
setcontext4(ctx); /* done with old context */
/* onto new pmap chain; new pmap is already locked, if needed */
TAILQ_INSERT_TAIL(&newpm->pm_reglist, me, me_pmchain);
/* into new segment table, with backpointers */
newpm->pm_regmap[newvr].rg_smeg = me->me_cookie;
me->me_pmap = newpm;
me->me_vreg = newvr;
return (me);
}
/*
* Free an MMU entry.
*
* Assumes the corresponding pmap is already locked.
* Does NOT flush cache. ???
* CALLER MUST SET CONTEXT to pm->pm_ctxnum (if pmap has
* a context) or to 0 (if not). Caller must also update
* pm->pm_regmap and (possibly) the hardware.
*/
void
region_free(pm, smeg)
struct pmap *pm;
u_int smeg;
{
struct mmuentry *me = &mmuregions[smeg];
#ifdef DEBUG
if (pmapdebug & PDB_MMUREG_ALLOC)
printf("region_free: freeing smeg 0x%x from pmap %p\n",
me->me_cookie, pm);
if (me->me_cookie != smeg)
panic("region_free: wrong mmuentry");
if (pm != me->me_pmap)
panic("region_free: pm != me_pmap");
#endif
if (pm->pm_ctx)
cache_flush_region(me->me_vreg);
/* take mmu entry off pmap chain */
TAILQ_REMOVE(&pm->pm_reglist, me, me_pmchain);
/* ... and remove from segment map */
pm->pm_regmap[me->me_vreg].rg_smeg = reginval;
/* off LRU or lock chain */
if (pm == pmap_kernel()) {
TAILQ_REMOVE(&region_locked, me, me_list);
} else {
TAILQ_REMOVE(&region_lru, me, me_list);
}
/* no associated pmap; on free list */
me->me_pmap = NULL;
TAILQ_INSERT_TAIL(&region_freelist, me, me_list);
}
#endif
/*
* `Page in' (load or inspect) an MMU entry; called on page faults.
* Returns 1 if we reloaded the segment, -1 if the segment was
* already loaded and the page was marked valid (in which case the
* fault must be a bus error or something), or 0 (segment loaded but
* PTE not valid, or segment not loaded at all).
*/
int
mmu_pagein(pm, va, prot)
struct pmap *pm;
vaddr_t va;
int prot;
{
int *pte;
int vr, vs, pmeg, i, s, bits;
struct regmap *rp;
struct segmap *sp;
if (va >= (unsigned long)KERNBASE)
return (0);
if (prot != VM_PROT_NONE)
bits = PG_V | ((prot & VM_PROT_WRITE) ? PG_W : 0);
else
bits = 0;
vr = VA_VREG(va);
vs = VA_VSEG(va);
rp = &pm->pm_regmap[vr];
#ifdef DEBUG
if (pm == pmap_kernel())
printf("mmu_pagein: kernel wants map at va 0x%lx, vr %d, vs %d\n",
(u_long)va, vr, vs);
#endif
/* return 0 if we have no PMEGs to load */
if (rp->rg_segmap == NULL)
return (0);
#if defined(SUN4_MMU3L)
if (HASSUN4_MMU3L && rp->rg_smeg == reginval) {
smeg_t smeg;
unsigned int tva = VA_ROUNDDOWNTOREG(va);
struct segmap *sp = rp->rg_segmap;
s = splvm(); /* paranoid */
smeg = region_alloc(&region_lru, pm, vr)->me_cookie;
setregmap(tva, smeg);
i = NSEGRG;
do {
setsegmap(tva, sp++->sg_pmeg);
tva += NBPSG;
} while (--i > 0);
splx(s);
}
#endif
sp = &rp->rg_segmap[vs];
/* return 0 if we have no PTEs to load */
if ((pte = sp->sg_pte) == NULL)
return (0);
/* return -1 if the fault is `hard', 0 if not */
if (sp->sg_pmeg != seginval)
return (bits && (getpte4(va) & bits) == bits ? -1 : 0);
/* reload segment: write PTEs into a new LRU entry */
va = VA_ROUNDDOWNTOSEG(va);
s = splvm(); /* paranoid */
pmeg = me_alloc(&segm_lru, pm, vr, vs)->me_cookie;
setsegmap(va, pmeg);
i = NPTESG;
do {
setpte4(va, *pte++);
va += NBPG;
} while (--i > 0);
splx(s);
return (1);
}
#endif /* defined SUN4 or SUN4C */
/*
* Allocate a context. If necessary, steal one from someone else.
* Changes hardware context number and loads segment map.
*
* This routine is only ever called from locore.s just after it has
* saved away the previous process, so there are no active user windows.
*/
void
ctx_alloc(pm)
struct pmap *pm;
{
union ctxinfo *c;
int s, cnum, i, doflush;
struct regmap *rp;
int gap_start, gap_end;
unsigned long va;
/*XXX-GCC!*/gap_start=gap_end=0;
#ifdef DEBUG
if (pm->pm_ctx)
panic("ctx_alloc pm_ctx");
if (pmapdebug & PDB_CTX_ALLOC)
printf("ctx_alloc(%p)\n", pm);
#endif
if (CPU_ISSUN4OR4C) {
gap_start = pm->pm_gap_start;
gap_end = pm->pm_gap_end;
}
s = splvm();
if ((c = ctx_freelist) != NULL) {
ctx_freelist = c->c_nextfree;
cnum = c - cpuinfo.ctxinfo;
doflush = 0;
} else {
if ((ctx_kick += ctx_kickdir) >= ncontext) {
ctx_kick = ncontext - 1;
ctx_kickdir = -1;
} else if (ctx_kick < 1) {
ctx_kick = 1;
ctx_kickdir = 1;
}
c = &cpuinfo.ctxinfo[cnum = ctx_kick];
#ifdef DEBUG
if (c->c_pmap == NULL)
panic("ctx_alloc cu_pmap");
if (pmapdebug & (PDB_CTX_ALLOC | PDB_CTX_STEAL))
printf("ctx_alloc: steal context %d from %p\n",
cnum, c->c_pmap);
#endif
c->c_pmap->pm_ctx = NULL;
doflush = (CACHEINFO.c_vactype != VAC_NONE);
if (CPU_ISSUN4OR4C) {
if (gap_start < c->c_pmap->pm_gap_start)
gap_start = c->c_pmap->pm_gap_start;
if (gap_end > c->c_pmap->pm_gap_end)
gap_end = c->c_pmap->pm_gap_end;
}
}
c->c_pmap = pm;
pm->pm_ctx = c;
pm->pm_ctxnum = cnum;
if (CPU_ISSUN4OR4C) {
/*
* Write pmap's region (3-level MMU) or segment table into
* the MMU.
*
* Only write those entries that actually map something in
* this context by maintaining a pair of region numbers in
* between which the pmap has no valid mappings.
*
* If a context was just allocated from the free list, trust
* that all its pmeg numbers are `seginval'. We make sure this
* is the case initially in pmap_bootstrap(). Otherwise, the
* context was freed by calling ctx_free() in pmap_release(),
* which in turn is supposedly called only when all mappings
* have been removed.
*
* On the other hand, if the context had to be stolen from
* another pmap, we possibly shrink the gap to be the
* disjuction of the new and the previous map.
*/
setcontext4(cnum);
splx(s);
if (doflush)
cache_flush_context();
rp = pm->pm_regmap;
for (va = 0, i = NUREG; --i >= 0; ) {
if (VA_VREG(va) >= gap_start) {
va = VRTOVA(gap_end);
i -= gap_end - gap_start;
rp += gap_end - gap_start;
if (i < 0)
break;
/* mustn't re-enter this branch */
gap_start = NUREG;
}
if (HASSUN4_MMU3L) {
setregmap(va, rp++->rg_smeg);
va += NBPRG;
} else {
int j;
struct segmap *sp = rp->rg_segmap;
for (j = NSEGRG; --j >= 0; va += NBPSG)
setsegmap(va,
sp?sp++->sg_pmeg:seginval);
rp++;
}
}
} else if (CPU_ISSUN4M) {
#if defined(SUN4M)
/*
* Reload page and context tables to activate the page tables
* for this context.
*
* The gap stuff isn't really needed in the Sun4m architecture,
* since we don't have to worry about excessive mappings (all
* mappings exist since the page tables must be complete for
* the mmu to be happy).
*
* If a context was just allocated from the free list, trust
* that all of its mmu-edible page tables are zeroed out
* (except for those associated with the kernel). We make
* sure this is the case initially in pmap_bootstrap() and
* pmap_init() (?).
* Otherwise, the context was freed by calling ctx_free() in
* pmap_release(), which in turn is supposedly called only
* when all mappings have been removed.
*
* XXX: Do we have to flush cache after reloading ctx tbl?
*/
/* Do any cache flush needed on context switch */
(*cpuinfo.pure_vcache_flush)();
/*
* We need to flush the cache only when stealing a context
* from another pmap. In that case it's Ok to switch the
* context and leave it set, since it the context table
* will have a valid region table entry for this context
* number.
*
* Otherwise, we switch to the new context after loading
* the context table entry with the new pmap's region.
*/
if (doflush) {
setcontext4m(cnum);
cache_flush_context();
}
/*
* The context allocated to a process is the same on all CPUs.
* Here we install the per-CPU region table in each CPU's
* context table slot.
*
* Note on multi-threaded processes: a context must remain
* valid as long as any thread is still running on a cpu.
*/
#if defined(MULTIPROCESSOR)
for (i = 0; i < ncpu; i++)
#else
i = 0;
#endif
{
struct cpu_info *cpi = cpus[i];
#if defined(MULTIPROCESSOR)
if (cpi == NULL)
continue;
#endif
setpgt4m(&cpi->ctx_tbl[cnum],
(pm->pm_reg_ptps_pa[i] >> SRMMU_PPNPASHIFT) |
SRMMU_TEPTD);
}
/* Set context if not yet done above to flush the cache */
if (!doflush)
setcontext4m(cnum);
tlb_flush_context(); /* remove any remnant garbage from tlb */
#endif
splx(s);
}
}
/*
* Give away a context. Flushes cache and sets current context to 0.
*/
void
ctx_free(pm)
struct pmap *pm;
{
union ctxinfo *c;
int newc, oldc;
if ((c = pm->pm_ctx) == NULL)
panic("ctx_free");
pm->pm_ctx = NULL;
oldc = getcontext();
if (CACHEINFO.c_vactype != VAC_NONE) {
/* Do any cache flush needed on context switch */
(*cpuinfo.pure_vcache_flush)();
newc = pm->pm_ctxnum;
CHANGE_CONTEXTS(oldc, newc);
cache_flush_context();
#if defined(SUN4M)
if (CPU_ISSUN4M)
tlb_flush_context();
#endif
} else {
#if defined(SUN4M)
if (CPU_ISSUN4M) {
/* Do any cache flush needed on context switch */
(*cpuinfo.pure_vcache_flush)();
newc = pm->pm_ctxnum;
CHANGE_CONTEXTS(oldc, newc);
tlb_flush_context();
}
#endif
}
setcontext(oldc);
c->c_nextfree = ctx_freelist;
ctx_freelist = c;
}
/*----------------------------------------------------------------*/
/*
* pvlist functions.
*/
/*
* Walk the given pv list, and for each PTE, set or clear some bits
* (e.g., PG_W or PG_NC).
*
* As a special case, this never clears PG_W on `pager' pages.
* These, being kernel addresses, are always in hardware and have
* a context.
*
* This routine flushes the cache for any page whose PTE changes,
* as long as the process has a context; this is overly conservative.
* It also copies ref and mod bits to the pvlist, on the theory that
* this might save work later. (XXX should test this theory)
*
* In addition, if the cacheable bit (PG_NC) is updated in the PTE
* the corresponding PV_NC flag is also updated in each pv entry. This
* is done so kvm_uncache() can use this routine and have the uncached
* status stick.
*/
#if defined(SUN4) || defined(SUN4C)
void
pv_changepte4_4c(pv0, bis, bic)
struct pvlist *pv0;
int bis, bic;
{
int *pte;
struct pvlist *pv;
struct pmap *pm;
int va, vr, vs;
int ctx, s;
struct regmap *rp;
struct segmap *sp;
write_user_windows(); /* paranoid? */
s = splvm(); /* paranoid? */
if (pv0->pv_pmap == NULL) {
splx(s);
return;
}
ctx = getcontext4();
for (pv = pv0; pv != NULL; pv = pv->pv_next) {
pm = pv->pv_pmap;
#ifdef DIAGNOSTIC
if(pm == NULL)
panic("pv_changepte: pm == NULL");
#endif
va = pv->pv_va;
vr = VA_VREG(va);
vs = VA_VSEG(va);
rp = &pm->pm_regmap[vr];
if (rp->rg_segmap == NULL)
panic("pv_changepte: no segments");
sp = &rp->rg_segmap[vs];
pte = sp->sg_pte;
if (sp->sg_pmeg == seginval) {
/* not in hardware: just fix software copy */
if (pte == NULL)
panic("pv_changepte: pte == NULL");
pte += VA_VPG(va);
*pte = (*pte | bis) & ~bic;
} else {
int tpte;
/* in hardware: fix hardware copy */
if (CTX_USABLE(pm,rp)) {
/*
* Bizarreness: we never clear PG_W on
* pager pages.
*/
if (bic == PG_W &&
va >= uvm.pager_sva && va < uvm.pager_eva)
continue;
setcontext4(pm->pm_ctxnum);
/* XXX should flush only when necessary */
tpte = getpte4(va);
/*
* XXX: always flush cache; conservative, but
* needed to invalidate cache tag protection
* bits and when disabling caching.
*/
cache_flush_page(va);
} else {
/* XXX per-cpu va? */
setcontext4(0);
if (HASSUN4_MMU3L)
setregmap(0, tregion);
setsegmap(0, sp->sg_pmeg);
va = VA_VPG(va) << PGSHIFT;
tpte = getpte4(va);
}
if (tpte & PG_V)
pv0->pv_flags |= MR4_4C(tpte);
tpte = (tpte | bis) & ~bic;
setpte4(va, tpte);
if (pte != NULL) /* update software copy */
pte[VA_VPG(va)] = tpte;
/* Update PV_NC flag if required */
if (bis & PG_NC)
pv->pv_flags |= PV_NC;
if (bic & PG_NC)
pv->pv_flags &= ~PV_NC;
}
}
setcontext4(ctx);
splx(s);
}
/*
* Sync ref and mod bits in pvlist (turns off same in hardware PTEs).
* Returns the new flags.
*
* This is just like pv_changepte, but we never add or remove bits,
* hence never need to adjust software copies.
*/
int
pv_syncflags4_4c(pv0)
struct pvlist *pv0;
{
struct pvlist *pv;
struct pmap *pm;
int tpte, va, vr, vs, pmeg, flags;
int ctx, s;
struct regmap *rp;
struct segmap *sp;
write_user_windows(); /* paranoid? */
s = splvm(); /* paranoid? */
if (pv0->pv_pmap == NULL) { /* paranoid */
splx(s);
return (0);
}
ctx = getcontext4();
flags = pv0->pv_flags;
for (pv = pv0; pv != NULL; pv = pv->pv_next) {
pm = pv->pv_pmap;
va = pv->pv_va;
vr = VA_VREG(va);
vs = VA_VSEG(va);
rp = &pm->pm_regmap[vr];
if (rp->rg_segmap == NULL)
panic("pv_syncflags: no segments");
sp = &rp->rg_segmap[vs];
if ((pmeg = sp->sg_pmeg) == seginval)
continue;
if (CTX_USABLE(pm,rp)) {
setcontext4(pm->pm_ctxnum);
/* XXX should flush only when necessary */
tpte = getpte4(va);
if (tpte & PG_M)
cache_flush_page(va);
} else {
/* XXX per-cpu va? */
setcontext4(0);
if (HASSUN4_MMU3L)
setregmap(0, tregion);
setsegmap(0, pmeg);
va = VA_VPG(va) << PGSHIFT;
tpte = getpte4(va);
}
if (tpte & (PG_M|PG_U) && tpte & PG_V) {
flags |= MR4_4C(tpte);
tpte &= ~(PG_M|PG_U);
setpte4(va, tpte);
}
}
pv0->pv_flags = flags;
setcontext4(ctx);
splx(s);
return (flags);
}
/*
* pv_unlink is a helper function for pmap_remove.
* It takes a pointer to the pv_table head for some physical address
* and removes the appropriate (pmap, va) entry.
*
* Once the entry is removed, if the pv_table head has the cache
* inhibit bit set, see if we can turn that off; if so, walk the
* pvlist and turn off PG_NC in each PTE. (The pvlist is by
* definition nonempty, since it must have at least two elements
* in it to have PV_NC set, and we only remove one here.)
*/
/*static*/ void
pv_unlink4_4c(pv, pm, va)
struct pvlist *pv;
struct pmap *pm;
vaddr_t va;
{
struct pvlist *npv;
#ifdef DIAGNOSTIC
if (pv->pv_pmap == NULL)
panic("pv_unlink0");
#endif
/*
* First entry is special (sigh).
*/
npv = pv->pv_next;
if (pv->pv_pmap == pm && pv->pv_va == va) {
pmap_stats.ps_unlink_pvfirst++;
if (npv != NULL) {
/*
* Shift next entry into the head.
* Make sure to retain the REF, MOD and ANC flags.
*/
pv->pv_next = npv->pv_next;
pv->pv_pmap = npv->pv_pmap;
pv->pv_va = npv->pv_va;
pv->pv_flags &= ~PV_NC;
pv->pv_flags |= npv->pv_flags & PV_NC;
pool_put(&pv_pool, npv);
} else {
/*
* No mappings left; we still need to maintain
* the REF and MOD flags. since pmap_is_modified()
* can still be called for this page.
*/
pv->pv_pmap = NULL;
pv->pv_flags &= ~(PV_NC|PV_ANC);
return;
}
} else {
struct pvlist *prev;
for (prev = pv;; prev = npv, npv = npv->pv_next) {
pmap_stats.ps_unlink_pvsearch++;
if (npv == NULL)
panic("pv_unlink");
if (npv->pv_pmap == pm && npv->pv_va == va)
break;
}
prev->pv_next = npv->pv_next;
pool_put(&pv_pool, npv);
}
if (pv->pv_flags & PV_ANC && (pv->pv_flags & PV_NC) == 0) {
/*
* Not cached: check to see if we can fix that now.
*/
va = pv->pv_va;
for (npv = pv->pv_next; npv != NULL; npv = npv->pv_next)
if (BADALIAS(va, npv->pv_va) || (npv->pv_flags & PV_NC))
return;
pv->pv_flags &= ~PV_ANC;
pv_changepte4_4c(pv, 0, PG_NC);
}
}
/*
* pv_link is the inverse of pv_unlink, and is used in pmap_enter.
* It returns PG_NC if the (new) pvlist says that the address cannot
* be cached.
*/
/*static*/ int
pv_link4_4c(pv, pm, va, nc)
struct pvlist *pv;
struct pmap *pm;
vaddr_t va;
int nc;
{
struct pvlist *npv;
int ret;
ret = nc ? PG_NC : 0;
if (pv->pv_pmap == NULL) {
/* no pvlist entries yet */
pmap_stats.ps_enter_firstpv++;
pv->pv_next = NULL;
pv->pv_pmap = pm;
pv->pv_va = va;
pv->pv_flags |= nc ? PV_NC : 0;
return (ret);
}
/*
* Before entering the new mapping, see if
* it will cause old mappings to become aliased
* and thus need to be `discached'.
*/
pmap_stats.ps_enter_secondpv++;
if (pv->pv_flags & (PV_NC|PV_ANC)) {
/* already uncached, just stay that way */
ret = PG_NC;
} else {
for (npv = pv; npv != NULL; npv = npv->pv_next) {
if (npv->pv_flags & PV_NC) {
ret = PG_NC;
break;
}
if (BADALIAS(va, npv->pv_va)) {
#ifdef DEBUG
if (pmapdebug & PDB_CACHESTUFF)
printf(
"pv_link: badalias: pid %d, 0x%lx<=>0x%lx, pa 0x%lx\n",
curproc ? curproc->p_pid : -1,
va, npv->pv_va,
(pv-pv_table)*PAGE_SIZE);
#endif
/* Mark list head `uncached due to aliases' */
pv->pv_flags |= PV_ANC;
pv_changepte4_4c(pv, ret = PG_NC, 0);
break;
}
}
}
npv = pool_get(&pv_pool, PR_NOWAIT);
if (npv == NULL)
panic("pv_link: pv_pool exhausted");
npv->pv_next = pv->pv_next;
npv->pv_pmap = pm;
npv->pv_va = va;
npv->pv_flags = nc ? PV_NC : 0;
pv->pv_next = npv;
return (ret);
}
#endif /* sun4, sun4c code */
#if defined(SUN4M) /* Sun4M versions of above */
/*
* Walk the given pv list, and for each PTE, set or clear some bits
* (e.g., PG_W or PG_NC).
*
* As a special case, this never clears PG_W on `pager' pages.
* These, being kernel addresses, are always in hardware and have
* a context.
*
* This routine flushes the cache for any page whose PTE changes,
* as long as the process has a context; this is overly conservative.
* It also copies ref and mod bits to the pvlist, on the theory that
* this might save work later. (XXX should test this theory)
*
* In addition, if the cacheable bit (SRMMU_PG_C) is updated in the PTE
* the corresponding PV_C4M flag is also updated in each pv entry. This
* is done so kvm_uncache() can use this routine and have the uncached
* status stick.
*/
void
pv_changepte4m(pv0, bis, bic)
struct pvlist *pv0;
int bis, bic;
{
struct pvlist *pv;
struct pmap *pm;
int va, vr;
int ctx, s;
struct regmap *rp;
struct segmap *sp;
write_user_windows(); /* paranoid? */
s = splvm(); /* paranoid? */
if (pv0->pv_pmap == NULL) {
splx(s);
return;
}
ctx = getcontext4m();
for (pv = pv0; pv != NULL; pv = pv->pv_next) {
int tpte;
pm = pv->pv_pmap;
#ifdef DIAGNOSTIC
if (pm == NULL)
panic("pv_changepte: pm == NULL");
#endif
va = pv->pv_va;
vr = VA_VREG(va);
rp = &pm->pm_regmap[vr];
if (rp->rg_segmap == NULL)
panic("pv_changepte: no segments");
sp = &rp->rg_segmap[VA_VSEG(va)];
if (pm->pm_ctx) {
/*
* Bizarreness: we never clear PG_W on
* pager pages.
