627 lines
16 KiB
C
627 lines
16 KiB
C
/* $NetBSD: dma.c,v 1.24 1999/08/01 21:50:17 thorpej Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Jason R. Thorpe.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the NetBSD
|
|
* Foundation, Inc. and its contributors.
|
|
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1982, 1990, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)dma.c 8.1 (Berkeley) 6/10/93
|
|
*/
|
|
|
|
/*
|
|
* DMA driver
|
|
*/
|
|
|
|
#include <machine/hp300spu.h> /* XXX param.h includes cpu.h */
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/time.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/device.h>
|
|
|
|
#include <machine/frame.h>
|
|
#include <machine/cpu.h>
|
|
#include <machine/intr.h>
|
|
|
|
#include <hp300/dev/dmareg.h>
|
|
#include <hp300/dev/dmavar.h>
|
|
|
|
/*
|
|
* The largest single request will be MAXPHYS bytes which will require
|
|
* at most MAXPHYS/NBPG+1 chain elements to describe, i.e. if none of
|
|
* the buffer pages are physically contiguous (MAXPHYS/NBPG) and the
|
|
* buffer is not page aligned (+1).
|
|
*/
|
|
#define DMAMAXIO (MAXPHYS/NBPG+1)
|
|
|
|
struct dma_chain {
|
|
int dc_count;
|
|
char *dc_addr;
|
|
};
|
|
|
|
struct dma_channel {
|
|
struct dmaqueue *dm_job; /* current job */
|
|
struct dmadevice *dm_hwaddr; /* registers if DMA_C */
|
|
struct dmaBdevice *dm_Bhwaddr; /* registers if not DMA_C */
|
|
char dm_flags; /* misc. flags */
|
|
u_short dm_cmd; /* DMA controller command */
|
|
int dm_cur; /* current segment */
|
|
int dm_last; /* last segment */
|
|
struct dma_chain dm_chain[DMAMAXIO]; /* all segments */
|
|
};
|
|
|
|
struct dma_softc {
|
|
struct dmareg *sc_dmareg; /* pointer to our hardware */
|
|
struct dma_channel sc_chan[NDMACHAN]; /* 2 channels */
|
|
TAILQ_HEAD(, dmaqueue) sc_queue; /* job queue */
|
|
char sc_type; /* A, B, or C */
|
|
int sc_ipl; /* our interrupt level */
|
|
void *sc_ih; /* interrupt cookie */
|
|
} dma_softc;
|
|
|
|
/* types */
|
|
#define DMA_B 0
|
|
#define DMA_C 1
|
|
|
|
/* flags */
|
|
#define DMAF_PCFLUSH 0x01
|
|
#define DMAF_VCFLUSH 0x02
|
|
#define DMAF_NOINTR 0x04
|
|
|
|
int dmaintr __P((void *));
|
|
|
|
#ifdef DEBUG
|
|
int dmadebug = 0;
|
|
#define DDB_WORD 0x01 /* same as DMAGO_WORD */
|
|
#define DDB_LWORD 0x02 /* same as DMAGO_LWORD */
|
|
#define DDB_FOLLOW 0x04
|
|
#define DDB_IO 0x08
|
|
|
|
void dmatimeout __P((void *));
|
|
int dmatimo[NDMACHAN];
|
|
|
|
long dmahits[NDMACHAN];
|
|
long dmamisses[NDMACHAN];
|
|
long dmabyte[NDMACHAN];
|
|
long dmaword[NDMACHAN];
|
|
long dmalword[NDMACHAN];
|
|
#endif
|
|
|
|
/*
|
|
* Initialize the DMA engine, called by dioattach()
|
|
*/
|
|
void
|
|
dmainit()
|
|
{
|
|
struct dma_softc *sc = &dma_softc;
|
|
struct dmareg *dma;
|
|
struct dma_channel *dc;
|
|
int i;
|
|
char rev;
|
|
|
|
/* There's just one. */
|
|
sc->sc_dmareg = (struct dmareg *)DMA_BASE;
|
|
dma = sc->sc_dmareg;
|
|
|
|
/*
|
|
* Determine the DMA type. A DMA_A or DMA_B will fail the
|
|
* following probe.