*/
if ((bic & PPROT_WRITE) &&
va >= uvm.pager_sva && va < uvm.pager_eva)
continue;
setcontext4m(pm->pm_ctxnum);
/*
* XXX: always flush cache; conservative, but
* needed to invalidate cache tag protection
* bits and when disabling caching.
*/
cache_flush_page(va);
/* Flush TLB so memory copy is up-to-date */
tlb_flush_page(va);
}
tpte = sp->sg_pte[VA_SUN4M_VPG(va)];
if ((tpte & SRMMU_TETYPE) != SRMMU_TEPTE) {
printf("pv_changepte: invalid PTE for 0x%x\n", va);
continue;
}
pv0->pv_flags |= MR4M(tpte);
tpte = (tpte | bis) & ~bic;
setpgt4m(&sp->sg_pte[VA_SUN4M_VPG(va)], tpte);
/* Update PV_C4M flag if required */
if (bis & SRMMU_PG_C)
pv->pv_flags |= PV_C4M;
if (bic & SRMMU_PG_C)
pv->pv_flags &= ~PV_C4M;
}
setcontext4m(ctx);
splx(s);
}
/*
* Sync ref and mod bits in pvlist. If page has been ref'd or modified,
* update ref/mod bits in pvlist, and clear the hardware bits.
*
* Return the new flags.
*/
int
pv_syncflags4m(pv0)
struct pvlist *pv0;
{
struct pvlist *pv;
struct pmap *pm;
int tpte, va, vr, vs, flags;
int ctx, s;
struct regmap *rp;
struct segmap *sp;
write_user_windows(); /* paranoid? */
s = splvm(); /* paranoid? */
if (pv0->pv_pmap == NULL) { /* paranoid */
splx(s);
return (0);
}
ctx = getcontext4m();
flags = pv0->pv_flags;
for (pv = pv0; pv != NULL; pv = pv->pv_next) {
pm = pv->pv_pmap;
va = pv->pv_va;
vr = VA_VREG(va);
vs = VA_VSEG(va);
rp = &pm->pm_regmap[vr];
if (rp->rg_segmap == NULL)
panic("pv_syncflags: no segments");
sp = &rp->rg_segmap[vs];
if (sp->sg_pte == NULL) /* invalid */
continue;
/*
* We need the PTE from memory as the TLB version will
* always have the SRMMU_PG_R bit on.
*/
if (pm->pm_ctx) {
setcontext4m(pm->pm_ctxnum);
tlb_flush_page(va);
}
tpte = sp->sg_pte[VA_SUN4M_VPG(va)];
if ((tpte & SRMMU_TETYPE) == SRMMU_TEPTE && /* if valid pte */
(tpte & (SRMMU_PG_M|SRMMU_PG_R))) { /* and mod/refd */
flags |= MR4M(tpte);
if (pm->pm_ctx && (tpte & SRMMU_PG_M)) {
/* Only do this for write-back caches? */
cache_flush_page(va);
/*
* VIPT caches might use the TLB when
* flushing, so we flush the TLB again.
*/
tlb_flush_page(va);
}
/* Clear mod/ref bits from PTE and write it back */
tpte &= ~(SRMMU_PG_M | SRMMU_PG_R);
setpgt4m(&sp->sg_pte[VA_SUN4M_VPG(va)], tpte);
}
}
pv0->pv_flags = flags;
setcontext4m(ctx);
splx(s);
return (flags);
}
void
pv_unlink4m(pv, pm, va)
struct pvlist *pv;
struct pmap *pm;
vaddr_t va;
{
struct pvlist *npv;
#ifdef DIAGNOSTIC
if (pv->pv_pmap == NULL)
panic("pv_unlink0");
#endif
/*
* First entry is special (sigh).
*/
npv = pv->pv_next;
if (pv->pv_pmap == pm && pv->pv_va == va) {
pmap_stats.ps_unlink_pvfirst++;
if (npv != NULL) {
/*
* Shift next entry into the head.
* Make sure to retain the REF, MOD and ANC flags
* on the list head.
*/
pv->pv_next = npv->pv_next;
pv->pv_pmap = npv->pv_pmap;
pv->pv_va = npv->pv_va;
pv->pv_flags &= ~PV_C4M;
pv->pv_flags |= (npv->pv_flags & PV_C4M);
pool_put(&pv_pool, npv);
} else {
/*
* No mappings left; we need to maintain
* the REF and MOD flags, since pmap_is_modified()
* can still be called for this page.
*/
pv->pv_pmap = NULL;
pv->pv_flags &= ~(PV_C4M|PV_ANC);
return;
}
} else {
struct pvlist *prev;
for (prev = pv;; prev = npv, npv = npv->pv_next) {
pmap_stats.ps_unlink_pvsearch++;
if (npv == NULL)
panic("pv_unlink");
if (npv->pv_pmap == pm && npv->pv_va == va)
break;
}
prev->pv_next = npv->pv_next;
pool_put(&pv_pool, npv);
}
if ((pv->pv_flags & (PV_C4M|PV_ANC)) == (PV_C4M|PV_ANC)) {
/*
* Not cached: check to see if we can fix that now.
*/
va = pv->pv_va;
for (npv = pv->pv_next; npv != NULL; npv = npv->pv_next)
if (BADALIAS(va, npv->pv_va) ||
(npv->pv_flags & PV_C4M) == 0)
return;
pv->pv_flags &= ~PV_ANC;
pv_changepte4m(pv, SRMMU_PG_C, 0);
}
}
/*
* pv_link is the inverse of pv_unlink, and is used in pmap_enter.
* It returns SRMMU_PG_C if the (new) pvlist says that the address cannot
* be cached (i.e. its results must be (& ~)'d in.
*/
/*static*/ int
pv_link4m(pv, pm, va, nc)
struct pvlist *pv;
struct pmap *pm;
vaddr_t va;
int nc;
{
struct pvlist *npv;
int ret;
ret = nc ? SRMMU_PG_C : 0;
if (pv->pv_pmap == NULL) {
/* no pvlist entries yet */
pmap_stats.ps_enter_firstpv++;
pv->pv_next = NULL;
pv->pv_pmap = pm;
pv->pv_va = va;
pv->pv_flags |= nc ? 0 : PV_C4M;
return (ret);
}
/*
* Before entering the new mapping, see if
* it will cause old mappings to become aliased
* and thus need to be `discached'.
*/
pmap_stats.ps_enter_secondpv++;
if ((pv->pv_flags & PV_ANC) != 0 || (pv->pv_flags & PV_C4M) == 0) {
/* already uncached, just stay that way */
ret = SRMMU_PG_C;
} else {
for (npv = pv; npv != NULL; npv = npv->pv_next) {
if ((npv->pv_flags & PV_C4M) == 0) {
ret = SRMMU_PG_C;
break;
}
if (BADALIAS(va, npv->pv_va)) {
#ifdef DEBUG
if (pmapdebug & PDB_CACHESTUFF)
printf(
"pv_link: badalias: pid %d, 0x%lx<=>0x%lx, pa 0x%lx\n",
curproc ? curproc->p_pid : -1,
va, npv->pv_va,
(pv-pv_table)*PAGE_SIZE);
#endif
/* Mark list head `uncached due to aliases' */
pv->pv_flags |= PV_ANC;
pv_changepte4m(pv, 0, ret = SRMMU_PG_C);
/* cache_flush_page(va); XXX: needed? */
break;
}
}
}
npv = pool_get(&pv_pool, PR_NOWAIT);
if (npv == NULL)
panic("pv_link: pv_pool exhausted");
npv->pv_next = pv->pv_next;
npv->pv_pmap = pm;
npv->pv_va = va;
npv->pv_flags = nc ? 0 : PV_C4M;
pv->pv_next = npv;
return (ret);
}
#endif
/*
* Walk the given list and flush the cache for each (MI) page that is
* potentially in the cache. Called only if vactype != VAC_NONE.
*/
void
pv_flushcache(pv)
struct pvlist *pv;
{
struct pmap *pm;
int s, ctx;
write_user_windows(); /* paranoia? */
s = splvm(); /* XXX extreme paranoia */
if ((pm = pv->pv_pmap) != NULL) {
ctx = getcontext();
for (;;) {
if (pm->pm_ctx) {
setcontext(pm->pm_ctxnum);
cache_flush_page(pv->pv_va);
#if defined(SUN4M)
if (CPU_ISSUN4M)
tlb_flush_page(pv->pv_va);
#endif
}
pv = pv->pv_next;
if (pv == NULL)
break;
pm = pv->pv_pmap;
}
setcontext(ctx);
}
splx(s);
}
psize_t
pv_table_map(base)
paddr_t base;
{
int nmem;
struct memarr *mp;
int mapit;
vsize_t s;
vaddr_t sva, va, eva;
paddr_t pa;
static paddr_t pv_physbase;
/*
* Map pv_table[] as a `sparse' array. Virtual memory for pv_table
* will cover the entire range of physical memory in the machine,
* i.e. the array is used as pv_table[0..avail_end]. However,
* depending on the configuration and wiring of the machine's
* memory banks, there may be large sections in that index range
* which will not be used. Therefore, we calculate the ranges of
* pv_table[]'s virtual address extent that will get used and
* proceed to only map those extents to actual physical memory.
*
* pv_table_map() is called twice: the first time `base' is the start
* of physical memory that needs to be mapped by pv_table[].
* `base' is also the location from which physical memory is taken
* to map pv_table[] itself. pv_table_map() will return the amount
* of physical memory needed.
*
* The second time pv_table_map() is called, `base' will be zero
* and the phyical memory allocated in the first round will be
* used to actually map pv_table[].
*/
if (base != 0) {
/* Mark start of physical pages for pv_table[] */
pv_physbase = base;
mapit = 0;
} else {
pa = pv_physbase;
mapit = 1;
}
s = 0;
sva = eva = 0;
for (mp = pmemarr, nmem = npmemarr; --nmem >= 0; mp++) {
int len;
paddr_t addr;
len = mp->len;
if ((addr = mp->addr) < pv_physbase) {
/*
* pv_table[] covers everything above `pv_physbase'.
*/
addr = pv_physbase;
len -= pv_physbase;
}
/* Calculate stretch of pv_table[] that needs to be mapped */
len = sizeof(struct pvlist) * btoc(len);
va = (vaddr_t)&pv_table[btoc(addr)];
sva = trunc_page(va);
if (sva < eva) {
/* This chunk overlaps the previous in pv_table[] */
sva += NBPG;
if (sva < eva)
panic("pv_table_map: sva(0x%lx)<eva(0x%lx)",
sva, eva);
}
eva = roundup(va + len, NBPG);
/* Add this range to the total */
s += eva - sva;
if (mapit) {
/* Map this piece of pv_table[] */
for (va = sva; va < eva; va += PAGE_SIZE) {
pmap_enter(pmap_kernel(), va, pa,
VM_PROT_READ|VM_PROT_WRITE,
VM_PROT_READ|VM_PROT_WRITE|PMAP_WIRED);
pa += PAGE_SIZE;
}
bzero((caddr_t)sva, eva - sva);
}
}
return (s);
}
/*----------------------------------------------------------------*/
/*
* At last, pmap code.
*/
#if defined(SUN4) && (defined(SUN4C) || defined(SUN4M))
int nptesg;
#endif
#if defined(SUN4M)
static void pmap_bootstrap4m __P((void));
#endif
#if defined(SUN4) || defined(SUN4C)
static void pmap_bootstrap4_4c __P((int, int, int));
#endif
/*
* Bootstrap the system enough to run with VM enabled.
*
* nsegment is the number of mmu segment entries (``PMEGs'');
* nregion is the number of mmu region entries (``SMEGs'');
* nctx is the number of contexts.
*/
void
pmap_bootstrap(nctx, nregion, nsegment)
int nsegment, nctx, nregion;
{
uvmexp.pagesize = NBPG;
uvm_setpagesize();
#if defined(SUN4) && (defined(SUN4C) || defined(SUN4M))
/* In this case NPTESG is not a #define */
nptesg = (NBPSG >> pgshift);
#endif
#if 0
ncontext = nctx;
#endif
#if defined(SUN4M)
if (CPU_ISSUN4M) {
pmap_bootstrap4m();
return;
}
#endif
#if defined(SUN4) || defined(SUN4C)
if (CPU_ISSUN4OR4C) {
pmap_bootstrap4_4c(nctx, nregion, nsegment);
return;
}
#endif
}
#if defined(SUN4) || defined(SUN4C)
void
pmap_bootstrap4_4c(nctx, nregion, nsegment)
int nsegment, nctx, nregion;
{
union ctxinfo *ci;
struct mmuentry *mmuseg;
#if defined(SUN4_MMU3L)
struct mmuentry *mmureg;
#endif
struct regmap *rp;
int i, j;
int npte, zseg, vr, vs;
int rcookie, scookie;
caddr_t p;
int lastpage;
vaddr_t va;
extern char end[];
#ifdef DDB
extern char *esym;
#endif
switch (cputyp) {
case CPU_SUN4C:
mmu_has_hole = 1;
break;
case CPU_SUN4:
if (cpuinfo.cpu_type != CPUTYP_4_400) {
mmu_has_hole = 1;
break;
}
}
uvmexp.pagesize = NBPG;
uvm_setpagesize();
#if defined(SUN4)
/*
* set up the segfixmask to mask off invalid bits
*/
segfixmask = nsegment - 1; /* assume nsegment is a power of 2 */
#ifdef DIAGNOSTIC
if (((nsegment & segfixmask) | (nsegment & ~segfixmask)) != nsegment) {
printf("pmap_bootstrap: unsuitable number of segments (%d)\n",
nsegment);
callrom();
}
#endif
#endif
#if defined(SUN4M) /* We're in a dual-arch kernel. Setup 4/4c fn. ptrs */
pmap_clear_modify_p = pmap_clear_modify4_4c;
pmap_clear_reference_p = pmap_clear_reference4_4c;
pmap_enter_p = pmap_enter4_4c;
pmap_extract_p = pmap_extract4_4c;
pmap_is_modified_p = pmap_is_modified4_4c;
pmap_is_referenced_p = pmap_is_referenced4_4c;
pmap_kenter_pa_p = pmap_kenter_pa4_4c;
pmap_kenter_pgs_p = pmap_kenter_pgs4_4c;
pmap_kremove_p = pmap_kremove4_4c;
pmap_page_protect_p = pmap_page_protect4_4c;
pmap_protect_p = pmap_protect4_4c;
pmap_changeprot_p = pmap_changeprot4_4c;
pmap_rmk_p = pmap_rmk4_4c;
pmap_rmu_p = pmap_rmu4_4c;
#endif /* defined SUN4M */
/*
* Last segment is the `invalid' one (one PMEG of pte's with !pg_v).
* It will never be used for anything else.
*/
seginval = --nsegment;
#if defined(SUN4_MMU3L)
if (HASSUN4_MMU3L)
reginval = --nregion;
#endif
/*
* Intialize the kernel pmap.
*/
/* kernel_pmap_store.pm_ctxnum = 0; */
simple_lock_init(&kernel_pmap_store.pm_lock);
kernel_pmap_store.pm_refcount = 1;
#if defined(SUN4_MMU3L)
TAILQ_INIT(&kernel_pmap_store.pm_reglist);
#endif
TAILQ_INIT(&kernel_pmap_store.pm_seglist);
kernel_pmap_store.pm_regmap = &kernel_regmap_store[-NUREG];
for (i = NKREG; --i >= 0;) {
#if defined(SUN4_MMU3L)
kernel_regmap_store[i].rg_smeg = reginval;
#endif
kernel_regmap_store[i].rg_segmap =
&kernel_segmap_store[i * NSEGRG];
for (j = NSEGRG; --j >= 0;)
kernel_segmap_store[i * NSEGRG + j].sg_pmeg = seginval;
}
/*
* Preserve the monitor ROM's reserved VM region, so that
* we can use L1-A or the monitor's debugger. As a side
* effect we map the ROM's reserved VM into all contexts
* (otherwise L1-A crashes the machine!).
*/
mmu_reservemon4_4c(&nregion, &nsegment);
#if defined(SUN4_MMU3L)
/* Reserve one region for temporary mappings */
if (HASSUN4_MMU3L)
tregion = --nregion;
#endif
/*
* Allocate and clear mmu entries and context structures.
*/
p = end;
#ifdef DDB
if (esym != 0)
p = esym;
#endif
#if defined(SUN4_MMU3L)
mmuregions = mmureg = (struct mmuentry *)p;
p += nregion * sizeof(struct mmuentry);
bzero(mmuregions, nregion * sizeof(struct mmuentry));
#endif
mmusegments = mmuseg = (struct mmuentry *)p;
p += nsegment * sizeof(struct mmuentry);
bzero(mmusegments, nsegment * sizeof(struct mmuentry));
pmap_kernel()->pm_ctx = cpuinfo.ctxinfo = ci = (union ctxinfo *)p;
p += nctx * sizeof *ci;
/* Initialize MMU resource queues */
#if defined(SUN4_MMU3L)
TAILQ_INIT(&region_freelist);
TAILQ_INIT(&region_lru);
TAILQ_INIT(&region_locked);
#endif
TAILQ_INIT(&segm_freelist);
TAILQ_INIT(&segm_lru);
TAILQ_INIT(&segm_locked);
/*
* Set up the `constants' for the call to vm_init()
* in main(). All pages beginning at p (rounded up to
* the next whole page) and continuing through the number
* of available pages are free, but they start at a higher
* virtual address. This gives us two mappable MD pages
* for pmap_zero_page and pmap_copy_page, and one MI page
* for /dev/mem, all with no associated physical memory.
*/
p = (caddr_t)(((u_int)p + NBPG - 1) & ~PGOFSET);
/*
* Grab physical memory list.
*/
get_phys_mem();
/* Allocate physical memory for pv_table[] */
p += pv_table_map((paddr_t)p - KERNBASE);
avail_start = (paddr_t)p - KERNBASE;
i = (int)p;
vpage[0] = p, p += NBPG;
vpage[1] = p, p += NBPG;
vmmap = p, p += NBPG;
p = reserve_dumppages(p);
/* Allocate virtual memory for pv_table[]. */
pv_table = (struct pvlist *)p;
p += round_page(sizeof(struct pvlist) * atop(avail_end));
virtual_avail = (vaddr_t)p;
virtual_end = VM_MAX_KERNEL_ADDRESS;
p = (caddr_t)i; /* retract to first free phys */
/*
* All contexts are free except the kernel's.
*
* XXX sun4c could use context 0 for users?
*/
ci->c_pmap = pmap_kernel();
ctx_freelist = ci + 1;
for (i = 1; i < ncontext; i++) {
ci++;
ci->c_nextfree = ci + 1;
}
ci->c_nextfree = NULL;
ctx_kick = 0;
ctx_kickdir = -1;
/*
* Init mmu entries that map the kernel physical addresses.
*
* All the other MMU entries are free.
*
* THIS ASSUMES SEGMENT i IS MAPPED BY MMU ENTRY i DURING THE
* BOOT PROCESS
*/
zseg = ((((u_int)p + NBPSG - 1) & ~SGOFSET) - KERNBASE) >> SGSHIFT;
lastpage = VA_VPG(p);
if (lastpage == 0)
/*
* If the page bits in p are 0, we filled the last segment
* exactly (now how did that happen?); if not, it is
* the last page filled in the last segment.
*/
lastpage = NPTESG;
p = (caddr_t)KERNBASE; /* first va */
vs = VA_VSEG(KERNBASE); /* first virtual segment */
vr = VA_VREG(KERNBASE); /* first virtual region */
rp = &pmap_kernel()->pm_regmap[vr];
for (rcookie = 0, scookie = 0;;) {
/*
* Distribute each kernel region/segment into all contexts.
* This is done through the monitor ROM, rather than
* directly here: if we do a setcontext we will fault,
* as we are not (yet) mapped in any other context.
*/
if ((vs % NSEGRG) == 0) {
/* Entering a new region */
if (VA_VREG(p) > vr) {
#ifdef DEBUG
printf("note: giant kernel!\n");
#endif
vr++, rp++;
}
#if defined(SUN4_MMU3L)
if (HASSUN4_MMU3L) {
for (i = 1; i < nctx; i++)
prom_setcontext(i, p, rcookie);
TAILQ_INSERT_TAIL(&region_locked,
mmureg, me_list);
TAILQ_INSERT_TAIL(&pmap_kernel()->pm_reglist,
mmureg, me_pmchain);
mmureg->me_cookie = rcookie;
mmureg->me_pmap = pmap_kernel();
mmureg->me_vreg = vr;
rp->rg_smeg = rcookie;
mmureg++;
rcookie++;
}
#endif
}
#if defined(SUN4_MMU3L)
if (!HASSUN4_MMU3L)
#endif
for (i = 1; i < nctx; i++)
prom_setcontext(i, p, scookie);
/* set up the mmu entry */
TAILQ_INSERT_TAIL(&segm_locked, mmuseg, me_list);
TAILQ_INSERT_TAIL(&pmap_kernel()->pm_seglist, mmuseg, me_pmchain);
pmap_stats.ps_npmeg_locked++;
mmuseg->me_cookie = scookie;
mmuseg->me_pmap = pmap_kernel();
mmuseg->me_vreg = vr;
mmuseg->me_vseg = vs % NSEGRG;
rp->rg_segmap[vs % NSEGRG].sg_pmeg = scookie;
npte = ++scookie < zseg ? NPTESG : lastpage;
rp->rg_segmap[vs % NSEGRG].sg_npte = npte;
rp->rg_nsegmap += 1;
mmuseg++;
vs++;
if (scookie < zseg) {
p += NBPSG;
continue;
}
/*
* Unmap the pages, if any, that are not part of
* the final segment.
*/
for (p += npte << PGSHIFT; npte < NPTESG; npte++, p += NBPG)
setpte4(p, 0);
#if defined(SUN4_MMU3L)
if (HASSUN4_MMU3L) {
/*
* Unmap the segments, if any, that are not part of
* the final region.
*/
for (i = rp->rg_nsegmap; i < NSEGRG; i++, p += NBPSG)
setsegmap(p, seginval);
/*
* Unmap any kernel regions that we aren't using.
*/
for (i = 0; i < nctx; i++) {
setcontext4(i);
for (va = (vaddr_t)p;
va < (OPENPROM_STARTVADDR & ~(NBPRG - 1));
va += NBPRG)
setregmap(va, reginval);
}
} else
#endif
{
/*
* Unmap any kernel segments that we aren't using.
*/
for (i = 0; i < nctx; i++) {
setcontext4(i);
for (va = (vaddr_t)p;
va < (OPENPROM_STARTVADDR & ~(NBPSG - 1));
va += NBPSG)
setsegmap(va, seginval);
}
}
break;
}
#if defined(SUN4_MMU3L)
if (HASSUN4_MMU3L)
for (; rcookie < nregion; rcookie++, mmureg++) {
mmureg->me_cookie = rcookie;
TAILQ_INSERT_TAIL(&region_freelist, mmureg, me_list);
}
#endif
for (; scookie < nsegment; scookie++, mmuseg++) {
mmuseg->me_cookie = scookie;
TAILQ_INSERT_TAIL(&segm_freelist, mmuseg, me_list);
pmap_stats.ps_npmeg_free++;
}
/* Erase all spurious user-space segmaps */
for (i = 1; i < ncontext; i++) {
setcontext4(i);
if (HASSUN4_MMU3L)
for (p = 0, j = NUREG; --j >= 0; p += NBPRG)
setregmap(p, reginval);
else
for (p = 0, vr = 0; vr < NUREG; vr++) {
if (VA_INHOLE(p)) {
p = (caddr_t)MMU_HOLE_END;
vr = VA_VREG(p);
}
for (j = NSEGRG; --j >= 0; p += NBPSG)
setsegmap(p, seginval);
}
}
setcontext4(0);
/*
* write protect & encache kernel text;
* set red zone at kernel base; enable cache on message buffer.
*/
{
extern char etext[];
#ifdef KGDB
int mask = ~PG_NC; /* XXX chgkprot is busted */
#else
int mask = ~(PG_W | PG_NC);
#endif
for (p = (caddr_t)trapbase; p < etext; p += NBPG)
setpte4(p, getpte4(p) & mask);
}
pmap_page_upload();
}
#endif
#if defined(SUN4M) /* Sun4M version of pmap_bootstrap */
/*
* Bootstrap the system enough to run with VM enabled on a Sun4M machine.
*
* Switches from ROM to kernel page tables, and sets up initial mappings.
*/
static void
pmap_bootstrap4m(void)
{
int i, j;
caddr_t p, q;
union ctxinfo *ci;
int reg, seg;
unsigned int ctxtblsize;
caddr_t pagetables_start, pagetables_end;
paddr_t pagetables_start_pa;
extern char end[];
extern char etext[];
extern caddr_t reserve_dumppages(caddr_t);
#ifdef DDB
extern char *esym;
#endif
#if defined(SUN4) || defined(SUN4C) /* setup 4M fn. ptrs for dual-arch kernel */
pmap_clear_modify_p = pmap_clear_modify4m;
pmap_clear_reference_p = pmap_clear_reference4m;
pmap_enter_p = pmap_enter4m;
pmap_extract_p = pmap_extract4m;
pmap_is_modified_p = pmap_is_modified4m;
pmap_is_referenced_p = pmap_is_referenced4m;
pmap_kenter_pa_p = pmap_kenter_pa4m;
pmap_kenter_pgs_p = pmap_kenter_pgs4m;
pmap_kremove_p = pmap_kremove4m;
pmap_page_protect_p = pmap_page_protect4m;
pmap_protect_p = pmap_protect4m;
pmap_changeprot_p = pmap_changeprot4m;
pmap_rmk_p = pmap_rmk4m;
pmap_rmu_p = pmap_rmu4m;
#endif /* defined Sun4/Sun4c */
/*
* p points to top of kernel mem
*/
p = end;
#ifdef DDB
/* Skip over DDB symbols */
if (esym != 0)
p = esym;
#endif
/*
* Intialize the kernel pmap.
*/
/* kernel_pmap_store.pm_ctxnum = 0; */
simple_lock_init(&kernel_pmap_store.pm_lock);
kernel_pmap_store.pm_refcount = 1;
/*
* Set up pm_regmap for kernel to point NUREG *below* the beginning
* of kernel regmap storage. Since the kernel only uses regions
* above NUREG, we save storage space and can index kernel and
* user regions in the same way
*/
kernel_pmap_store.pm_regmap = &kernel_regmap_store[-NUREG];
bzero(kernel_regmap_store, NKREG * sizeof(struct regmap));
bzero(kernel_segmap_store, NKREG * NSEGRG * sizeof(struct segmap));
for (i = NKREG; --i >= 0;) {
kernel_regmap_store[i].rg_segmap =
&kernel_segmap_store[i * NSEGRG];
kernel_regmap_store[i].rg_seg_ptps = NULL;
for (j = NSEGRG; --j >= 0;)
kernel_segmap_store[i * NSEGRG + j].sg_pte = NULL;
}
/* Allocate kernel region pointer tables */
pmap_kernel()->pm_reg_ptps = (int **)(q = p);
p += ncpu * sizeof(int **);
bzero(q, (u_int)p - (u_int)q);
pmap_kernel()->pm_reg_ptps_pa = (int *)(q = p);
p += ncpu * sizeof(int *);
bzero(q, (u_int)p - (u_int)q);
/* Allocate context administration */
pmap_kernel()->pm_ctx = cpuinfo.ctxinfo = ci = (union ctxinfo *)p;
p += ncontext * sizeof *ci;
bzero((caddr_t)ci, (u_int)p - (u_int)ci);
/*
* Set up the `constants' for the call to vm_init()
* in main(). All pages beginning at p (rounded up to
* the next whole page) and continuing through the number
* of available pages are free.
*/
p = (caddr_t)(((u_int)p + NBPG - 1) & ~PGOFSET);
/*
* Grab physical memory list.
*/
get_phys_mem();
/*
* Reserve memory for MMU pagetables. Some of these have severe
* alignment restrictions. We allocate in a sequence that
* minimizes alignment gaps.
*/
pagetables_start = p;
pagetables_start_pa = (paddr_t)(p - KERNBASE);
/*
* Allocate context table.
* To keep supersparc happy, minimum aligment is on a 4K boundary.
*/
ctxtblsize = max(ncontext,1024) * sizeof(int);
cpuinfo.ctx_tbl = (int *)roundup((u_int)p, ctxtblsize);
cpuinfo.ctx_tbl_pa = (paddr_t)((u_int)cpuinfo.ctx_tbl - KERNBASE);
p = (caddr_t)((u_int)cpuinfo.ctx_tbl + ctxtblsize);
/*
* Reserve memory for segment and page tables needed to map the entire
* kernel. This takes (2K + NKREG * 16K) of space, but unfortunately
* is necessary since pmap_enter() *must* be able to enter a kernel
* mapping without delay.
*/
p = (caddr_t) roundup((u_int)p, SRMMU_L1SIZE * sizeof(u_int));
qzero(p, SRMMU_L1SIZE * sizeof(u_int));
kernel_regtable_store = (u_int *)p;
p += SRMMU_L1SIZE * sizeof(u_int);
p = (caddr_t) roundup((u_int)p, SRMMU_L2SIZE * sizeof(u_int));
qzero(p, (SRMMU_L2SIZE * sizeof(u_int)) * NKREG);
kernel_segtable_store = (u_int *)p;
p += (SRMMU_L2SIZE * sizeof(u_int)) * NKREG;
p = (caddr_t) roundup((u_int)p, SRMMU_L3SIZE * sizeof(u_int));
/* zero it: all will be SRMMU_TEINVALID */
qzero(p, ((SRMMU_L3SIZE * sizeof(u_int)) * NKREG) * NSEGRG);
kernel_pagtable_store = (u_int *)p;
p += ((SRMMU_L3SIZE * sizeof(u_int)) * NKREG) * NSEGRG;
/* Round to next page and mark end of pre-wired kernel space */
p = (caddr_t)(((u_int)p + NBPG - 1) & ~PGOFSET);
pagetables_end = p;
/* Allocate physical memory for pv_table[] */
p += pv_table_map((paddr_t)(p - KERNBASE));
avail_start = (paddr_t)(p - KERNBASE);
/*
* Now wire the region and segment tables of the kernel map.
*/
pmap_kernel()->pm_reg_ptps[0] = (int *) kernel_regtable_store;
pmap_kernel()->pm_reg_ptps_pa[0] =
VA2PA((caddr_t)pmap_kernel()->pm_reg_ptps[0]);
/* Install L1 table in context 0 */
setpgt4m(&cpuinfo.ctx_tbl[0],
(pmap_kernel()->pm_reg_ptps_pa[0] >> SRMMU_PPNPASHIFT) | SRMMU_TEPTD);
for (reg = 0; reg < NKREG; reg++) {
struct regmap *rp;
caddr_t kphyssegtbl;
/*
* Entering new region; install & build segtbl
*/
rp = &pmap_kernel()->pm_regmap[reg + VA_VREG(KERNBASE)];
kphyssegtbl = (caddr_t)
&kernel_segtable_store[reg * SRMMU_L2SIZE];
setpgt4m(&pmap_kernel()->pm_reg_ptps[0][reg + VA_VREG(KERNBASE)],
(VA2PA(kphyssegtbl) >> SRMMU_PPNPASHIFT) | SRMMU_TEPTD);
rp->rg_seg_ptps = (int *)kphyssegtbl;
for (seg = 0; seg < NSEGRG; seg++) {
struct segmap *sp;
caddr_t kphyspagtbl;
rp->rg_nsegmap++;
sp = &rp->rg_segmap[seg];
kphyspagtbl = (caddr_t)
&kernel_pagtable_store
[((reg * NSEGRG) + seg) * SRMMU_L3SIZE];
setpgt4m(&rp->rg_seg_ptps[seg],
(VA2PA(kphyspagtbl) >> SRMMU_PPNPASHIFT) |
SRMMU_TEPTD);
sp->sg_pte = (int *) kphyspagtbl;
}
}
/*
* Preserve the monitor ROM's reserved VM region, so that
* we can use L1-A or the monitor's debugger.
*/
mmu_reservemon4m(&kernel_pmap_store);
/*
* Reserve virtual address space for two mappable MD pages
* for pmap_zero_page and pmap_copy_page, one MI page
* for /dev/mem, and some more for dumpsys().
*/
q = p;
vpage[0] = p, p += NBPG;
vpage[1] = p, p += NBPG;
vmmap = p, p += NBPG;
p = reserve_dumppages(p);
/* Find PTE locations of vpage[] to optimize zero_fill() et.al. */
for (i = 0; i < 2; i++) {
struct regmap *rp;
struct segmap *sp;
rp = &pmap_kernel()->pm_regmap[VA_VREG(vpage[i])];
sp = &rp->rg_segmap[VA_VSEG(vpage[i])];
vpage_pte[i] = &sp->sg_pte[VA_SUN4M_VPG(vpage[i])];
}
/* Allocate virtual memory for pv_table[]. */
pv_table = (struct pvlist *)p;
p += round_page(sizeof(struct pvlist) * atop(avail_end));
virtual_avail = (vaddr_t)p;
virtual_end = VM_MAX_KERNEL_ADDRESS;
p = q; /* retract to first free phys */
/*
* Set up the ctxinfo structures (freelist of contexts)
*/
ci->c_pmap = pmap_kernel();
ctx_freelist = ci + 1;
for (i = 1; i < ncontext; i++) {
ci++;
ci->c_nextfree = ci + 1;
}
ci->c_nextfree = NULL;
ctx_kick = 0;
ctx_kickdir = -1;
/*
* Now map the kernel into our new set of page tables, then
* (finally) switch over to our running page tables.
* We map from KERNBASE to p into context 0's page tables (and
* the kernel pmap).
*/
#ifdef DEBUG /* Sanity checks */
if ((u_int)p % NBPG != 0)
panic("pmap_bootstrap4m: p misaligned?!?");
if (KERNBASE % NBPRG != 0)
panic("pmap_bootstrap4m: KERNBASE not region-aligned");
#endif
for (q = (caddr_t) KERNBASE; q < p; q += NBPG) {
struct regmap *rp;
struct segmap *sp;
int pte;
/*
* Now install entry for current page.
*/
rp = &pmap_kernel()->pm_regmap[VA_VREG(q)];
sp = &rp->rg_segmap[VA_VSEG(q)];
sp->sg_npte++;
pte = ((int)q - KERNBASE) >> SRMMU_PPNPASHIFT;
pte |= PPROT_N_RX | SRMMU_TEPTE;
/* Deal with the cacheable bit for pagetable memory */
if ((cpuinfo.flags & CPUFLG_CACHEPAGETABLES) != 0 ||
q < pagetables_start || q >= pagetables_end)
pte |= SRMMU_PG_C;
/* write-protect kernel text */
if (q < (caddr_t) trapbase || q >= etext)
pte |= PPROT_WRITE;
setpgt4m(&sp->sg_pte[VA_VPG(q)], pte);
}
if ((cpuinfo.flags & CPUFLG_CACHEPAGETABLES) == 0) {
/*
* The page tables have been setup. Since we're still
* running on the PROM's memory map, the memory we
* allocated for our page tables might still be cached.
* Flush it now, and don't touch it again until we
* switch to our own tables (will be done immediately below).
*/
int size = pagetables_end - pagetables_start;
if (CACHEINFO.c_vactype != VAC_NONE) {
int va = (vaddr_t)pagetables_start;
while (size != 0) {
cache_flush_page(va);
va += NBPG;
size -= NBPG;
}
} else if (cpuinfo.pcache_flush_page != NULL) {
int pa = pagetables_start_pa;
while (size != 0) {
pcache_flush_page(pa, 0);
pa += NBPG;
size -= NBPG;
}
}
}
/*
* Now switch to kernel pagetables (finally!)
*/
mmu_install_tables(&cpuinfo);
pmap_page_upload();
}
static u_long prom_ctxreg;
void
mmu_install_tables(sc)
struct cpu_info *sc;
{
#ifdef DEBUG
printf("pmap_bootstrap: installing kernel page tables...");
#endif
setcontext4m(0); /* paranoia? %%%: Make 0x3 a define! below */
/* Enable MMU tablewalk caching, flush TLB */
if (sc->mmu_enable != 0)
sc->mmu_enable();
tlb_flush_all();
prom_ctxreg = lda(SRMMU_CXTPTR, ASI_SRMMU);
sta(SRMMU_CXTPTR, ASI_SRMMU,
(sc->ctx_tbl_pa >> SRMMU_PPNPASHIFT) & ~0x3);
tlb_flush_all();
#ifdef DEBUG
printf("done.\n");
#endif
}
void srmmu_restore_prom_ctx __P((void));
void
srmmu_restore_prom_ctx()
{
tlb_flush_all();
sta(SRMMU_CXTPTR, ASI_SRMMU, prom_ctxreg);
tlb_flush_all();
}
/*
* Globalize the boot cpu's cpu_info structure.
*/
void
pmap_globalize_boot_cpuinfo(cpi)
struct cpu_info *cpi;
{
vaddr_t va;
vsize_t off;
off = 0;
for (va = (vaddr_t)cpi; off < sizeof(*cpi); va += NBPG, off += NBPG) {
paddr_t pa = VA2PA((caddr_t)CPUINFO_VA + off);
pmap_enter(pmap_kernel(), va, pa,
VM_PROT_READ|VM_PROT_WRITE,
VM_PROT_READ|VM_PROT_WRITE|PMAP_WIRED);
}
}
/*
* Allocate per-CPU page tables. One region, segment and page table
* is needed to map CPUINFO_VA to different physical addresses on
* each CPU. Since the kernel region and segment tables are all
* pre-wired (in bootstrap() above) and we also assume that the
* first segment (256K) of kernel space is fully populated with
* pages from the start, these per-CPU tables will never need
* to be updated when mapping kernel virtual memory.
*
* Note: this routine is called in the context of the boot CPU
* during autoconfig.
*/
void
pmap_alloc_cpu(sc)
struct cpu_info *sc;
{
vaddr_t va;
paddr_t pa;
paddr_t alignment;
u_int *ctxtable, *regtable, *segtable, *pagtable;
u_int *ctxtable_pa, *regtable_pa, *segtable_pa, *pagtable_pa;
psize_t ctxsize, size;
int vr, vs, vpg;
struct regmap *rp;
struct segmap *sp;
struct pglist mlist;
int cachebit;
int pagesz = NBPG;
cachebit = (sc->flags & CPUFLG_CACHEPAGETABLES) != 0;
/*
* Allocate properly aligned and contiguous physically memory
* for the PTE tables.
*/
ctxsize = (sc->mmu_ncontext * sizeof(int) + pagesz - 1) & -pagesz;
alignment = ctxsize;
/* The region, segment and page table we need fit in one page */
size = ctxsize + pagesz;
TAILQ_INIT(&mlist);
if (uvm_pglistalloc(size, vm_first_phys, vm_first_phys+vm_num_phys,
alignment, 0, &mlist, 1, 0) != 0)
panic("pmap_alloc_cpu: no memory");
pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&mlist));
/* Allocate virtual memory */
va = uvm_km_valloc(kernel_map, size);
if (va == 0)
panic("pmap_alloc_cpu: no memory");
/*
* Layout the page tables in our chunk of memory
*/
ctxtable = (u_int *)va;
regtable = (u_int *)(va + ctxsize);
segtable = regtable + SRMMU_L1SIZE;
pagtable = segtable + SRMMU_L2SIZE;
ctxtable_pa = (u_int *)pa;
regtable_pa = (u_int *)(pa + ctxsize);
segtable_pa = regtable_pa + SRMMU_L1SIZE;
pagtable_pa = segtable_pa + SRMMU_L2SIZE;
/* Map the pages */
while (size != 0) {
pmap_enter(pmap_kernel(), va, pa | (cachebit ? 0 : PMAP_NC),
VM_PROT_READ|VM_PROT_WRITE,
VM_PROT_READ|VM_PROT_WRITE|PMAP_WIRED);
va += pagesz;
pa += pagesz;
size -= pagesz;
}
/*
* Store the region table pointer (and its corresponding physical
* address) in the CPU's slot in the kernel pmap region table
* pointer table.
*/
pmap_kernel()->pm_reg_ptps[sc->ci_cpuid] = regtable;
pmap_kernel()->pm_reg_ptps_pa[sc->ci_cpuid] = (paddr_t)regtable_pa;
vr = VA_VREG(CPUINFO_VA);
vs = VA_VSEG(CPUINFO_VA);
vpg = VA_VPG(CPUINFO_VA);
rp = &pmap_kernel()->pm_regmap[vr];
sp = &rp->rg_segmap[vs];
/*
* Copy page tables from CPU #0, then modify entry for CPUINFO_VA
* so that it points at the per-CPU pages.
*/
qcopy(pmap_kernel()->pm_reg_ptps[0], regtable,
SRMMU_L1SIZE * sizeof(int));
qcopy(rp->rg_seg_ptps, segtable, SRMMU_L2SIZE * sizeof(int));
qcopy(sp->sg_pte, pagtable, SRMMU_L3SIZE * sizeof(int));
setpgt4m(&ctxtable[0],
((u_long)regtable_pa >> SRMMU_PPNPASHIFT) | SRMMU_TEPTD);
setpgt4m(&regtable[vr],
((u_long)segtable_pa >> SRMMU_PPNPASHIFT) | SRMMU_TEPTD);
setpgt4m(&segtable[vs],
((u_long)pagtable_pa >> SRMMU_PPNPASHIFT) | SRMMU_TEPTD);
setpgt4m(&pagtable[vpg],
(VA2PA((caddr_t)sc) >> SRMMU_PPNPASHIFT) |
(SRMMU_TEPTE | PPROT_N_RWX | SRMMU_PG_C));
/* Install this CPU's context table */
sc->ctx_tbl = ctxtable;
sc->ctx_tbl_pa = (paddr_t)ctxtable_pa;
}
#endif /* SUN4M */
void
pmap_init()
{
u_int sizeof_pmap;
if (PAGE_SIZE != NBPG)
panic("pmap_init: CLSIZE!=1");
/* Map pv_table[] */
(void)pv_table_map(0);
vm_first_phys = avail_start;
vm_num_phys = avail_end - avail_start;
/* Setup a pool for additional pvlist structures */
pool_init(&pv_pool, sizeof(struct pvlist), 0, 0, 0, "pvtable", 0,
NULL, NULL, 0);
/*
* Setup a pool for pmap structures.
* The pool size includes space for an array of per-cpu
* region table pointers & physical addresses
*/
sizeof_pmap = ALIGN(sizeof(struct pmap)) +
ncpu * sizeof(int *) + /* pm_reg_ptps */
ncpu * sizeof(int); /* pm_reg_ptps_pa */
pool_init(&pmap_pmap_pool, sizeof_pmap, 0, 0, 0, "pmappl",
0, pool_page_alloc_nointr, pool_page_free_nointr, M_VMPMAP);
#if defined(SUN4M)
if (CPU_ISSUN4M) {
/*
* The SRMMU only ever needs chunks in one of two sizes:
* 1024 (for region level tables) and 256 (for segment
* and page level tables).
*/
int n;
n = SRMMU_L1SIZE * sizeof(int);
pool_init(&L1_pool, n, n, 0, 0, "L1 pagetable", 0,
pgt_page_alloc, pgt_page_free, 0);
n = SRMMU_L2SIZE * sizeof(int);
pool_init(&L23_pool, n, n, 0, 0, "L2/L3 pagetable", 0,
pgt_page_alloc, pgt_page_free, 0);
}
#endif
}
/*
* Map physical addresses into kernel VM.
*/
vaddr_t
pmap_map(va, pa, endpa, prot)
vaddr_t va;
paddr_t pa, endpa;
int prot;
{
int pgsize = PAGE_SIZE;
while (pa < endpa) {
pmap_enter(pmap_kernel(), va, pa, prot, PMAP_WIRED);
va += pgsize;
pa += pgsize;
}
return (va);
}
/*
* Create and return a physical map.
*
* If size is nonzero, the map is useless. (ick)
*/
struct pmap *
pmap_create()
{
struct pmap *pm;
u_long addr;
void *urp;
pm = pool_get(&pmap_pmap_pool, PR_WAITOK);
#ifdef DEBUG
if (pmapdebug & PDB_CREATE)
printf("pmap_create: created %p\n", pm);
#endif
bzero(pm, sizeof *pm);
/*
* `pmap_pool' entries include space for the per-CPU
* region table pointer arrays.
*/
addr = (u_long)pm + ALIGN(sizeof(struct pmap));
pm->pm_reg_ptps = (int **)addr;
addr += ncpu * sizeof(int *);
pm->pm_reg_ptps_pa = (int *)addr;
pm->pm_regstore = urp = malloc(NUREG * sizeof(struct regmap),
M_VMPMAP, M_WAITOK);
qzero((caddr_t)urp, NUREG * sizeof(struct regmap));
/* pm->pm_ctx = NULL; */
simple_lock_init(&pm->pm_lock);
pm->pm_refcount = 1;
pm->pm_regmap = urp;
if (CPU_ISSUN4OR4C) {
TAILQ_INIT(&pm->pm_seglist);
#if defined(SUN4_MMU3L)
TAILQ_INIT(&pm->pm_reglist);
if (HASSUN4_MMU3L) {
int i;
for (i = NUREG; --i >= 0;)
pm->pm_regmap[i].rg_smeg = reginval;
}
#endif
pm->pm_gap_end = VA_VREG(VM_MAXUSER_ADDRESS);
}
#if defined(SUN4M)
else {
int i, n;
/*
* We must allocate and initialize hardware-readable (MMU)
* pagetables. We must also map the kernel regions into this
* pmap's pagetables, so that we can access the kernel from
* this user context.
*
*/
#if defined(MULTIPROCESSOR)
for (n = 0; n < ncpu; n++)
#else
n = 0;
#endif
{
int *upt, *kpt;
upt = pool_get(&L1_pool, PR_WAITOK);
pm->pm_reg_ptps[n] = upt;
pm->pm_reg_ptps_pa[n] = VA2PA((char *)upt);
/* Invalidate user space regions */
for (i = 0; i < NUREG; i++)
setpgt4m(upt++, SRMMU_TEINVALID);
/* Copy kernel regions */
kpt = &pmap_kernel()->pm_reg_ptps[n][VA_VREG(KERNBASE)];
for (i = 0; i < NKREG; i++) {
setpgt4m(upt++, kpt[i]);
}
}
}
#endif
return (pm);
}
/*
* Retire the given pmap from service.
* Should only be called if the map contains no valid mappings.
*/
void
pmap_destroy(pm)
struct pmap *pm;
{
int count;
if (pm == NULL)
return;
#ifdef DEBUG
if (pmapdebug & PDB_DESTROY)
printf("pmap_destroy(%p)\n", pm);
#endif
simple_lock(&pm->pm_lock);
count = --pm->pm_refcount;
simple_unlock(&pm->pm_lock);
if (count == 0) {
pmap_release(pm);
pool_put(&pmap_pmap_pool, pm);
}
}
/*
* Release any resources held by the given physical map.
* Called when a pmap initialized by pmap_pinit is being released.
*/
void
pmap_release(pm)
struct pmap *pm;
{
union ctxinfo *c;
int s = splvm(); /* paranoia */
#ifdef DEBUG
if (pmapdebug & PDB_DESTROY)
printf("pmap_release(%p)\n", pm);
#endif
if (CPU_ISSUN4OR4C) {
#if defined(SUN4_MMU3L)
if (pm->pm_reglist.tqh_first)
panic("pmap_release: region list not empty");
#endif
if (pm->pm_seglist.tqh_first)
panic("pmap_release: segment list not empty");
if ((c = pm->pm_ctx) != NULL) {
if (pm->pm_ctxnum == 0)
panic("pmap_release: releasing kernel");
ctx_free(pm);
}
}
#if defined(SUN4M)
if (CPU_ISSUN4M) {
int n;
if ((c = pm->pm_ctx) != NULL) {
if (pm->pm_ctxnum == 0)
panic("pmap_release: releasing kernel");
ctx_free(pm);
}
#if defined(MULTIPROCESSOR)
for (n = 0; n < ncpu; n++)
#else
n = 0;
#endif
{
int *pt = pm->pm_reg_ptps[n];
pm->pm_reg_ptps[n] = NULL;
pm->pm_reg_ptps_pa[n] = 0;
pool_put(&L1_pool, pt);
}
}
#endif
splx(s);
#ifdef DEBUG
if (pmapdebug) {
int vs, vr;
for (vr = 0; vr < NUREG; vr++) {
struct regmap *rp = &pm->pm_regmap[vr];
if (rp->rg_nsegmap != 0)
printf("pmap_release: %d segments remain in "
"region %d\n", rp->rg_nsegmap, vr);
if (rp->rg_segmap != NULL) {
printf("pmap_release: segments still "
"allocated in region %d\n", vr);
for (vs = 0; vs < NSEGRG; vs++) {
struct segmap *sp = &rp->rg_segmap[vs];
if (sp->sg_npte != 0)
printf("pmap_release: %d ptes "
"remain in segment %d\n",
sp->sg_npte, vs);
if (sp->sg_pte != NULL) {
printf("pmap_release: ptes still "
"allocated in segment %d\n", vs);
}
}
}
}
}
#endif
if (pm->pm_regstore)
free(pm->pm_regstore, M_VMPMAP);
}
/*
* Add a reference to the given pmap.
*/
void
pmap_reference(pm)
struct pmap *pm;
{
if (pm != NULL) {
simple_lock(&pm->pm_lock);
pm->pm_refcount++;
simple_unlock(&pm->pm_lock);
}
}
/*
* Remove the given range of mapping entries.
* The starting and ending addresses are already rounded to pages.
* Sheer lunacy: pmap_remove is often asked to remove nonexistent
* mappings.
*/
void
pmap_remove(pm, va, endva)
struct pmap *pm;
vaddr_t va, endva;
{
vaddr_t nva;
int vr, vs, s, ctx;
void (*rm)(struct pmap *, vaddr_t, vaddr_t, int, int);
if (pm == NULL)
return;
#ifdef DEBUG
if (pmapdebug & PDB_REMOVE)
printf("pmap_remove(%p, 0x%lx, 0x%lx)\n", pm, va, endva);
#endif
if (pm == pmap_kernel()) {
/*
* Removing from kernel address space.
*/
rm = pmap_rmk;
} else {
/*
* Removing from user address space.
*/
write_user_windows();
rm = pmap_rmu;
}
ctx = getcontext();
s = splvm(); /* XXX conservative */
simple_lock(&pm->pm_lock);
for (; va < endva; va = nva) {
/* do one virtual segment at a time */
vr = VA_VREG(va);
vs = VA_VSEG(va);
nva = VSTOVA(vr, vs + 1);
if (nva == 0 || nva > endva)
nva = endva;
if (pm->pm_regmap[vr].rg_nsegmap != 0)
(*rm)(pm, va, nva, vr, vs);
}
simple_unlock(&pm->pm_lock);
splx(s);
setcontext(ctx);
}
/*
* The following magic number was chosen because:
* 1. It is the same amount of work to cache_flush_page 4 pages
* as to cache_flush_segment 1 segment (so at 4 the cost of
* flush is the same).
* 2. Flushing extra pages is bad (causes cache not to work).
* 3. The current code, which malloc()s 5 pages for each process
* for a user vmspace/pmap, almost never touches all 5 of those
* pages.
*/
#if 0
#define PMAP_RMK_MAGIC (cacheinfo.c_hwflush?5:64) /* if > magic, use cache_flush_segment */
#else
#define PMAP_RMK_MAGIC 5 /* if > magic, use cache_flush_segment */
#endif
/*
* Remove a range contained within a single segment.
* These are egregiously complicated routines.
*/
#if defined(SUN4) || defined(SUN4C)
/* remove from kernel */
/*static*/ void
pmap_rmk4_4c(pm, va, endva, vr, vs)
struct pmap *pm;
vaddr_t va, endva;
int vr, vs;
{
int i, tpte, perpage, npg;
struct pvlist *pv;
int nleft, pmeg;
struct regmap *rp;
struct segmap *sp;
rp = &pm->pm_regmap[vr];
sp = &rp->rg_segmap[vs];
if (rp->rg_nsegmap == 0)
return;
#ifdef DEBUG
if (rp->rg_segmap == NULL)
panic("pmap_rmk: no segments");
#endif
if ((nleft = sp->sg_npte) == 0)
return;
pmeg = sp->sg_pmeg;
#ifdef DEBUG
if (pmeg == seginval)
panic("pmap_rmk: not loaded");
if (pm->pm_ctx == NULL)
panic("pmap_rmk: lost context");
#endif
setcontext4(0);
/* decide how to flush cache */
npg = (endva - va) >> PGSHIFT;
if (npg > PMAP_RMK_MAGIC) {
/* flush the whole segment */
perpage = 0;
cache_flush_segment(vr, vs);
} else {
/* flush each page individually; some never need flushing */
perpage = (CACHEINFO.c_vactype != VAC_NONE);
}
while (va < endva) {
tpte = getpte4(va);
if ((tpte & PG_V) == 0) {
va += NBPG;
continue;
}
if ((tpte & PG_TYPE) == PG_OBMEM) {
/* if cacheable, flush page as needed */
if (perpage && (tpte & PG_NC) == 0)
cache_flush_page(va);
i = ptoa(tpte & PG_PFNUM);
if (managed(i)) {
pv = pvhead(i);
pv->pv_flags |= MR4_4C(tpte);
pv_unlink4_4c(pv, pm, va);
}
}
nleft--;
#ifdef DIAGNOSTIC
if (nleft < 0)
panic("pmap_rmk: too many PTEs in segment; "
"va 0x%lx; endva 0x%lx", va, endva);
#endif
setpte4(va, 0);
va += NBPG;
}
/*
* If the segment is all gone, remove it from everyone and
* free the MMU entry.
*/
if ((sp->sg_npte = nleft) == 0) {
va = VSTOVA(vr,vs); /* retract */
#if defined(SUN4_MMU3L)
if (HASSUN4_MMU3L)
setsegmap(va, seginval);
else
#endif
for (i = ncontext; --i >= 0;) {
setcontext4(i);
setsegmap(va, seginval);
}
me_free(pm, pmeg);
if (--rp->rg_nsegmap == 0) {
#if defined(SUN4_MMU3L)
if (HASSUN4_MMU3L) {
for (i = ncontext; --i >= 0;) {
setcontext4(i);
setregmap(va, reginval);
}
/* note: context is 0 */
region_free(pm, rp->rg_smeg);
}
#endif
}
}
}
#endif /* sun4, sun4c */
#if defined(SUN4M) /* 4M version of pmap_rmk */
/* remove from kernel (4m)*/
/*static*/ void
pmap_rmk4m(pm, va, endva, vr, vs)
struct pmap *pm;
vaddr_t va, endva;
int vr, vs;
{
int i, tpte, perpage, npg;
struct pvlist *pv;
int nleft;
struct regmap *rp;
struct segmap *sp;
rp = &pm->pm_regmap[vr];
sp = &rp->rg_segmap[vs];
if (rp->rg_nsegmap == 0)
return;
#ifdef DEBUG
if (rp->rg_segmap == NULL)
panic("pmap_rmk: no segments");
#endif
if ((nleft = sp->sg_npte) == 0)
return;
#ifdef DIAGNOSTIC
if (sp->sg_pte == NULL || rp->rg_seg_ptps == NULL)
panic("pmap_rmk: segment/region does not exist");
if (pm->pm_ctx == NULL)
panic("pmap_rmk: lost context");
#endif
setcontext4m(0);
/* decide how to flush cache */
npg = (endva - va) >> PGSHIFT;
if (npg > PMAP_RMK_MAGIC) {
/* flush the whole segment */
perpage = 0;
if (CACHEINFO.c_vactype != VAC_NONE)
cache_flush_segment(vr, vs);
} else {
/* flush each page individually; some never need flushing */
perpage = (CACHEINFO.c_vactype != VAC_NONE);
}
while (va < endva) {
tpte = sp->sg_pte[VA_SUN4M_VPG(va)];
if ((tpte & SRMMU_TETYPE) != SRMMU_TEPTE) {
#ifdef DEBUG
if ((pmapdebug & PDB_SANITYCHK) &&
(getpte4m(va) & SRMMU_TETYPE) == SRMMU_TEPTE)
panic("pmap_rmk: Spurious kTLB entry for 0x%lx",
va);
#endif
va += NBPG;
continue;
}
if ((tpte & SRMMU_PGTYPE) == PG_SUN4M_OBMEM) {
/* if cacheable, flush page as needed */
if (perpage && (tpte & SRMMU_PG_C))
cache_flush_page(va);
i = ptoa((tpte & SRMMU_PPNMASK) >> SRMMU_PPNSHIFT);
if (managed(i)) {
pv = pvhead(i);
pv->pv_flags |= MR4M(tpte);
pv_unlink4m(pv, pm, va);
}
}
tlb_flush_page(va);
setpgt4m(&sp->sg_pte[VA_SUN4M_VPG(va)], SRMMU_TEINVALID);
nleft--;
#ifdef DIAGNOSTIC
if (nleft < 0)
panic("pmap_rmk: too many PTEs in segment; "
"va 0x%lx; endva 0x%lx", va, endva);
#endif
va += NBPG;
}
sp->sg_npte = nleft;
}
#endif /* SUN4M */
/*
* Just like pmap_rmk_magic, but we have a different threshold.
* Note that this may well deserve further tuning work.
*/
#if 0
#define PMAP_RMU_MAGIC (cacheinfo.c_hwflush?4:64) /* if > magic, use cache_flush_segment */
#else
#define PMAP_RMU_MAGIC 4 /* if > magic, use cache_flush_segment */
#endif
#if defined(SUN4) || defined(SUN4C)
/* remove from user */
/*static*/ void
pmap_rmu4_4c(pm, va, endva, vr, vs)
struct pmap *pm;
vaddr_t va, endva;
int vr, vs;
{
int *pte0, i, pteva, tpte, perpage, npg;
struct pvlist *pv;
int nleft, pmeg;
struct regmap *rp;
struct segmap *sp;
rp = &pm->pm_regmap[vr];
if (rp->rg_nsegmap == 0)
return;
if (rp->rg_segmap == NULL)
panic("pmap_rmu: no segments");
sp = &rp->rg_segmap[vs];
if ((nleft = sp->sg_npte) == 0)
return;
if (sp->sg_pte == NULL)
panic("pmap_rmu: no pages");
pmeg = sp->sg_pmeg;
pte0 = sp->sg_pte;
if (pmeg == seginval) {
int *pte = pte0 + VA_VPG(va);
/*
* PTEs are not in MMU. Just invalidate software copies.
*/
for (; va < endva; pte++, va += NBPG) {
tpte = *pte;
if ((tpte & PG_V) == 0) {
/* nothing to remove (braindead VM layer) */
continue;
}
if ((tpte & PG_TYPE) == PG_OBMEM) {
i = ptoa(tpte & PG_PFNUM);
if (managed(i))
pv_unlink4_4c(pvhead(i), pm, va);
}
nleft--;
#ifdef DIAGNOSTIC
if (nleft < 0)
panic("pmap_rmu: too many PTEs in segment; "
"va 0x%lx; endva 0x%lx", va, endva);
#endif
*pte = 0;
}
if ((sp->sg_npte = nleft) == 0) {
free(pte0, M_VMPMAP);
sp->sg_pte = NULL;
if (--rp->rg_nsegmap == 0) {
free(rp->rg_segmap, M_VMPMAP);
rp->rg_segmap = NULL;
#if defined(SUN4_MMU3L)
if (HASSUN4_MMU3L && rp->rg_smeg != reginval) {
if (pm->pm_ctx) {
setcontext4(pm->pm_ctxnum);
setregmap(va, reginval);
} else
setcontext4(0);
region_free(pm, rp->rg_smeg);
}
#endif
}
}
return;
}
/*
* PTEs are in MMU. Invalidate in hardware, update ref &
* mod bits, and flush cache if required.
*/
if (CTX_USABLE(pm,rp)) {
/* process has a context, must flush cache */
npg = (endva - va) >> PGSHIFT;
setcontext4(pm->pm_ctxnum);
if (npg > PMAP_RMU_MAGIC) {
perpage = 0; /* flush the whole segment */
cache_flush_segment(vr, vs);
} else
perpage = (CACHEINFO.c_vactype != VAC_NONE);
pteva = va;
} else {
/* no context, use context 0; cache flush unnecessary */
setcontext4(0);
if (HASSUN4_MMU3L)
setregmap(0, tregion);
/* XXX use per-cpu pteva? */
setsegmap(0, pmeg);
pteva = VA_VPG(va) << PGSHIFT;
perpage = 0;
}
for (; va < endva; pteva += NBPG, va += NBPG) {
tpte = getpte4(pteva);
if ((tpte & PG_V) == 0)
continue;
if ((tpte & PG_TYPE) == PG_OBMEM) {
/* if cacheable, flush page as needed */
if (perpage && (tpte & PG_NC) == 0)
cache_flush_page(va);
i = ptoa(tpte & PG_PFNUM);
if (managed(i)) {
pv = pvhead(i);
pv->pv_flags |= MR4_4C(tpte);
pv_unlink4_4c(pv, pm, va);
}
}
nleft--;
#ifdef DIAGNOSTIC
if (nleft < 0)
panic("pmap_rmu: too many PTEs in segment; "
"va 0x%lx; endva 0x%lx; pmeg %d", va, endva, pmeg);
#endif
setpte4(pteva, 0);
pte0[VA_VPG(pteva)] = 0;
}
/*
* If the segment is all gone, and the context is loaded, give
* the segment back.
*/
if ((sp->sg_npte = nleft) == 0 /* ??? && pm->pm_ctx != NULL*/) {
#ifdef DEBUG
if (pm->pm_ctx == NULL) {
printf("pmap_rmu: no context here...");
}
#endif
va = VSTOVA(vr,vs); /* retract */
if (CTX_USABLE(pm,rp))
setsegmap(va, seginval);
else if (HASSUN4_MMU3L && rp->rg_smeg != reginval) {
/* note: context already set earlier */
setregmap(0, rp->rg_smeg);
setsegmap(vs << SGSHIFT, seginval);
}
free(pte0, M_VMPMAP);
sp->sg_pte = NULL;
me_free(pm, pmeg);
if (--rp->rg_nsegmap == 0) {
free(rp->rg_segmap, M_VMPMAP);
rp->rg_segmap = NULL;
GAP_WIDEN(pm,vr);
#if defined(SUN4_MMU3L)
if (HASSUN4_MMU3L && rp->rg_smeg != reginval) {
/* note: context already set */
if (pm->pm_ctx)
setregmap(va, reginval);
region_free(pm, rp->rg_smeg);
}
#endif
}
}
}
#endif /* sun4,4c */
#if defined(SUN4M) /* 4M version of pmap_rmu */
/* remove from user */
/*static*/ void
pmap_rmu4m(pm, va, endva, vr, vs)
struct pmap *pm;
vaddr_t va, endva;
int vr, vs;
{
int *pte0, i, perpage, npg;
struct pvlist *pv;
int nleft;
struct regmap *rp;
struct segmap *sp;
rp = &pm->pm_regmap[vr];
if (rp->rg_nsegmap == 0)
return;
if (rp->rg_segmap == NULL)
panic("pmap_rmu: no segments");
sp = &rp->rg_segmap[vs];
if ((nleft = sp->sg_npte) == 0)
return;
if (sp->sg_pte == NULL)
panic("pmap_rmu: no pages");
pte0 = sp->sg_pte;
/*
* Invalidate PTE in MMU pagetables. Flush cache if necessary.
*/
if (pm->pm_ctx) {
/* process has a context, must flush cache */
setcontext4m(pm->pm_ctxnum);
if (CACHEINFO.c_vactype != VAC_NONE) {
npg = (endva - va) >> PGSHIFT;
if (npg > PMAP_RMU_MAGIC) {
perpage = 0; /* flush the whole segment */
cache_flush_segment(vr, vs);
} else
perpage = 1;
} else
perpage = 0;
} else {
/* no context; cache flush unnecessary */
perpage = 0;
}
for (; va < endva; va += NBPG) {
int tpte;
tpte = pte0[VA_SUN4M_VPG(va)];
if ((tpte & SRMMU_TETYPE) != SRMMU_TEPTE) {
#ifdef DEBUG
if ((pmapdebug & PDB_SANITYCHK) &&
pm->pm_ctx &&
(getpte4m(va) & SRMMU_TEPTE) == SRMMU_TEPTE)
panic("pmap_rmu: Spurious uTLB entry for 0x%lx",
va);
#endif
continue;
}
if ((tpte & SRMMU_PGTYPE) == PG_SUN4M_OBMEM) {
/* if cacheable, flush page as needed */
if (perpage && (tpte & SRMMU_PG_C))
cache_flush_page(va);
i = ptoa((tpte & SRMMU_PPNMASK) >> SRMMU_PPNSHIFT);
if (managed(i)) {
pv = pvhead(i);
pv->pv_flags |= MR4M(tpte);
pv_unlink4m(pv, pm, va);
}
}
nleft--;
#ifdef DIAGNOSTIC
if (nleft < 0)
panic("pmap_rmu: too many PTEs in segment; "
"va 0x%lx; endva 0x%lx", va, endva);
#endif
if (pm->pm_ctx)
tlb_flush_page(va);
setpgt4m(&pte0[VA_SUN4M_VPG(va)], SRMMU_TEINVALID);
}
/*
* If the segment is all gone, and the context is loaded, give
* the segment back.
*/
if ((sp->sg_npte = nleft) == 0) {
#ifdef DEBUG
if (pm->pm_ctx == NULL) {
printf("pmap_rmu: no context here...");
}
#endif
va = VSTOVA(vr,vs); /* retract */
if (pm->pm_ctx)
tlb_flush_segment(vr, vs); /* Paranoia? */
setpgt4m(&rp->rg_seg_ptps[vs], SRMMU_TEINVALID);
sp->sg_pte = NULL;
pool_put(&L23_pool, pte0);
if (--rp->rg_nsegmap == 0) {
int n;
if (pm->pm_ctx)
tlb_flush_region(vr); /* Paranoia? */
#ifdef MULTIPROCESSOR
for (n = 0; n < ncpu; n++)
#else
n = 0;
#endif
{
setpgt4m(&pm->pm_reg_ptps[n][vr],
SRMMU_TEINVALID);
}
free(rp->rg_segmap, M_VMPMAP);
rp->rg_segmap = NULL;
pool_put(&L23_pool, rp->rg_seg_ptps);
}
}
}
#endif /* SUN4M */
/*
* Lower (make more strict) the protection on the specified
* physical page.
*
* There are only two cases: either the protection is going to 0
* (in which case we do the dirty work here), or it is going from
* to read-only (in which case pv_changepte does the trick).
*/
#if defined(SUN4) || defined(SUN4C)
void
pmap_page_protect4_4c(pg, prot)
struct vm_page *pg;
vm_prot_t prot;
{
struct pvlist *pv, *pv0, *npv;
struct pmap *pm;
int va, vr, vs, pteva, tpte;
int flags, nleft, i, s, ctx;
struct regmap *rp;
struct segmap *sp;
paddr_t pa = VM_PAGE_TO_PHYS(pg);
#ifdef DEBUG
if ((pmapdebug & PDB_CHANGEPROT) ||
(pmapdebug & PDB_REMOVE && prot == VM_PROT_NONE))
printf("pmap_page_protect(0x%lx, 0x%x)\n", pa, prot);
#endif
/*
* Skip unmanaged pages, or operations that do not take
* away write permission.
*/
if ((pa & (PMAP_TNC_4 & ~PMAP_NC)) ||
!managed(pa) || prot & VM_PROT_WRITE)
return;
write_user_windows(); /* paranoia */
pv = pvhead(pa);
if (prot & VM_PROT_READ) {
pv_changepte4_4c(pv, 0, PG_W);
return;
}
/*
* Remove all access to all people talking to this page.
* Walk down PV list, removing all mappings.
* The logic is much like that for pmap_remove,
* but we know we are removing exactly one page.
*/
s = splvm();
if (pv->pv_pmap == NULL) {
splx(s);
return;
}
ctx = getcontext4();
pv0 = pv;
/* This pv head will become empty, so clear caching state flags */
flags = pv->pv_flags & ~(PV_NC|PV_ANC);
while (pv != NULL) {
pm = pv->pv_pmap;
va = pv->pv_va;
vr = VA_VREG(va);
vs = VA_VSEG(va);
rp = &pm->pm_regmap[vr];
if (rp->rg_nsegmap == 0)
panic("pmap_remove_all: empty vreg");
sp = &rp->rg_segmap[vs];
if ((nleft = sp->sg_npte) == 0)
panic("pmap_remove_all: empty vseg");
sp->sg_npte = --nleft;
if (sp->sg_pmeg == seginval) {
/* Definitely not a kernel map */
if (nleft) {
sp->sg_pte[VA_VPG(va)] = 0;
} else {
free(sp->sg_pte, M_VMPMAP);
sp->sg_pte = NULL;
if (--rp->rg_nsegmap == 0) {
free(rp->rg_segmap, M_VMPMAP);
rp->rg_segmap = NULL;
GAP_WIDEN(pm,vr);
#if defined(SUN4_MMU3L)
if (HASSUN4_MMU3L && rp->rg_smeg != reginval) {
if (pm->pm_ctx) {
setcontext4(pm->pm_ctxnum);
setregmap(va, reginval);
} else
setcontext4(0);
region_free(pm, rp->rg_smeg);
}
#endif
}
}
goto nextpv;
}
if (CTX_USABLE(pm,rp)) {
setcontext4(pm->pm_ctxnum);
pteva = va;
cache_flush_page(va);
} else {
setcontext4(0);
/* XXX use per-cpu pteva? */
if (HASSUN4_MMU3L)
setregmap(0, tregion);
setsegmap(0, sp->sg_pmeg);
pteva = VA_VPG(va) << PGSHIFT;
}
tpte = getpte4(pteva);
if ((tpte & PG_V) == 0)
panic("pmap_page_protect !PG_V: ctx %d, va 0x%x, pte 0x%x",
pm->pm_ctxnum, va, tpte);
flags |= MR4_4C(tpte);
if (nleft) {
setpte4(pteva, 0);
if (sp->sg_pte != NULL)
sp->sg_pte[VA_VPG(pteva)] = 0;
goto nextpv;
}
/* Entire segment is gone */
if (pm == pmap_kernel()) {
#if defined(SUN4_MMU3L)
if (!HASSUN4_MMU3L)
#endif
for (i = ncontext; --i >= 0;) {
setcontext4(i);
setsegmap(va, seginval);
}
me_free(pm, sp->sg_pmeg);
if (--rp->rg_nsegmap == 0) {
#if defined(SUN4_MMU3L)
if (HASSUN4_MMU3L) {
for (i = ncontext; --i >= 0;) {
setcontext4(i);
setregmap(va, reginval);
}
region_free(pm, rp->rg_smeg);
}
#endif
}
} else {
if (CTX_USABLE(pm,rp))
/* `pteva'; we might be using tregion */
setsegmap(pteva, seginval);
#if defined(SUN4_MMU3L)
else if (HASSUN4_MMU3L &&
rp->rg_smeg != reginval) {
/* note: context already set earlier */
setregmap(0, rp->rg_smeg);
setsegmap(vs << SGSHIFT, seginval);
}
#endif
free(sp->sg_pte, M_VMPMAP);
sp->sg_pte = NULL;
me_free(pm, sp->sg_pmeg);
if (--rp->rg_nsegmap == 0) {
#if defined(SUN4_MMU3L)
if (HASSUN4_MMU3L &&
rp->rg_smeg != reginval) {
if (pm->pm_ctx)
setregmap(va, reginval);
region_free(pm, rp->rg_smeg);
}
#endif
free(rp->rg_segmap, M_VMPMAP);
rp->rg_segmap = NULL;
GAP_WIDEN(pm,vr);
}
}
nextpv:
npv = pv->pv_next;
if (pv != pv0)
pool_put(&pv_pool, pv);
pv = npv;
}
/* Finally, update pv head */
pv0->pv_pmap = NULL;
pv0->pv_next = NULL;
pv0->pv_flags = flags;
setcontext4(ctx);
splx(s);
}
/*
* Lower (make more strict) the protection on the specified
* range of this pmap.
*
* There are only two cases: either the protection is going to 0
* (in which case we call pmap_remove to do the dirty work), or
* it is going from read/write to read-only. The latter is
* fairly easy.
*/
void
pmap_protect4_4c(pm, sva, eva, prot)
struct pmap *pm;
vaddr_t sva, eva;
vm_prot_t prot;
{
int va, nva, vr, vs;
int s, ctx;
struct regmap *rp;
struct segmap *sp;
if (pm == NULL || prot & VM_PROT_WRITE)
return;
if ((prot & VM_PROT_READ) == 0) {
pmap_remove(pm, sva, eva);
return;
}
write_user_windows();
ctx = getcontext4();
s = splvm();
simple_lock(&pm->pm_lock);
for (va = sva; va < eva;) {
vr = VA_VREG(va);
vs = VA_VSEG(va);
rp = &pm->pm_regmap[vr];
nva = VSTOVA(vr,vs + 1);
if (nva == 0) panic("pmap_protect: last segment"); /* cannot happen */
if (nva > eva)
nva = eva;
if (rp->rg_nsegmap == 0) {
va = nva;
continue;
}
#ifdef DEBUG
if (rp->rg_segmap == NULL)
panic("pmap_protect: no segments");
#endif
sp = &rp->rg_segmap[vs];
if (sp->sg_npte == 0) {
va = nva;
continue;
}
#ifdef DEBUG
if (pm != pmap_kernel() && sp->sg_pte == NULL)
panic("pmap_protect: no pages");
#endif
if (sp->sg_pmeg == seginval) {
int *pte = &sp->sg_pte[VA_VPG(va)];
/* not in MMU; just clear PG_W from core copies */
for (; va < nva; va += NBPG)
*pte++ &= ~PG_W;
} else {
/* in MMU: take away write bits from MMU PTEs */
if (CTX_USABLE(pm,rp)) {
int tpte;
/*
* Flush cache so that any existing cache
* tags are updated. This is really only
* needed for PTEs that lose PG_W.
*/
setcontext4(pm->pm_ctxnum);
for (; va < nva; va += NBPG) {
tpte = getpte4(va);
pmap_stats.ps_npg_prot_all++;
if ((tpte & (PG_W|PG_TYPE)) ==
(PG_W|PG_OBMEM)) {
pmap_stats.ps_npg_prot_actual++;
cache_flush_page(va);
setpte4(va, tpte & ~PG_W);
}
}
} else {
int pteva;
/*
* No context, hence not cached;
* just update PTEs.
*/
setcontext4(0);
/* XXX use per-cpu pteva? */
if (HASSUN4_MMU3L)
setregmap(0, tregion);
setsegmap(0, sp->sg_pmeg);
pteva = VA_VPG(va) << PGSHIFT;
for (; va < nva; pteva += NBPG, va += NBPG)
setpte4(pteva, getpte4(pteva) & ~PG_W);
}
}
}
simple_unlock(&pm->pm_lock);
splx(s);
setcontext4(ctx);
}
/*
* Change the protection and/or wired status of the given (MI) virtual page.
* XXX: should have separate function (or flag) telling whether only wiring
* is changing.
*/
void
pmap_changeprot4_4c(pm, va, prot, wired)
struct pmap *pm;
vaddr_t va;
vm_prot_t prot;
int wired;
{
int vr, vs, tpte, newprot, ctx, s;
struct regmap *rp;
struct segmap *sp;
#ifdef DEBUG
if (pmapdebug & PDB_CHANGEPROT)
printf("pmap_changeprot(%p, 0x%lx, 0x%x, 0x%x)\n",
pm, va, prot, wired);
#endif
write_user_windows(); /* paranoia */
va &= ~(NBPG-1);
if (pm == pmap_kernel())
newprot = prot & VM_PROT_WRITE ? PG_S|PG_W : PG_S;
else
newprot = prot & VM_PROT_WRITE ? PG_W : 0;
vr = VA_VREG(va);
vs = VA_VSEG(va);
s = splvm(); /* conservative */
rp = &pm->pm_regmap[vr];
if (rp->rg_nsegmap == 0) {
printf("pmap_changeprot: no segments in %d\n", vr);
return;
}
if (rp->rg_segmap == NULL) {
printf("pmap_changeprot: no segments in %d!\n", vr);
return;
}
sp = &rp->rg_segmap[vs];
pmap_stats.ps_changeprots++;
#ifdef DEBUG
if (pm != pmap_kernel() && sp->sg_pte == NULL)
panic("pmap_changeprot: no pages");
#endif
/* update PTEs in software or hardware */
if (sp->sg_pmeg == seginval) {
int *pte = &sp->sg_pte[VA_VPG(va)];
/* update in software */
if ((*pte & PG_PROT) == newprot)
goto useless;
*pte = (*pte & ~PG_PROT) | newprot;
} else {
/* update in hardware */
ctx = getcontext4();
if (CTX_USABLE(pm,rp)) {
/*
* Use current context.
* Flush cache if page has been referenced to
* avoid stale protection bits in the cache tags.
*/
setcontext4(pm->pm_ctxnum);
tpte = getpte4(va);
if ((tpte & PG_PROT) == newprot) {
setcontext4(ctx);
goto useless;
}
if ((tpte & (PG_U|PG_NC|PG_TYPE)) == (PG_U|PG_OBMEM))
cache_flush_page((int)va);
} else {
setcontext4(0);
/* XXX use per-cpu va? */
if (HASSUN4_MMU3L)
setregmap(0, tregion);
setsegmap(0, sp->sg_pmeg);
va = VA_VPG(va) << PGSHIFT;
tpte = getpte4(va);
if ((tpte & PG_PROT) == newprot) {
setcontext4(ctx);
goto useless;
}
}
tpte = (tpte & ~PG_PROT) | newprot;
setpte4(va, tpte);
setcontext4(ctx);
}
splx(s);
return;
useless:
/* only wiring changed, and we ignore wiring */
pmap_stats.ps_useless_changeprots++;
splx(s);
}
#endif /* sun4, 4c */
#if defined(SUN4M) /* 4M version of protection routines above */
/*
* Lower (make more strict) the protection on the specified
* physical page.
*
* There are only two cases: either the protection is going to 0
* (in which case we do the dirty work here), or it is going
* to read-only (in which case pv_changepte does the trick).
*/
void
pmap_page_protect4m(pg, prot)
struct vm_page *pg;
vm_prot_t prot;
{
struct pvlist *pv, *pv0, *npv;
struct pmap *pm;
int va, vr, vs, tpte;
int flags, nleft, s, ctx;
struct regmap *rp;
struct segmap *sp;
paddr_t pa = VM_PAGE_TO_PHYS(pg);
#ifdef DEBUG
if ((pmapdebug & PDB_CHANGEPROT) ||
(pmapdebug & PDB_REMOVE && prot == VM_PROT_NONE))
printf("pmap_page_protect(0x%lx, 0x%x)\n", pa, prot);
#endif
/*
* Skip unmanaged pages, or operations that do not take
* away write permission.
*/
if (!managed(pa) || prot & VM_PROT_WRITE)
return;
write_user_windows(); /* paranoia */
pv = pvhead(pa);
if (prot & VM_PROT_READ) {
pv_changepte4m(pv, 0, PPROT_WRITE);
return;
}
/*
* Remove all access to all people talking to this page.
* Walk down PV list, removing all mappings.
* The logic is much like that for pmap_remove,
* but we know we are removing exactly one page.
*/
s = splvm();
if (pv->pv_pmap == NULL) {
splx(s);
return;
}
ctx = getcontext4m();
pv0 = pv;
/* This pv head will become empty, so clear caching state flags */
flags = pv->pv_flags & ~(PV_C4M|PV_ANC);
while (pv != NULL) {
pm = pv->pv_pmap;
va = pv->pv_va;
vr = VA_VREG(va);
vs = VA_VSEG(va);
rp = &pm->pm_regmap[vr];
if (rp->rg_nsegmap == 0)
panic("pmap_remove_all: empty vreg");
sp = &rp->rg_segmap[vs];
if ((nleft = sp->sg_npte) == 0)
panic("pmap_remove_all: empty vseg");
sp->sg_npte = --nleft;
/* Invalidate PTE in MMU pagetables. Flush cache if necessary */
if (pm->pm_ctx) {
setcontext4m(pm->pm_ctxnum);
cache_flush_page(va);
tlb_flush_page(va);
}
tpte = sp->sg_pte[VA_SUN4M_VPG(va)];
setpgt4m(&sp->sg_pte[VA_SUN4M_VPG(va)], SRMMU_TEINVALID);
if ((tpte & SRMMU_TETYPE) != SRMMU_TEPTE)
panic("pmap_page_protect !PG_V");
flags |= MR4M(tpte);
if (nleft == 0 && pm != pmap_kernel()) {
/*
* Entire user mode segment is gone
*/
if (pm->pm_ctx)
tlb_flush_segment(vr, vs);
setpgt4m(&rp->rg_seg_ptps[vs], SRMMU_TEINVALID);
pool_put(&L23_pool, sp->sg_pte);
sp->sg_pte = NULL;
if (--rp->rg_nsegmap == 0) {
int n;
if (pm->pm_ctx)
tlb_flush_region(vr);
/*
* Replicate segment de-allocation in each
* CPU's region table.
*/
#ifdef MULTIPROCESSOR
for (n = 0; n < ncpu; n++)
#else
n = 0;
#endif
{
setpgt4m(&pm->pm_reg_ptps[n][vr],
SRMMU_TEINVALID);
}
free(rp->rg_segmap, M_VMPMAP);
rp->rg_segmap = NULL;
pool_put(&L23_pool, rp->rg_seg_ptps);
}
}
npv = pv->pv_next;
if (pv != pv0)
pool_put(&pv_pool, pv);
pv = npv;
}
/* Finally, update pv head */
pv0->pv_pmap = NULL;
pv0->pv_next = NULL;
pv0->pv_flags = flags;
setcontext4m(ctx);
splx(s);
}
/*
* Lower (make more strict) the protection on the specified
* range of this pmap.
*
* There are only two cases: either the protection is going to 0
* (in which case we call pmap_remove to do the dirty work), or
* it is going from read/write to read-only. The latter is
* fairly easy.
*/
void
pmap_protect4m(pm, sva, eva, prot)
struct pmap *pm;
vaddr_t sva, eva;
vm_prot_t prot;
{
vaddr_t va, nva;
int s, ctx, vr, vs;
struct regmap *rp;
struct segmap *sp;
if (pm == NULL || prot & VM_PROT_WRITE)
return;
if ((prot & VM_PROT_READ) == 0) {
pmap_remove(pm, sva, eva);
return;
}
#ifdef DEBUG
if (pmapdebug & PDB_CHANGEPROT)
printf("pmap_protect[curpid %d, ctx %d](%lx, %lx, %x)\n",
curproc==NULL ? -1 : curproc->p_pid,
pm->pm_ctx ? pm->pm_ctxnum : -1, sva, eva, prot);
#endif
write_user_windows();
ctx = getcontext4m();
s = splvm();
simple_lock(&pm->pm_lock);
for (va = sva; va < eva;) {
vr = VA_VREG(va);
vs = VA_VSEG(va);
rp = &pm->pm_regmap[vr];
nva = VSTOVA(vr,vs + 1);
if (nva == 0) /* XXX */
panic("pmap_protect: last segment"); /* cannot happen(why?)*/
if (nva > eva)
nva = eva;
if (rp->rg_nsegmap == 0) {
va = nva;
continue;
}
#ifdef DEBUG
if (rp->rg_segmap == NULL)
panic("pmap_protect: no segments");
#endif
sp = &rp->rg_segmap[vs];
if (sp->sg_npte == 0) {
va = nva;
continue;
}
#ifdef DEBUG
if (sp->sg_pte == NULL)
panic("pmap_protect: no pages");
#endif
/*
* pages loaded: take away write bits from MMU PTEs
*/
if (pm->pm_ctx)
setcontext4m(pm->pm_ctxnum);
pmap_stats.ps_npg_prot_all = (nva - va) >> PGSHIFT;
for (; va < nva; va += NBPG) {
int tpte;
tpte = sp->sg_pte[VA_SUN4M_VPG(va)];
/*
* Flush cache so that any existing cache
* tags are updated. This is really only
* needed for PTEs that lose PG_W.
*/
if ((tpte & (PPROT_WRITE|SRMMU_PGTYPE)) ==
(PPROT_WRITE|PG_SUN4M_OBMEM)) {
pmap_stats.ps_npg_prot_actual++;
if (pm->pm_ctx) {
cache_flush_page(va);
/* Flush TLB entry */
tlb_flush_page(va);
}
setpgt4m(&sp->sg_pte[VA_SUN4M_VPG(va)],
tpte & ~PPROT_WRITE);
}
}
}
simple_unlock(&pm->pm_lock);
splx(s);
setcontext4m(ctx);
}
/*
* Change the protection and/or wired status of the given (MI) virtual page.
* XXX: should have separate function (or flag) telling whether only wiring
* is changing.
*/
void
pmap_changeprot4m(pm, va, prot, wired)
struct pmap *pm;
vaddr_t va;
vm_prot_t prot;
int wired;
{
int pte, newprot, ctx, s;
struct regmap *rp;
struct segmap *sp;
#ifdef DEBUG
if (pmapdebug & PDB_CHANGEPROT)
printf("pmap_changeprot(%p, 0x%lx, 0x%x, 0x%x)\n",
pm, va, prot, wired);
#endif
write_user_windows(); /* paranoia */
va &= ~(NBPG-1);
if (pm == pmap_kernel())
newprot = prot & VM_PROT_WRITE ? PPROT_N_RWX : PPROT_N_RX;
else
newprot = prot & VM_PROT_WRITE ? PPROT_RWX_RWX : PPROT_RX_RX;
pmap_stats.ps_changeprots++;
s = splvm(); /* conservative */
rp = &pm->pm_regmap[VA_VREG(va)];
sp = &rp->rg_segmap[VA_VSEG(va)];
pte = sp->sg_pte[VA_SUN4M_VPG(va)];
if ((pte & SRMMU_PROT_MASK) == newprot) {
/* only wiring changed, and we ignore wiring */
pmap_stats.ps_useless_changeprots++;
goto out;
}
if (pm->pm_ctx) {
/*
* Use current context.
* Flush cache if page has been referenced to
* avoid stale protection bits in the cache tags.
*/
ctx = getcontext4m();
setcontext4m(pm->pm_ctxnum);
if ((pte & (SRMMU_PG_C|SRMMU_PGTYPE)) ==
(SRMMU_PG_C|PG_SUN4M_OBMEM))
cache_flush_page(va);
tlb_flush_page(va);
setcontext4m(ctx);
}
setpgt4m(&sp->sg_pte[VA_SUN4M_VPG(va)],
(pte & ~SRMMU_PROT_MASK) | newprot);
out:
splx(s);
}
#endif /* SUN4M */
/*
* Insert (MI) physical page pa at virtual address va in the given pmap.
* NB: the pa parameter includes type bits PMAP_OBIO, PMAP_NC as necessary.
*
* If pa is not in the `managed' range it will not be `bank mapped'.
* This works during bootstrap only because the first 4MB happens to
* map one-to-one.
*
* There may already be something else there, or we might just be
* changing protections and/or wiring on an existing mapping.
* XXX should have different entry points for changing!
*/
#if defined(SUN4) || defined(SUN4C)
int
pmap_enter4_4c(pm, va, pa, prot, flags)
struct pmap *pm;
vaddr_t va;
paddr_t pa;
vm_prot_t prot;
int flags;
{
struct pvlist *pv;
int pteproto, ctx;
boolean_t wired = (flags & PMAP_WIRED) != 0;
if (pm == NULL)
return (KERN_SUCCESS);
if (VA_INHOLE(va)) {
#ifdef DEBUG
printf("pmap_enter: pm %p, va 0x%lx, pa 0x%lx: in MMU hole\n",
pm, va, pa);
#endif
return (KERN_SUCCESS);
}
#ifdef DEBUG
if (pmapdebug & PDB_ENTER)
printf("pmap_enter(%p, 0x%lx, 0x%lx, 0x%x, 0x%x)\n",
pm, va, pa, prot, wired);
#endif
pteproto = PG_V | PMAP_T2PTE_4(pa);
pa &= ~PMAP_TNC_4;
/*
* Set up prototype for new PTE. Cannot set PG_NC from PV_NC yet
* since the pvlist no-cache bit might change as a result of the
* new mapping.
*/
if ((pteproto & PG_TYPE) == PG_OBMEM && managed(pa)) {
#ifdef DIAGNOSTIC
if (!pmap_pa_exists(pa))
panic("pmap_enter: no such address: 0x%lx", pa);
#endif
pv = pvhead(pa);
} else {
pv = NULL;
}
pteproto |= atop(pa) & PG_PFNUM;
if (prot & VM_PROT_WRITE)
pteproto |= PG_W;
ctx = getcontext4();
if (pm == pmap_kernel())
pmap_enk4_4c(pm, va, prot, wired, pv, pteproto | PG_S);
else
pmap_enu4_4c(pm, va, prot, wired, pv, pteproto);
setcontext4(ctx);
return (KERN_SUCCESS);
}
/* enter new (or change existing) kernel mapping */
void
pmap_enk4_4c(pm, va, prot, wired, pv, pteproto)
struct pmap *pm;
vaddr_t va;
vm_prot_t prot;
int wired;
struct pvlist *pv;
int pteproto;
{
int vr, vs, tpte, i, s;
struct regmap *rp;
struct segmap *sp;
vr = VA_VREG(va);
vs = VA_VSEG(va);
rp = &pm->pm_regmap[vr];
sp = &rp->rg_segmap[vs];
s = splvm(); /* XXX way too conservative */
#if defined(SUN4_MMU3L)
if (HASSUN4_MMU3L && rp->rg_smeg == reginval) {
vaddr_t tva;
rp->rg_smeg = region_alloc(&region_locked, pm, vr)->me_cookie;
i = ncontext - 1;
do {
setcontext4(i);
setregmap(va, rp->rg_smeg);
} while (--i >= 0);
/* set all PTEs to invalid, then overwrite one PTE below */
tva = VA_ROUNDDOWNTOREG(va);
for (i = 0; i < NSEGRG; i++) {
setsegmap(tva, rp->rg_segmap[i].sg_pmeg);
tva += NBPSG;
};
}
#endif
if (sp->sg_pmeg != seginval && (tpte = getpte4(va)) & PG_V) {
int addr;
/* old mapping exists, and is of the same pa type */
if ((tpte & (PG_PFNUM|PG_TYPE)) ==
(pteproto & (PG_PFNUM|PG_TYPE))) {
/* just changing protection and/or wiring */
splx(s);
pmap_changeprot4_4c(pm, va, prot, wired);
return;
}
if ((tpte & PG_TYPE) == PG_OBMEM) {
#ifdef DEBUG
printf("pmap_enk: changing existing va=>pa entry: va 0x%lx, pteproto 0x%x\n",
va, pteproto);
#endif
/*
* Switcheroo: changing pa for this va.
* If old pa was managed, remove from pvlist.
* If old page was cached, flush cache.
*/
addr = ptoa(tpte & PG_PFNUM);
if (managed(addr))
pv_unlink4_4c(pvhead(addr), pm, va);
if ((tpte & PG_NC) == 0) {
setcontext4(0); /* ??? */
cache_flush_page((int)va);
}
}
} else {
/* adding new entry */
sp->sg_npte++;
}
/*
* If the new mapping is for a managed PA, enter into pvlist.
* Note that the mapping for a malloc page will always be
* unique (hence will never cause a second call to malloc).
*/
if (pv != NULL)
pteproto |= pv_link4_4c(pv, pm, va, pteproto & PG_NC);
if (sp->sg_pmeg == seginval) {
int tva;
/*
* Allocate an MMU entry now (on locked list),
* and map it into every context. Set all its
* PTEs invalid (we will then overwrite one, but
* this is more efficient than looping twice).
*/
#ifdef DEBUG
if (pm->pm_ctx == NULL || pm->pm_ctxnum != 0)
panic("pmap_enk: kern seg but no kern ctx");
#endif
sp->sg_pmeg = me_alloc(&segm_locked, pm, vr, vs)->me_cookie;
rp->rg_nsegmap++;
#if defined(SUN4_MMU3L)
if (HASSUN4_MMU3L)
setsegmap(va, sp->sg_pmeg);
else
#endif
{
i = ncontext - 1;
do {
setcontext4(i);
setsegmap(va, sp->sg_pmeg);
} while (--i >= 0);
}
/* set all PTEs to invalid, then overwrite one PTE below */
tva = VA_ROUNDDOWNTOSEG(va);
i = NPTESG;
do {
setpte4(tva, 0);
tva += NBPG;
} while (--i > 0);
}
/* ptes kept in hardware only */
setpte4(va, pteproto);
splx(s);
}
/* enter new (or change existing) user mapping */
void
pmap_enu4_4c(pm, va, prot, wired, pv, pteproto)
struct pmap *pm;
vaddr_t va;
vm_prot_t prot;
int wired;
struct pvlist *pv;
int pteproto;
{
int vr, vs, *pte, tpte, pmeg, s, doflush;
struct regmap *rp;
struct segmap *sp;
write_user_windows(); /* XXX conservative */
vr = VA_VREG(va);
vs = VA_VSEG(va);
rp = &pm->pm_regmap[vr];
s = splvm(); /* XXX conservative */
/*
* If there is no space in which the PTEs can be written
* while they are not in the hardware, this must be a new
* virtual segment. Get PTE space and count the segment.
*
* TO SPEED UP CTX ALLOC, PUT SEGMENT BOUNDS STUFF HERE
* AND IN pmap_rmu()
*/
GAP_SHRINK(pm,vr);
#ifdef DEBUG
if (pm->pm_gap_end < pm->pm_gap_start) {
printf("pmap_enu: gap_start 0x%x, gap_end 0x%x",
pm->pm_gap_start, pm->pm_gap_end);
panic("pmap_enu: gap botch");
}
#endif
rretry:
if (rp->rg_segmap == NULL) {
/* definitely a new mapping */
int i;
int size = NSEGRG * sizeof (struct segmap);
sp = (struct segmap *)malloc((u_long)size, M_VMPMAP, M_WAITOK);
if (rp->rg_segmap != NULL) {
printf("pmap_enter: segment filled during sleep\n"); /* can this happen? */
free(sp, M_VMPMAP);
goto rretry;
}
qzero((caddr_t)sp, size);
rp->rg_segmap = sp;
rp->rg_nsegmap = 0;
for (i = NSEGRG; --i >= 0;)
sp++->sg_pmeg = seginval;
}
sp = &rp->rg_segmap[vs];
sretry:
if ((pte = sp->sg_pte) == NULL) {
/* definitely a new mapping */
int size = NPTESG * sizeof *pte;
pte = (int *)malloc((u_long)size, M_VMPMAP, M_WAITOK);
if (sp->sg_pte != NULL) {
printf("pmap_enter: pte filled during sleep\n"); /* can this happen? */
free(pte, M_VMPMAP);
goto sretry;
}
#ifdef DEBUG
if (sp->sg_pmeg != seginval)
panic("pmap_enter: new ptes, but not seginval");
#endif
qzero((caddr_t)pte, size);
sp->sg_pte = pte;
sp->sg_npte = 1;
rp->rg_nsegmap++;
} else {
/* might be a change: fetch old pte */
doflush = 0;
if ((pmeg = sp->sg_pmeg) == seginval) {
/* software pte */
tpte = pte[VA_VPG(va)];
} else {
/* hardware pte */
if (CTX_USABLE(pm,rp)) {
setcontext4(pm->pm_ctxnum);
tpte = getpte4(va);
doflush = CACHEINFO.c_vactype != VAC_NONE;
} else {
setcontext4(0);
/* XXX use per-cpu pteva? */
if (HASSUN4_MMU3L)
setregmap(0, tregion);
setsegmap(0, pmeg);
tpte = getpte4(VA_VPG(va) << PGSHIFT);
}
}
if (tpte & PG_V) {
int addr;
/* old mapping exists, and is of the same pa type */
if ((tpte & (PG_PFNUM|PG_TYPE)) ==
(pteproto & (PG_PFNUM|PG_TYPE))) {
/* just changing prot and/or wiring */
splx(s);
/* caller should call this directly: */
pmap_changeprot4_4c(pm, va, prot, wired);
if (wired)
pm->pm_stats.wired_count++;
else
pm->pm_stats.wired_count--;
return;
}
/*
* Switcheroo: changing pa for this va.
* If old pa was managed, remove from pvlist.
* If old page was cached, flush cache.
*/
#if 0
printf("%s[%d]: pmap_enu: changing existing va(0x%x)=>pa entry\n",
curproc->p_comm, curproc->p_pid, va);
#endif
if ((tpte & PG_TYPE) == PG_OBMEM) {
addr = ptoa(tpte & PG_PFNUM);
if (managed(addr))
pv_unlink4_4c(pvhead(addr), pm, va);
if (doflush && (tpte & PG_NC) == 0)
cache_flush_page((int)va);
}
} else {
/* adding new entry */
sp->sg_npte++;
/*
* Increment counters
*/
if (wired)
pm->pm_stats.wired_count++;
}
}
if (pv != NULL)
pteproto |= pv_link4_4c(pv, pm, va, pteproto & PG_NC);
/*
* Update hardware & software PTEs.
*/
if ((pmeg = sp->sg_pmeg) != seginval) {
/* ptes are in hardware */
if (CTX_USABLE(pm,rp))
setcontext4(pm->pm_ctxnum);
else {
setcontext4(0);
/* XXX use per-cpu pteva? */
if (HASSUN4_MMU3L)
setregmap(0, tregion);
setsegmap(0, pmeg);
va = VA_VPG(va) << PGSHIFT;
}
setpte4(va, pteproto);
}
/* update software copy */
pte += VA_VPG(va);
*pte = pteproto;
splx(s);
}
void
pmap_kenter_pa4_4c(va, pa, prot)
vaddr_t va;
paddr_t pa;
vm_prot_t prot;
{
pmap_enter4_4c(pmap_kernel(), va, pa, prot, PMAP_WIRED);
}
void
pmap_kenter_pgs4_4c(va, pgs, npgs)
vaddr_t va;
struct vm_page **pgs;
int npgs;
{
int i;
for (i = 0; i < npgs; i++, va += PAGE_SIZE) {
pmap_enter4_4c(pmap_kernel(), va, VM_PAGE_TO_PHYS(pgs[i]),
VM_PROT_READ|VM_PROT_WRITE, PMAP_WIRED);
}
}
void
pmap_kremove4_4c(va, len)
vaddr_t va;
vsize_t len;
{
for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
pmap_remove(pmap_kernel(), va, va + PAGE_SIZE);
}
}
#endif /*sun4,4c*/
#if defined(SUN4M) /* Sun4M versions of enter routines */
/*
* Insert (MI) physical page pa at virtual address va in the given pmap.
* NB: the pa parameter includes type bits PMAP_OBIO, PMAP_NC as necessary.
*
* If pa is not in the `managed' range it will not be `bank mapped'.
* This works during bootstrap only because the first 4MB happens to
* map one-to-one.
*
* There may already be something else there, or we might just be
* changing protections and/or wiring on an existing mapping.
* XXX should have different entry points for changing!
*/
int
pmap_enter4m(pm, va, pa, prot, flags)
struct pmap *pm;
vaddr_t va;
paddr_t pa;
vm_prot_t prot;
int flags;
{
struct pvlist *pv;
int pteproto, ctx;
boolean_t wired = (flags & PMAP_WIRED) != 0;
if (pm == NULL)
return (KERN_SUCCESS);
#ifdef DEBUG
if (pmapdebug & PDB_ENTER)
printf("pmap_enter[curpid %d, ctx %d]"
"(%p, 0x%lx, 0x%lx, 0x%x, 0x%x)\n",
curproc==NULL ? -1 : curproc->p_pid,
pm->pm_ctx==NULL ? -1 : pm->pm_ctxnum,
pm, va, pa, prot, wired);
#endif
/* Initialise pteproto with cache bit */
pteproto = (pa & PMAP_NC) == 0 ? SRMMU_PG_C : 0;
#ifdef DEBUG
if (pa & PMAP_TYPE_SRMMU) { /* this page goes in an iospace */
if (cpuinfo.cpu_type == CPUTYP_MS1)
panic("pmap_enter4m: attempt to use 36-bit iospace on"
" MicroSPARC");
}
#endif
pteproto |= PMAP_T2PTE_SRMMU(pa);
/* Make sure we get a pte with appropriate perms! */
pteproto |= SRMMU_TEPTE | PPROT_RX_RX;
pa &= ~PMAP_TNC_SRMMU;
/*
* Set up prototype for new PTE. Cannot set PG_NC from PV_NC yet
* since the pvlist no-cache bit might change as a result of the
* new mapping.
*/
if ((pteproto & SRMMU_PGTYPE) == PG_SUN4M_OBMEM && managed(pa)) {
#ifdef DIAGNOSTIC
if (!pmap_pa_exists(pa))
panic("pmap_enter: no such address: 0x%lx", pa);
#endif
pv = pvhead(pa);
} else {
pv = NULL;
}
pteproto |= (atop(pa) << SRMMU_PPNSHIFT);
if (prot & VM_PROT_WRITE)
pteproto |= PPROT_WRITE;
ctx = getcontext4m();
if (pm == pmap_kernel())
pmap_enk4m(pm, va, prot, wired, pv, pteproto | PPROT_S);
else
pmap_enu4m(pm, va, prot, wired, pv, pteproto);
setcontext4m(ctx);
return (KERN_SUCCESS);
}
/* enter new (or change existing) kernel mapping */
void
pmap_enk4m(pm, va, prot, wired, pv, pteproto)
struct pmap *pm;
vaddr_t va;
vm_prot_t prot;
int wired;
struct pvlist *pv;
int pteproto;
{
int vr, vs, tpte, s;
struct regmap *rp;
struct segmap *sp;
#ifdef DEBUG
if (va < KERNBASE)
panic("pmap_enk4m: can't enter va 0x%lx below KERNBASE", va);
#endif
vr = VA_VREG(va);
vs = VA_VSEG(va);
rp = &pm->pm_regmap[vr];
sp = &rp->rg_segmap[vs];
s = splvm(); /* XXX way too conservative */
if (rp->rg_seg_ptps == NULL) /* enter new region */
panic("pmap_enk4m: missing kernel region table for va 0x%lx",va);
tpte = sp->sg_pte[VA_SUN4M_VPG(va)];
if ((tpte & SRMMU_TETYPE) == SRMMU_TEPTE) {
int addr;
/* old mapping exists, and is of the same pa type */
if ((tpte & SRMMU_PPNMASK) == (pteproto & SRMMU_PPNMASK)) {
/* just changing protection and/or wiring */
splx(s);
pmap_changeprot4m(pm, va, prot, wired);
return;
}
if ((tpte & SRMMU_PGTYPE) == PG_SUN4M_OBMEM) {
#ifdef DEBUG
printf("pmap_enk4m: changing existing va=>pa entry: va 0x%lx, pteproto 0x%x, "
"oldpte 0x%x\n", va, pteproto, tpte);
#endif
/*
* Switcheroo: changing pa for this va.
* If old pa was managed, remove from pvlist.
* If old page was cached, flush cache.
*/
addr = ptoa((tpte & SRMMU_PPNMASK) >> SRMMU_PPNSHIFT);
if (managed(addr))
pv_unlink4m(pvhead(addr), pm, va);
if (tpte & SRMMU_PG_C) {
setcontext4m(0); /* ??? */
cache_flush_page((int)va);
}
}
} else {
/* adding new entry */
sp->sg_npte++;
}
/*
* If the new mapping is for a managed PA, enter into pvlist.
* Note that the mapping for a malloc page will always be
* unique (hence will never cause a second call to malloc).
*/
if (pv != NULL)
pteproto &= ~(pv_link4m(pv, pm, va, (pteproto & SRMMU_PG_C) == 0));
#ifdef DEBUG
if (sp->sg_pte == NULL) /* If no existing pagetable */
panic("pmap_enk4m: missing segment table for va 0x%lx",va);
#endif
tlb_flush_page(va);
setpgt4m(&sp->sg_pte[VA_SUN4M_VPG(va)], pteproto);
splx(s);
}
/* enter new (or change existing) user mapping */
void
pmap_enu4m(pm, va, prot, wired, pv, pteproto)
struct pmap *pm;
vaddr_t va;
vm_prot_t prot;
int wired;
struct pvlist *pv;
int pteproto;
{
int vr, vs, *pte, tpte, s;
struct regmap *rp;
struct segmap *sp;
#ifdef DEBUG
if (KERNBASE < va)
panic("pmap_enu4m: can't enter va 0x%lx above KERNBASE", va);
#endif
write_user_windows(); /* XXX conservative */
vr = VA_VREG(va);
vs = VA_VSEG(va);
rp = &pm->pm_regmap[vr];
s = splvm(); /* XXX conservative */
rretry:
if (rp->rg_segmap == NULL) {
/* definitely a new mapping */
int size = NSEGRG * sizeof (struct segmap);
sp = (struct segmap *)malloc((u_long)size, M_VMPMAP, M_WAITOK);
if (rp->rg_segmap != NULL) {
#ifdef DEBUG
printf("pmap_enu4m: segment filled during sleep\n"); /* can this happen? */
#endif
free(sp, M_VMPMAP);
goto rretry;
}
qzero((caddr_t)sp, size);
rp->rg_segmap = sp;
rp->rg_nsegmap = 0;
rp->rg_seg_ptps = NULL;
}
rgretry:
if (rp->rg_seg_ptps == NULL) {
/* Need a segment table */
int i, *ptd;
ptd = pool_get(&L23_pool, PR_WAITOK);
if (rp->rg_seg_ptps != NULL) {
#ifdef DEBUG
printf("pmap_enu4m: bizarre segment table fill during sleep\n");
#endif
pool_put(&L23_pool, ptd);
goto rgretry;
}
rp->rg_seg_ptps = ptd;
for (i = 0; i < SRMMU_L2SIZE; i++)
setpgt4m(&ptd[i], SRMMU_TEINVALID);
/* Replicate segment allocation in each CPU's region table */
#ifdef MULTIPROCESSOR
for (i = 0; i < ncpu; i++)
#else
i = 0;
#endif
{
setpgt4m(&pm->pm_reg_ptps[i][vr],
(VA2PA((caddr_t)ptd) >> SRMMU_PPNPASHIFT) |
SRMMU_TEPTD);
}
}
sp = &rp->rg_segmap[vs];
sretry:
if ((pte = sp->sg_pte) == NULL) {
/* definitely a new mapping */
int i;
pte = pool_get(&L23_pool, PR_WAITOK);
if (sp->sg_pte != NULL) {
printf("pmap_enter: pte filled during sleep\n"); /* can this happen? */
pool_put(&L23_pool, pte);
goto sretry;
}
sp->sg_pte = pte;
sp->sg_npte = 1;
rp->rg_nsegmap++;
for (i = 0; i < SRMMU_L3SIZE; i++)
setpgt4m(&pte[i], SRMMU_TEINVALID);
setpgt4m(&rp->rg_seg_ptps[vs],
(VA2PA((caddr_t)pte) >> SRMMU_PPNPASHIFT) | SRMMU_TEPTD);
} else {
/*
* Might be a change: fetch old pte
*/
if (pm->pm_ctx) {
setcontext4m(pm->pm_ctxnum);
tlb_flush_page(va);
}
tpte = pte[VA_SUN4M_VPG(va)];
if ((tpte & SRMMU_TETYPE) == SRMMU_TEPTE) {
int addr;
/* old mapping exists, and is of the same pa type */
if ((tpte & SRMMU_PPNMASK) ==
(pteproto & SRMMU_PPNMASK)) {
/* just changing prot and/or wiring */
splx(s);
/* caller should call this directly: */
pmap_changeprot4m(pm, va, prot, wired);
if (wired)
pm->pm_stats.wired_count++;
else
pm->pm_stats.wired_count--;
return;
}
/*
* Switcheroo: changing pa for this va.
* If old pa was managed, remove from pvlist.
* If old page was cached, flush cache.
*/
#ifdef DEBUG
if (pmapdebug & PDB_SWITCHMAP)
printf("%s[%d]: pmap_enu: changing existing va 0x%x: pte 0x%x=>0x%x\n",
curproc->p_comm, curproc->p_pid, (int)va, tpte, pteproto);
#endif
if ((tpte & SRMMU_PGTYPE) == PG_SUN4M_OBMEM) {
addr = ptoa( (tpte & SRMMU_PPNMASK) >>
SRMMU_PPNSHIFT);
if (managed(addr)) {
pvhead(addr)->pv_flags |= MR4M(tpte);
pv_unlink4m(pvhead(addr), pm, va);
}
if (pm->pm_ctx && (tpte & SRMMU_PG_C))
cache_flush_page((int)va);
}
} else {
/* adding new entry */
sp->sg_npte++;
/*
* Increment counters
*/
if (wired)
pm->pm_stats.wired_count++;
}
}
if (pv != NULL)
pteproto &= ~(pv_link4m(pv, pm, va, (pteproto & SRMMU_PG_C) == 0));
/*
* Update PTEs, flush TLB as necessary.
*/
if (pm->pm_ctx) {
setcontext4m(pm->pm_ctxnum);
tlb_flush_page(va);
}
setpgt4m(&sp->sg_pte[VA_SUN4M_VPG(va)], pteproto);
splx(s);
}
void
pmap_kenter_pa4m(va, pa, prot)
vaddr_t va;
paddr_t pa;
vm_prot_t prot;
{
pmap_enter4m(pmap_kernel(), va, pa, prot, PMAP_WIRED);
}
void
pmap_kenter_pgs4m(va, pgs, npgs)
vaddr_t va;
struct vm_page **pgs;
int npgs;
{
int i;
for (i = 0; i < npgs; i++, va += PAGE_SIZE) {
pmap_enter4m(pmap_kernel(), va, VM_PAGE_TO_PHYS(pgs[i]),
VM_PROT_READ|VM_PROT_WRITE, PMAP_WIRED);
}
}
void
pmap_kremove4m(va, len)
vaddr_t va;
vsize_t len;
{
for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
pmap_remove(pmap_kernel(), va, va + PAGE_SIZE);
}
}
#endif /* SUN4M */
/*
* Clear the wiring attribute for a map/virtual-address pair.
*/
/* ARGSUSED */
void
pmap_unwire(pm, va)
struct pmap *pm;
vaddr_t va;
{
pmap_stats.ps_useless_changewire++;
}
/*
* Extract the physical page address associated
* with the given map/virtual_address pair.
* GRR, the vm code knows; we should not have to do this!
*/
#if defined(SUN4) || defined(SUN4C)
boolean_t
pmap_extract4_4c(pm, va, pap)
struct pmap *pm;
vaddr_t va;
paddr_t *pap;
{
int tpte;
int vr, vs;
struct regmap *rp;
struct segmap *sp;
if (pm == NULL) {
#ifdef DEBUG
if (pmapdebug & PDB_FOLLOW)
printf("pmap_extract: null pmap\n");
#endif
return (FALSE);
}
vr = VA_VREG(va);
vs = VA_VSEG(va);
rp = &pm->pm_regmap[vr];
if (rp->rg_segmap == NULL) {
#ifdef DEBUG
if (pmapdebug & PDB_FOLLOW)
printf("pmap_extract: invalid segment (%d)\n", vr);
#endif
return (FALSE);
}
sp = &rp->rg_segmap[vs];
if (sp->sg_pmeg != seginval) {
int ctx = getcontext4();
if (CTX_USABLE(pm,rp)) {
CHANGE_CONTEXTS(ctx, pm->pm_ctxnum);
tpte = getpte4(va);
} else {
CHANGE_CONTEXTS(ctx, 0);
if (HASSUN4_MMU3L)
setregmap(0, tregion);
setsegmap(0, sp->sg_pmeg);
tpte = getpte4(VA_VPG(va) << PGSHIFT);
}
setcontext4(ctx);
} else {
int *pte = sp->sg_pte;
if (pte == NULL) {
#ifdef DEBUG
if (pmapdebug & PDB_FOLLOW)
printf("pmap_extract: invalid segment\n");
#endif
return (FALSE);
}
tpte = pte[VA_VPG(va)];
}
if ((tpte & PG_V) == 0) {
#ifdef DEBUG
if (pmapdebug & PDB_FOLLOW)
printf("pmap_extract: invalid pte\n");
#endif
return (FALSE);
}
tpte &= PG_PFNUM;
tpte = tpte;
if (pap != NULL)
*pap = (tpte << PGSHIFT) | (va & PGOFSET);
return (TRUE);
}
#endif /*4,4c*/
#if defined(SUN4M) /* 4m version of pmap_extract */
/*
* Extract the physical page address associated
* with the given map/virtual_address pair.
* GRR, the vm code knows; we should not have to do this!
*/
boolean_t
pmap_extract4m(pm, va, pap)
struct pmap *pm;
vaddr_t va;
paddr_t *pap;
{
struct regmap *rm;
struct segmap *sm;
int pte;
if (pm == NULL) {
#ifdef DEBUG
if (pmapdebug & PDB_FOLLOW)
printf("pmap_extract: null pmap\n");
#endif
return (FALSE);
}
if ((rm = pm->pm_regmap) == NULL) {
#ifdef DEBUG
if (pmapdebug & PDB_FOLLOW)
printf("pmap_extract: no regmap entry\n");
#endif
return (FALSE);
}
rm += VA_VREG(va);
if ((sm = rm->rg_segmap) == NULL) {
#ifdef DEBUG
if (pmapdebug & PDB_FOLLOW)
printf("pmap_extract: no segmap\n");
#endif
return (FALSE);
}
sm += VA_VSEG(va);
if (sm->sg_pte == NULL) {
#ifdef DEBUG
if (pmapdebug & PDB_FOLLOW)
printf("pmap_extract: no ptes\n");
#endif
return (FALSE);
}
pte = sm->sg_pte[VA_SUN4M_VPG(va)];
if ((pte & SRMMU_TETYPE) != SRMMU_TEPTE) {
#ifdef DEBUG
if (pmapdebug & PDB_FOLLOW)
printf("pmap_extract: invalid pte of type %d\n",
pte & SRMMU_TETYPE);
#endif
return (FALSE);
}
if (pap != NULL)
*pap = ptoa((pte & SRMMU_PPNMASK) >> SRMMU_PPNSHIFT) |
VA_OFF(va);
return (TRUE);
}
#endif /* sun4m */
/*
* Copy the range specified by src_addr/len
* from the source map to the range dst_addr/len
* in the destination map.
*
* This routine is only advisory and need not do anything.
*/
/* ARGSUSED */
int pmap_copy_disabled=0;
void
pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
struct pmap *dst_pmap, *src_pmap;
vaddr_t dst_addr;
vsize_t len;
vaddr_t src_addr;
{
#if notyet
struct regmap *rm;
struct segmap *sm;
if (pmap_copy_disabled)
return;
#ifdef DIAGNOSTIC
if (VA_OFF(src_addr) != 0)
printf("pmap_copy: addr not page aligned: 0x%lx\n", src_addr);
if ((len & (NBPG-1)) != 0)
printf("pmap_copy: length not page aligned: 0x%lx\n", len);
#endif
if (src_pmap == NULL)
return;
if (CPU_ISSUN4M) {
int i, npg, pte;
paddr_t pa;
npg = len >> PGSHIFT;
for (i = 0; i < npg; i++) {
tlb_flush_page(src_addr);
if ((rm = src_pmap->pm_regmap) == NULL)
continue;
rm += VA_VREG(src_addr);
if ((sm = rm->rg_segmap) == NULL)
continue;
sm += VA_VSEG(src_addr);
if (sm->sg_npte == 0)
continue;
pte = sm->sg_pte[VA_SUN4M_VPG(src_addr)];
if ((pte & SRMMU_TETYPE) != SRMMU_TEPTE)
continue;
pa = ptoa((pte & SRMMU_PPNMASK) >> SRMMU_PPNSHIFT);
pmap_enter(dst_pmap, dst_addr,
pa,
(pte & PPROT_WRITE)
? (VM_PROT_WRITE | VM_PROT_READ)
: VM_PROT_READ,
0);
src_addr += NBPG;
dst_addr += NBPG;
}
}
#endif
}
/*
* Require that all active physical maps contain no
* incorrect entries NOW. [This update includes
* forcing updates of any address map caching.]
*/
void
pmap_update()
{
#if defined(SUN4M)
if (CPU_ISSUN4M)
tlb_flush_all(); /* %%%: Extreme Paranoia? */
#endif
}
/*
* Garbage collects the physical map system for
* pages which are no longer used.
* Success need not be guaranteed -- that is, there
* may well be pages which are not referenced, but
* others may be collected.
* Called by the pageout daemon when pages are scarce.
*/
/* ARGSUSED */
void
pmap_collect(pm)
struct pmap *pm;
{
}
#if defined(SUN4) || defined(SUN4C)
/*
* Clear the modify bit for the given physical page.
*/
boolean_t
pmap_clear_modify4_4c(pg)
struct vm_page *pg;
{
struct pvlist *pv;
paddr_t pa = VM_PAGE_TO_PHYS(pg);
boolean_t rv;
if ((pa & (PMAP_TNC_4 & ~PMAP_NC)) == 0 && managed(pa)) {
pv = pvhead(pa);
(void) pv_syncflags4_4c(pv);
rv = pv->pv_flags & PV_MOD;
pv->pv_flags &= ~PV_MOD;
return rv;
}
return (0);
}
/*
* Tell whether the given physical page has been modified.
*/
boolean_t
pmap_is_modified4_4c(pg)
struct vm_page *pg;
{
struct pvlist *pv;
paddr_t pa = VM_PAGE_TO_PHYS(pg);
if ((pa & (PMAP_TNC_4 & ~PMAP_NC)) == 0 && managed(pa)) {
pv = pvhead(pa);
if (pv->pv_flags & PV_MOD || pv_syncflags4_4c(pv) & PV_MOD)
return (1);
}
return (0);
}
/*
* Clear the reference bit for the given physical page.
*/
boolean_t
pmap_clear_reference4_4c(pg)
struct vm_page *pg;
{
struct pvlist *pv;
paddr_t pa = VM_PAGE_TO_PHYS(pg);
boolean_t rv;
if ((pa & (PMAP_TNC_4 & ~PMAP_NC)) == 0 && managed(pa)) {
pv = pvhead(pa);
(void) pv_syncflags4_4c(pv);
rv = pv->pv_flags & PV_REF;
pv->pv_flags &= ~PV_REF;
return rv;
}
return (0);
}
/*
* Tell whether the given physical page has been referenced.
*/
boolean_t
pmap_is_referenced4_4c(pg)
struct vm_page *pg;
{
struct pvlist *pv;
paddr_t pa = VM_PAGE_TO_PHYS(pg);
if ((pa & (PMAP_TNC_4 & ~PMAP_NC)) == 0 && managed(pa)) {
pv = pvhead(pa);
if (pv->pv_flags & PV_REF || pv_syncflags4_4c(pv) & PV_REF)
return (1);
}
return (0);
}
#endif /*4,4c*/
#if defined(SUN4M)
/*
* 4m versions of bit test/set routines
*
* Note that the 4m-specific routines should eventually service these
* requests from their page tables, and the whole pvlist bit mess should
* be dropped for the 4m (unless this causes a performance hit from
* tracing down pagetables/regmap/segmaps).
*/
/*
* Clear the modify bit for the given physical page.
*/
boolean_t
pmap_clear_modify4m(pg) /* XXX %%%: Should service from swpagetbl for 4m */
struct vm_page *pg;
{
struct pvlist *pv;
paddr_t pa = VM_PAGE_TO_PHYS(pg);
boolean_t rv;
if ((pa & (PMAP_TNC_SRMMU & ~PMAP_NC)) == 0 && managed(pa)) {
pv = pvhead(pa);
(void) pv_syncflags4m(pv);
rv = pv->pv_flags & PV_MOD4M;
pv->pv_flags &= ~PV_MOD4M;
return rv;
}
return (0);
}
/*
* Tell whether the given physical page has been modified.
*/
boolean_t
pmap_is_modified4m(pg) /* Test performance with SUN4M && SUN4/4C. XXX */
struct vm_page *pg;
{
struct pvlist *pv;
paddr_t pa = VM_PAGE_TO_PHYS(pg);
if ((pa & (PMAP_TNC_SRMMU & ~PMAP_NC)) == 0 && managed(pa)) {
pv = pvhead(pa);
if (pv->pv_flags & PV_MOD4M || pv_syncflags4m(pv) & PV_MOD4M)
return(1);
}
return (0);
}
/*
* Clear the reference bit for the given physical page.
*/
boolean_t
pmap_clear_reference4m(pg)
struct vm_page *pg;
{
struct pvlist *pv;
paddr_t pa = VM_PAGE_TO_PHYS(pg);
boolean_t rv;
if ((pa & (PMAP_TNC_SRMMU & ~PMAP_NC)) == 0 && managed(pa)) {
pv = pvhead(pa);
(void) pv_syncflags4m(pv);
rv = pv->pv_flags & PV_REF4M;
pv->pv_flags &= ~PV_REF4M;
return rv;
}
return (0);
}
/*
* Tell whether the given physical page has been referenced.
*/
int
pmap_is_referenced4m(pg)
struct vm_page *pg;
{
struct pvlist *pv;
paddr_t pa = VM_PAGE_TO_PHYS(pg);
if ((pa & (PMAP_TNC_SRMMU & ~PMAP_NC)) == 0 && managed(pa)) {
pv = pvhead(pa);
if (pv->pv_flags & PV_REF4M || pv_syncflags4m(pv) & PV_REF4M)
return(1);
}
return (0);
}
#endif /* 4m */
/*
* Fill the given MI physical page with zero bytes.
*
* We avoid stomping on the cache.
* XXX might be faster to use destination's context and allow cache to fill?
*/
#if defined(SUN4) || defined(SUN4C)
void
pmap_zero_page4_4c(pa)
paddr_t pa;
{
caddr_t va;
int pte;
if (((pa & (PMAP_TNC_4 & ~PMAP_NC)) == 0) && managed(pa)) {
/*
* The following might not be necessary since the page
* is being cleared because it is about to be allocated,
* i.e., is in use by no one.
*/
pv_flushcache(pvhead(pa));
}
pte = PG_V | PG_S | PG_W | PG_NC | (atop(pa) & PG_PFNUM);
va = vpage[0];
setpte4(va, pte);
qzero(va, NBPG);
setpte4(va, 0);
}
/*
* Copy the given MI physical source page to its destination.
*
* We avoid stomping on the cache as above (with same `XXX' note).
* We must first flush any write-back cache for the source page.
* We go ahead and stomp on the kernel's virtual cache for the
* source page, since the cache can read memory MUCH faster than
* the processor.
*/
void
pmap_copy_page4_4c(src, dst)
paddr_t src, dst;
{
caddr_t sva, dva;
int spte, dpte;
if (managed(src)) {
if (CACHEINFO.c_vactype == VAC_WRITEBACK)
pv_flushcache(pvhead(src));
}
spte = PG_V | PG_S | (atop(src) & PG_PFNUM);
if (managed(dst)) {
/* similar `might not be necessary' comment applies */
if (CACHEINFO.c_vactype != VAC_NONE)
pv_flushcache(pvhead(dst));
}
dpte = PG_V | PG_S | PG_W | PG_NC | (atop(dst) & PG_PFNUM);
sva = vpage[0];
dva = vpage[1];
setpte4(sva, spte);
setpte4(dva, dpte);
qcopy(sva, dva, NBPG); /* loads cache, so we must ... */
cache_flush_page((vaddr_t)sva);
setpte4(sva, 0);
setpte4(dva, 0);
}
#endif /* 4, 4c */
#if defined(SUN4M) /* Sun4M version of copy/zero routines */
/*
* Fill the given MI physical page with zero bytes.
*
* We avoid stomping on the cache.
* XXX might be faster to use destination's context and allow cache to fill?
*/
void
pmap_zero_page4m(pa)
paddr_t pa;
{
caddr_t va;
int pte;
if (((pa & (PMAP_TNC_SRMMU & ~PMAP_NC)) == 0) && managed(pa)) {
/*
* The following VAC flush might not be necessary since the
* page is being cleared because it is about to be allocated,
* i.e., is in use by no one.
* In the case of a physical cache, a flush (or just an
* invalidate, if possible) is usually necessary when using
* uncached access to clear it.
*/
if (CACHEINFO.c_vactype != VAC_NONE)
pv_flushcache(pvhead(pa));
else
pcache_flush_page(pa, 1);
}
pte = SRMMU_TEPTE | PPROT_N_RWX | (atop(pa) << SRMMU_PPNSHIFT);
if (cpuinfo.flags & CPUFLG_CACHE_MANDATORY)
pte |= SRMMU_PG_C;
va = vpage[0];
setpgt4m(vpage_pte[0], pte);
qzero(va, NBPG);
/* Remove temporary mapping */
tlb_flush_page(va);
setpgt4m(vpage_pte[0], SRMMU_TEINVALID);
}
/*
* Viking/MXCC specific version of pmap_zero_page
*/
void
pmap_zero_page_viking_mxcc(pa)
paddr_t pa;
{
u_int offset;
u_int stream_data_addr = MXCC_STREAM_DATA;
u_int64_t v = (u_int64_t)pa;
/* Load MXCC stream data register with 0 (bottom 32 bytes only) */
stda(stream_data_addr+0, ASI_CONTROL, 0);
stda(stream_data_addr+8, ASI_CONTROL, 0);
stda(stream_data_addr+16, ASI_CONTROL, 0);
stda(stream_data_addr+24, ASI_CONTROL, 0);
/* Then write the stream data register to each block in the page */
v |= MXCC_STREAM_C;
for (offset = 0; offset < NBPG; offset += MXCC_STREAM_BLKSZ) {
stda(MXCC_STREAM_DST, ASI_CONTROL, v | offset);
}
}
/*
* HyperSPARC/RT625 specific version of pmap_zero_page
*/
void
pmap_zero_page_hypersparc(pa)
paddr_t pa;
{
caddr_t va;
int pte;
int offset;
/*
* We still have to map the page, since ASI_BLOCKFILL
* takes virtual addresses. This also means we have to
* consider cache aliasing; therefore we still need
* to flush the cache here. All we gain is the speed-up
* in zero-fill loop itself..
*/
if (((pa & (PMAP_TNC_SRMMU & ~PMAP_NC)) == 0) && managed(pa)) {
/*
* The following might not be necessary since the page
* is being cleared because it is about to be allocated,
* i.e., is in use by no one.
*/
if (CACHEINFO.c_vactype != VAC_NONE)
pv_flushcache(pvhead(pa));
}
pte = SRMMU_TEPTE | SRMMU_PG_C | PPROT_N_RWX |
(atop(pa) << SRMMU_PPNSHIFT);
va = vpage[0];
setpgt4m(vpage_pte[0], pte);
for (offset = 0; offset < NBPG; offset += 32) {
sta(va + offset, ASI_BLOCKFILL, 0);
}
/* Remove temporary mapping */
tlb_flush_page(va);
setpgt4m(vpage_pte[0], SRMMU_TEINVALID);
}
/*
* Copy the given MI physical source page to its destination.
*
* We avoid stomping on the cache as above (with same `XXX' note).
* We must first flush any write-back cache for the source page.
* We go ahead and stomp on the kernel's virtual cache for the
* source page, since the cache can read memory MUCH faster than
* the processor.
*/
void
pmap_copy_page4m(src, dst)
paddr_t src, dst;
{
caddr_t sva, dva;
int spte, dpte;
if (managed(src)) {
if (CACHEINFO.c_vactype == VAC_WRITEBACK)
pv_flushcache(pvhead(src));
}
spte = SRMMU_TEPTE | SRMMU_PG_C | PPROT_N_RX |
(atop(src) << SRMMU_PPNSHIFT);
if (managed(dst)) {
/* similar `might not be necessary' comment applies */
if (CACHEINFO.c_vactype != VAC_NONE)
pv_flushcache(pvhead(dst));
else
pcache_flush_page(dst, 1);
}
dpte = SRMMU_TEPTE | PPROT_N_RWX | (atop(dst) << SRMMU_PPNSHIFT);
if (cpuinfo.flags & CPUFLG_CACHE_MANDATORY)
dpte |= SRMMU_PG_C;
sva = vpage[0];
dva = vpage[1];
setpgt4m(vpage_pte[0], spte);
setpgt4m(vpage_pte[1], dpte);
qcopy(sva, dva, NBPG); /* loads cache, so we must ... */
cache_flush_page((vaddr_t)sva);
tlb_flush_page(sva);
setpgt4m(vpage_pte[0], SRMMU_TEINVALID);
tlb_flush_page(dva);
setpgt4m(vpage_pte[1], SRMMU_TEINVALID);
}
/*
* Viking/MXCC specific version of pmap_copy_page
*/
void
pmap_copy_page_viking_mxcc(src, dst)
paddr_t src, dst;
{
u_int offset;
u_int64_t v1 = (u_int64_t)src;
u_int64_t v2 = (u_int64_t)dst;
/* Enable cache-coherency */
v1 |= MXCC_STREAM_C;
v2 |= MXCC_STREAM_C;
/* Copy through stream data register */
for (offset = 0; offset < NBPG; offset += MXCC_STREAM_BLKSZ) {
stda(MXCC_STREAM_SRC, ASI_CONTROL, v1 | offset);
stda(MXCC_STREAM_DST, ASI_CONTROL, v2 | offset);
}
}
/*
* HyperSPARC/RT625 specific version of pmap_copy_page
*/
void
pmap_copy_page_hypersparc(src, dst)
paddr_t src, dst;
{
caddr_t sva, dva;
int spte, dpte;
int offset;
/*
* We still have to map the pages, since ASI_BLOCKCOPY
* takes virtual addresses. This also means we have to
* consider cache aliasing; therefore we still need
* to flush the cache here. All we gain is the speed-up
* in copy loop itself..
*/
if (managed(src)) {
if (CACHEINFO.c_vactype == VAC_WRITEBACK)
pv_flushcache(pvhead(src));
}
spte = SRMMU_TEPTE | SRMMU_PG_C | PPROT_N_RX |
(atop(src) << SRMMU_PPNSHIFT);
if (managed(dst)) {
/* similar `might not be necessary' comment applies */
if (CACHEINFO.c_vactype != VAC_NONE)
pv_flushcache(pvhead(dst));
}
dpte = SRMMU_TEPTE | SRMMU_PG_C | PPROT_N_RWX |
(atop(dst) << SRMMU_PPNSHIFT);
sva = vpage[0];
dva = vpage[1];
setpgt4m(vpage_pte[0], spte);
setpgt4m(vpage_pte[1], dpte);
for (offset = 0; offset < NBPG; offset += 32) {
sta(dva + offset, ASI_BLOCKCOPY, sva + offset);
}
tlb_flush_page(sva);
setpgt4m(vpage_pte[0], SRMMU_TEINVALID);
tlb_flush_page(dva);
setpgt4m(vpage_pte[1], SRMMU_TEINVALID);
}
#endif /* SUN4M */
/*
* Turn a cdevsw d_mmap value into a byte address for pmap_enter.
* XXX this should almost certainly be done differently, and
* elsewhere, or even not at all
*/
paddr_t
pmap_phys_address(x)
int x;
{
return ((paddr_t)x);
}
/*
* Turn off cache for a given (va, number of pages).
*
* We just assert PG_NC for each PTE; the addresses must reside
* in locked kernel space. A cache flush is also done.
*/
void
kvm_uncache(va, npages)
caddr_t va;
int npages;
{
int pte;
paddr_t pa;
if (CPU_ISSUN4M) {
#if defined(SUN4M)
int ctx = getcontext4m();
setcontext4m(0);
for (; --npages >= 0; va += NBPG) {
pte = getpte4m((vaddr_t) va);
if ((pte & SRMMU_TETYPE) != SRMMU_TEPTE)
panic("kvm_uncache: table entry not pte");
if ((pte & SRMMU_PGTYPE) == PG_SUN4M_OBMEM)
cache_flush_page((int)va);
pa = ptoa((pte & SRMMU_PPNMASK) >> SRMMU_PPNSHIFT);
if ((pte & SRMMU_PGTYPE) == PG_SUN4M_OBMEM &&
managed(pa)) {
pv_changepte4m(pvhead(pa), 0, SRMMU_PG_C);
}
pte &= ~SRMMU_PG_C;
setpte4m((vaddr_t) va, pte);
}
setcontext4m(ctx);
#endif
} else {
#if defined(SUN4) || defined(SUN4C)
for (; --npages >= 0; va += NBPG) {
pte = getpte4(va);
if ((pte & PG_V) == 0)
panic("kvm_uncache !pg_v");
pa = ptoa(pte & PG_PFNUM);
if ((pte & PG_TYPE) == PG_OBMEM &&
managed(pa)) {
pv_changepte4_4c(pvhead(pa), PG_NC, 0);
}
pte |= PG_NC;
setpte4(va, pte);
if ((pte & PG_TYPE) == PG_OBMEM)
cache_flush_page((int)va);
}
#endif
}
}
/*
* Turn on IO cache for a given (va, number of pages).
*
* We just assert PG_NC for each PTE; the addresses must reside
* in locked kernel space. A cache flush is also done.
*/
void
kvm_iocache(va, npages)
caddr_t va;
int npages;
{
#ifdef SUN4M
if (CPU_ISSUN4M) /* %%%: Implement! */
panic("kvm_iocache: 4m iocache not implemented");
#endif
#if defined(SUN4) || defined(SUN4C)
for (; --npages >= 0; va += NBPG) {
int pte = getpte4(va);
if ((pte & PG_V) == 0)
panic("kvm_iocache !pg_v");
pte |= PG_IOC;
setpte4(va, pte);
}
#endif
}
int
pmap_count_ptes(pm)
struct pmap *pm;
{
int idx, total;
struct regmap *rp;
struct segmap *sp;
if (pm == pmap_kernel()) {
rp = &pm->pm_regmap[NUREG];
idx = NKREG;
} else {
rp = pm->pm_regmap;
idx = NUREG;
}
for (total = 0; idx;)
if ((sp = rp[--idx].rg_segmap) != NULL)
total += sp->sg_npte;
pm->pm_stats.resident_count = total;
return (total);
}
/*
* Find first virtual address >= *va that is
* least likely to cause cache aliases.
* (This will just seg-align mappings.)
*/
void
pmap_prefer(foff, vap)
vaddr_t foff;
vaddr_t *vap;
{
vaddr_t va = *vap;
long d, m;
if (VA_INHOLE(va))
va = MMU_HOLE_END;
m = CACHE_ALIAS_DIST;
if (m == 0) /* m=0 => no cache aliasing */
return;
d = foff - va;
d &= (m - 1);
*vap = va + d;
}
void
pmap_redzone()
{
pmap_remove(pmap_kernel(), KERNBASE, KERNBASE+NBPG);
}
/*
* Activate the address space for the specified process. If the
* process is the current process, load the new MMU context.
*/
void
pmap_activate(p)
struct proc *p;
{
pmap_t pmap = p->p_vmspace->vm_map.pmap;
int s;
/*
* This is essentially the same thing that happens in cpu_switch()
* when the newly selected process is about to run, except that we
* have to make sure to clean the register windows before we set
* the new context.
*/
s = splvm();
if (p == curproc) {
write_user_windows();
if (pmap->pm_ctx == NULL) {
ctx_alloc(pmap); /* performs setcontext() */
} else {
/* Do any cache flush needed on context switch */
(*cpuinfo.pure_vcache_flush)();
setcontext(pmap->pm_ctxnum);
}
}
splx(s);
}
/*
* Deactivate the address space of the specified process.
*/
void
pmap_deactivate(p)
struct proc *p;
{
}
#ifdef DEBUG
/*
* Check consistency of a pmap (time consuming!).
*/
void
pm_check(s, pm)
char *s;
struct pmap *pm;
{
if (pm == pmap_kernel())
pm_check_k(s, pm);
else
pm_check_u(s, pm);
}
void
pm_check_u(s, pm)
char *s;
struct pmap *pm;
{
struct regmap *rp;
struct segmap *sp;
int n, vs, vr, j, m, *pte;
if (pm->pm_regmap == NULL)
panic("%s: CHK(pmap %p): no region mapping", s, pm);
#if defined(SUN4M)
if (CPU_ISSUN4M &&
(pm->pm_reg_ptps[0] == NULL ||
pm->pm_reg_ptps_pa[0] != VA2PA((caddr_t)pm->pm_reg_ptps[0])))
panic("%s: CHK(pmap %p): no SRMMU region table or bad pa: "
"tblva=%p, tblpa=0x%x",
s, pm, pm->pm_reg_ptps[0], pm->pm_reg_ptps_pa[0]);
if (CPU_ISSUN4M && pm->pm_ctx != NULL &&
(cpuinfo.ctx_tbl[pm->pm_ctxnum] != ((VA2PA((caddr_t)pm->pm_reg_ptps[0])
>> SRMMU_PPNPASHIFT) |
SRMMU_TEPTD)))
panic("%s: CHK(pmap %p): SRMMU region table at 0x%x not installed "
"for context %d", s, pm, pm->pm_reg_ptps_pa[0], pm->pm_ctxnum);
#endif
for (vr = 0; vr < NUREG; vr++) {
rp = &pm->pm_regmap[vr];
if (rp->rg_nsegmap == 0)
continue;
if (rp->rg_segmap == NULL)
panic("%s: CHK(vr %d): nsegmap = %d; sp==NULL",
s, vr, rp->rg_nsegmap);
#if defined(SUN4M)
if (CPU_ISSUN4M && rp->rg_seg_ptps == NULL)
panic("%s: CHK(vr %d): nsegmap=%d; no SRMMU segment table",
s, vr, rp->rg_nsegmap);
if (CPU_ISSUN4M &&
pm->pm_reg_ptps[0][vr] != ((VA2PA((caddr_t)rp->rg_seg_ptps) >>
SRMMU_PPNPASHIFT) | SRMMU_TEPTD))
panic("%s: CHK(vr %d): SRMMU segtbl not installed",s,vr);
#endif
if ((unsigned int)rp < KERNBASE)
panic("%s: rp=%p", s, rp);
n = 0;
for (vs = 0; vs < NSEGRG; vs++) {
sp = &rp->rg_segmap[vs];
if ((unsigned int)sp < KERNBASE)
panic("%s: sp=%p", s, sp);
if (sp->sg_npte != 0) {
n++;
if (sp->sg_pte == NULL)
panic("%s: CHK(vr %d, vs %d): npte=%d, "
"pte=NULL", s, vr, vs, sp->sg_npte);
#if defined(SUN4M)
if (CPU_ISSUN4M &&
rp->rg_seg_ptps[vs] !=
((VA2PA((caddr_t)sp->sg_pte)
>> SRMMU_PPNPASHIFT) |
SRMMU_TEPTD))
panic("%s: CHK(vr %d, vs %d): SRMMU page "
"table not installed correctly",s,vr,
vs);
#endif
pte=sp->sg_pte;
m = 0;
for (j=0; j<NPTESG; j++,pte++)
if ((CPU_ISSUN4M
?((*pte & SRMMU_TETYPE) == SRMMU_TEPTE)
:(*pte & PG_V)))
m++;
if (m != sp->sg_npte)
/*if (pmapdebug & 0x10000)*/
printf("%s: user CHK(vr %d, vs %d): "
"npte(%d) != # valid(%d)\n",
s, vr, vs, sp->sg_npte, m);
}
}
if (n != rp->rg_nsegmap)
panic("%s: CHK(vr %d): inconsistent "
"# of pte's: %d, should be %d",
s, vr, rp->rg_nsegmap, n);
}
return;
}
void
pm_check_k(s, pm) /* Note: not as extensive as pm_check_u. */
char *s;
struct pmap *pm;
{
struct regmap *rp;
int vr, vs, n;
if (pm->pm_regmap == NULL)
panic("%s: CHK(pmap %p): no region mapping", s, pm);
#if defined(SUN4M)
if (CPU_ISSUN4M &&
(pm->pm_reg_ptps[0] == NULL ||
pm->pm_reg_ptps_pa[0] != VA2PA((caddr_t)pm->pm_reg_ptps[0])))
panic("%s: CHK(pmap %p): no SRMMU region table or bad pa: tblva=%p, tblpa=0x%x",
s, pm, pm->pm_reg_ptps[0], pm->pm_reg_ptps_pa[0]);
if (CPU_ISSUN4M &&
(cpuinfo.ctx_tbl[0] != ((VA2PA((caddr_t)pm->pm_reg_ptps[0]) >>
SRMMU_PPNPASHIFT) | SRMMU_TEPTD)))
panic("%s: CHK(pmap %p): SRMMU region table at 0x%x not installed "
"for context %d", s, pm, pm->pm_reg_ptps_pa[0], 0);
#endif
for (vr = NUREG; vr < NUREG+NKREG; vr++) {
rp = &pm->pm_regmap[vr];
if (rp->rg_segmap == NULL)
panic("%s: CHK(vr %d): nsegmap = %d; sp==NULL",
s, vr, rp->rg_nsegmap);
if (rp->rg_nsegmap == 0)
continue;
#if defined(SUN4M)
if (CPU_ISSUN4M && rp->rg_seg_ptps == NULL)
panic("%s: CHK(vr %d): nsegmap=%d; no SRMMU segment table",
s, vr, rp->rg_nsegmap);
if (CPU_ISSUN4M &&
pm->pm_reg_ptps[0][vr] != ((VA2PA((caddr_t)rp->rg_seg_ptps[0]) >>
SRMMU_PPNPASHIFT) | SRMMU_TEPTD))
panic("%s: CHK(vr %d): SRMMU segtbl not installed",s,vr);
#endif
if (CPU_ISSUN4M) {
n = NSEGRG;
} else {
for (n = 0, vs = 0; vs < NSEGRG; vs++) {
if (rp->rg_segmap[vs].sg_npte)
n++;
}
}
if (n != rp->rg_nsegmap)
printf("%s: kernel CHK(vr %d): inconsistent "
"# of pte's: %d, should be %d\n",
s, vr, rp->rg_nsegmap, n);
}
return;
}
#endif
/*
* Return the number of disk blocks that pmap_dumpmmu() will dump.
*/
int
pmap_dumpsize()
{
int sz;
sz = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t));
sz += npmemarr * sizeof(phys_ram_seg_t);
sz += sizeof(kernel_segmap_store);
if (CPU_ISSUN4OR4C)
/* For each pmeg in the MMU, we'll write NPTESG PTEs. */
sz += (seginval + 1) * NPTESG * sizeof(int);
return btodb(sz + DEV_BSIZE - 1);
}
/*
* Write the core dump headers and MD data to the dump device.
* We dump the following items:
*
* kcore_seg_t MI header defined in <sys/kcore.h>)
* cpu_kcore_hdr_t MD header defined in <machine/kcore.h>)
* phys_ram_seg_t[npmemarr] physical memory segments
* segmap_t[NKREG*NSEGRG] the kernel's segment map
* the MMU pmegs on sun4/sun4c
*/
int
pmap_dumpmmu(dump, blkno)
daddr_t blkno;
int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
{
kcore_seg_t *ksegp;
cpu_kcore_hdr_t *kcpup;
phys_ram_seg_t memseg;
int error = 0;
int i, memsegoffset, segmapoffset, pmegoffset;
int buffer[dbtob(1) / sizeof(int)];
int *bp, *ep;
#if defined(SUN4C) || defined(SUN4)
int pmeg;
#endif
#define EXPEDITE(p,n) do { \
int *sp = (int *)(p); \
int sz = (n); \
while (sz > 0) { \
*bp++ = *sp++; \
if (bp >= ep) { \
error = (*dump)(dumpdev, blkno, \
(caddr_t)buffer, dbtob(1)); \
if (error != 0) \
return (error); \
++blkno; \
bp = buffer; \
} \
sz -= 4; \
} \
} while (0)
setcontext(0);
/* Setup bookkeeping pointers */
bp = buffer;
ep = &buffer[sizeof(buffer) / sizeof(buffer[0])];
/* Fill in MI segment header */
ksegp = (kcore_seg_t *)bp;
CORE_SETMAGIC(*ksegp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
ksegp->c_size = dbtob(pmap_dumpsize()) - ALIGN(sizeof(kcore_seg_t));
/* Fill in MD segment header (interpreted by MD part of libkvm) */
kcpup = (cpu_kcore_hdr_t *)((int)bp + ALIGN(sizeof(kcore_seg_t)));
kcpup->cputype = cputyp;
kcpup->kernbase = KERNBASE;
kcpup->nmemseg = npmemarr;
kcpup->memsegoffset = memsegoffset = ALIGN(sizeof(cpu_kcore_hdr_t));
kcpup->nsegmap = NKREG*NSEGRG;
kcpup->segmapoffset = segmapoffset =
memsegoffset + npmemarr * sizeof(phys_ram_seg_t);
kcpup->npmeg = (CPU_ISSUN4OR4C) ? seginval + 1 : 0;
kcpup->pmegoffset = pmegoffset =
segmapoffset + kcpup->nsegmap * sizeof(struct segmap);
/* Note: we have assumed everything fits in buffer[] so far... */
bp = (int *)((int)kcpup + ALIGN(sizeof(cpu_kcore_hdr_t)));
#if 0
/* Align storage for upcoming quad-aligned segment array */
while (bp != (int *)ALIGN(bp)) {
int dummy = 0;
EXPEDITE(&dummy, 4);
}
#endif
for (i = 0; i < npmemarr; i++) {
memseg.start = pmemarr[i].addr;
memseg.size = pmemarr[i].len;
EXPEDITE(&memseg, sizeof(phys_ram_seg_t));
}
EXPEDITE(&kernel_segmap_store, sizeof(kernel_segmap_store));
if (CPU_ISSUN4M)
goto out;
#if defined(SUN4C) || defined(SUN4)
/*
* dump page table entries
*
* We dump each pmeg in order (by segment number). Since the MMU
* automatically maps the given virtual segment to a pmeg we must
* iterate over the segments by incrementing an unused segment slot
* in the MMU. This fixed segment number is used in the virtual
* address argument to getpte().
*/
/*
* Go through the pmegs and dump each one.
*/
for (pmeg = 0; pmeg <= seginval; ++pmeg) {
int va = 0;
setsegmap(va, pmeg);
i = NPTESG;
do {
int pte = getpte4(va);
EXPEDITE(&pte, sizeof(pte));
va += NBPG;
} while (--i > 0);
}
setsegmap(0, seginval);
#endif
out:
if (bp != buffer)
error = (*dump)(dumpdev, blkno++, (caddr_t)buffer, dbtob(1));
return (error);
}
/*
* Helper function for debuggers.
*/
void
pmap_writetext(dst, ch)
unsigned char *dst;
int ch;
{
int s, pte0, pte, ctx;
vaddr_t va;
s = splvm();
va = (unsigned long)dst & (~PGOFSET);
cpuinfo.cache_flush(dst, 1);
ctx = getcontext();
setcontext(0);
#if defined(SUN4M)
if (CPU_ISSUN4M) {
pte0 = getpte4m(va);
if ((pte0 & SRMMU_TETYPE) != SRMMU_TEPTE) {
splx(s);
return;
}
pte = pte0 | PPROT_WRITE;
setpte4m(va, pte);
*dst = (unsigned char)ch;
setpte4m(va, pte0);
}
#endif
#if defined(SUN4) || defined(SUN4C)
if (CPU_ISSUN4C || CPU_ISSUN4) {
pte0 = getpte4(va);
if ((pte0 & PG_V) == 0) {
splx(s);
return;
}
pte = pte0 | PG_W;
setpte4(va, pte);
*dst = (unsigned char)ch;
setpte4(va, pte0);
}
#endif
cpuinfo.cache_flush(dst, 1);
setcontext(ctx);
splx(s);
}
#ifdef EXTREME_DEBUG
static void test_region __P((int, int, int));
void
debug_pagetables()
{
int i;
int *regtbl;
int te;
printf("\nncontext=%d. ",ncontext);
printf("Context table is at va 0x%x. Level 0 PTP: 0x%x\n",
cpuinfo.ctx_tbl, cpuinfo.ctx_tbl[0]);
printf("Context 0 region table is at va 0x%x, pa 0x%x. Contents:\n",
pmap_kernel()->pm_reg_ptps[0], pmap_kernel()->pm_reg_ptps_pa[0]);
regtbl = pmap_kernel()->pm_reg_ptps[0];
printf("PROM vector is at 0x%x\n",promvec);
printf("PROM reboot routine is at 0x%x\n",promvec->pv_reboot);
printf("PROM abort routine is at 0x%x\n",promvec->pv_abort);
printf("PROM halt routine is at 0x%x\n",promvec->pv_halt);
printf("Testing region 0xfe: ");
test_region(0xfe,0,16*1024*1024);
printf("Testing region 0xff: ");
test_region(0xff,0,16*1024*1024);
printf("Testing kernel region 0x%x: ", VA_VREG(KERNBASE));
test_region(VA_VREG(KERNBASE), 4096, avail_start);
cngetc();
for (i = 0; i < SRMMU_L1SIZE; i++) {
te = regtbl[i];
if ((te & SRMMU_TETYPE) == SRMMU_TEINVALID)
continue;
printf("Region 0x%x: PTE=0x%x <%s> L2PA=0x%x kernL2VA=0x%x\n",
i, te, ((te & SRMMU_TETYPE) == SRMMU_TEPTE ? "pte" :
((te & SRMMU_TETYPE) == SRMMU_TEPTD ? "ptd" :
((te & SRMMU_TETYPE) == SRMMU_TEINVALID ?
"invalid" : "reserved"))),
(te & ~0x3) << SRMMU_PPNPASHIFT,
pmap_kernel()->pm_regmap[i].rg_seg_ptps);
}
printf("Press q to halt...\n");
if (cngetc()=='q')
callrom();
}
static u_int
VA2PAsw(ctx, addr, pte)
int ctx;
caddr_t addr;
int *pte;
{
int *curtbl;
int curpte;
#ifdef EXTREME_EXTREME_DEBUG
printf("Looking up addr 0x%x in context 0x%x\n",addr,ctx);
#endif
/* L0 */
*pte = curpte = cpuinfo.ctx_tbl[ctx];
#ifdef EXTREME_EXTREME_DEBUG
printf("Got L0 pte 0x%x\n",pte);
#endif
if ((curpte & SRMMU_TETYPE) == SRMMU_TEPTE) {
return (((curpte & SRMMU_PPNMASK) << SRMMU_PPNPASHIFT) |
((u_int)addr & 0xffffffff));
}
if ((curpte & SRMMU_TETYPE) != SRMMU_TEPTD) {
printf("Bad context table entry 0x%x for context 0x%x\n",
curpte, ctx);
return 0;
}
/* L1 */
curtbl = ((curpte & ~0x3) << 4) | KERNBASE; /* correct for krn*/
*pte = curpte = curtbl[VA_VREG(addr)];
#ifdef EXTREME_EXTREME_DEBUG
printf("L1 table at 0x%x.\nGot L1 pte 0x%x\n",curtbl,curpte);
#endif
if ((curpte & SRMMU_TETYPE) == SRMMU_TEPTE)
return (((curpte & SRMMU_PPNMASK) << SRMMU_PPNPASHIFT) |
((u_int)addr & 0xffffff));
if ((curpte & SRMMU_TETYPE) != SRMMU_TEPTD) {
printf("Bad region table entry 0x%x for region 0x%x\n",
curpte, VA_VREG(addr));
return 0;
}
/* L2 */
curtbl = ((curpte & ~0x3) << 4) | KERNBASE; /* correct for krn*/
*pte = curpte = curtbl[VA_VSEG(addr)];
#ifdef EXTREME_EXTREME_DEBUG
printf("L2 table at 0x%x.\nGot L2 pte 0x%x\n",curtbl,curpte);
#endif
if ((curpte & SRMMU_TETYPE) == SRMMU_TEPTE)
return (((curpte & SRMMU_PPNMASK) << SRMMU_PPNPASHIFT) |
((u_int)addr & 0x3ffff));
if ((curpte & SRMMU_TETYPE) != SRMMU_TEPTD) {
printf("Bad segment table entry 0x%x for reg 0x%x, seg 0x%x\n",
curpte, VA_VREG(addr), VA_VSEG(addr));
return 0;
}
/* L3 */
curtbl = ((curpte & ~0x3) << 4) | KERNBASE; /* correct for krn*/
*pte = curpte = curtbl[VA_VPG(addr)];
#ifdef EXTREME_EXTREME_DEBUG
printf("L3 table at 0x%x.\nGot L3 pte 0x%x\n",curtbl,curpte);
#endif
if ((curpte & SRMMU_TETYPE) == SRMMU_TEPTE)
return (((curpte & SRMMU_PPNMASK) << SRMMU_PPNPASHIFT) |
((u_int)addr & 0xfff));
else {
printf("Bad L3 pte 0x%x for reg 0x%x, seg 0x%x, pg 0x%x\n",
curpte, VA_VREG(addr), VA_VSEG(addr), VA_VPG(addr));
return 0;
}
printf("Bizarreness with address 0x%x!\n",addr);
}
void test_region(reg, start, stop)
int reg;
int start, stop;
{
int i;
int addr;
int pte;
int ptesw;
/* int cnt=0;
*/
for (i = start; i < stop; i+= NBPG) {
addr = (reg << RGSHIFT) | i;
pte=lda(((u_int)(addr)) | ASI_SRMMUFP_LN, ASI_SRMMUFP);
if (pte) {
/* printf("Valid address 0x%x\n",addr);
if (++cnt == 20) {
cngetc();
cnt=0;
}
*/
if (VA2PA(addr) != VA2PAsw(0,addr,&ptesw)) {
printf("Mismatch at address 0x%x.\n",addr);
if (cngetc()=='q') break;
}
if (reg == VA_VREG(KERNBASE))
/* kernel permissions are different */
continue;
if ((pte&SRMMU_PROT_MASK)!=(ptesw&SRMMU_PROT_MASK)) {
printf("Mismatched protections at address "
"0x%x; pte=0x%x, ptesw=0x%x\n",
addr,pte,ptesw);
if (cngetc()=='q') break;
}
}
}
printf("done.\n");
}
void print_fe_map(void)
{
u_int i, pte;
printf("map of region 0xfe:\n");
for (i = 0xfe000000; i < 0xff000000; i+=4096) {
if (((pte = getpte4m(i)) & SRMMU_TETYPE) != SRMMU_TEPTE)
continue;
printf("0x%x -> 0x%x%x (pte 0x%x)\n", i, pte >> 28,
(pte & ~0xff) << 4, pte);
}
printf("done\n");
}
#endif