|
|
*
|
|
* XXX Don't know how to easily differentiate the A and B cards,
|
|
* so we just hope nobody has an A card (A cards will work if
|
|
* splbio works out to ipl 3).
|
|
*/
|
|
if (badbaddr((char *)&dma->dma_id[2])) {
|
|
rev = 'B';
|
|
#if !defined(HP320)
|
|
panic("dmainit: DMA card requires hp320 support");
|
|
#endif
|
|
} else
|
|
rev = dma->dma_id[2];
|
|
|
|
sc->sc_type = (rev == 'B') ? DMA_B : DMA_C;
|
|
|
|
TAILQ_INIT(&sc->sc_queue);
|
|
|
|
for (i = 0; i < NDMACHAN; i++) {
|
|
dc = &sc->sc_chan[i];
|
|
dc->dm_job = NULL;
|
|
switch (i) {
|
|
case 0:
|
|
dc->dm_hwaddr = &dma->dma_chan0;
|
|
dc->dm_Bhwaddr = &dma->dma_Bchan0;
|
|
break;
|
|
|
|
case 1:
|
|
dc->dm_hwaddr = &dma->dma_chan1;
|
|
dc->dm_Bhwaddr = &dma->dma_Bchan1;
|
|
break;
|
|
|
|
default:
|
|
panic("dmainit: more than 2 channels?");
|
|
/* NOTREACHED */
|
|
}
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
/* make sure timeout is really not needed */
|
|
timeout(dmatimeout, sc, 30 * hz);
|
|
#endif
|
|
|
|
printf("98620%c, 2 channels, %d bit DMA\n",
|
|
rev, (rev == 'B') ? 16 : 32);
|
|
|
|
/*
|
|
* Defer hooking up our interrupt until the first
|
|
* DMA-using controller has hooked up theirs.
|
|
*/
|
|
sc->sc_ih = NULL;
|
|
}
|
|
|
|
/*
|
|
* Compute the ipl and (re)establish the interrupt handler
|
|
* for the DMA controller.
|
|
*/
|
|
void
|
|
dmacomputeipl()
|
|
{
|
|
struct dma_softc *sc = &dma_softc;
|
|
|
|
if (sc->sc_ih != NULL)
|
|
intr_disestablish(sc->sc_ih);
|
|
|
|
/*
|
|
* Our interrupt level must be as high as the highest
|
|
* device using DMA (i.e. splbio).
|
|
*/
|
|
sc->sc_ipl = PSLTOIPL(hp300_ipls[HP300_IPL_BIO]);
|
|
sc->sc_ih = intr_establish(dmaintr, sc, sc->sc_ipl, IPL_BIO);
|
|
}
|
|
|
|
int
|
|
dmareq(dq)
|
|
struct dmaqueue *dq;
|
|
{
|
|
struct dma_softc *sc = &dma_softc;
|
|
int i, chan, s;
|
|
|
|
#if 1
|
|
s = splhigh(); /* XXXthorpej */
|
|
#else
|
|
s = splbio();
|
|
#endif
|
|
|
|
chan = dq->dq_chan;
|
|
for (i = NDMACHAN - 1; i >= 0; i--) {
|
|
/*
|
|
* Can we use this channel?
|
|
*/
|
|
if ((chan & (1 << i)) == 0)
|
|
continue;
|
|
|
|
/*
|
|
* We can use it; is it busy?
|
|
*/
|
|
if (sc->sc_chan[i].dm_job != NULL)
|
|
continue;
|
|
|
|
/*
|
|
* Not busy; give the caller this channel.
|
|
*/
|
|
sc->sc_chan[i].dm_job = dq;
|
|
dq->dq_chan = i;
|
|
splx(s);
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Couldn't get a channel now; put this in the queue.
|
|
*/
|
|
TAILQ_INSERT_TAIL(&sc->sc_queue, dq, dq_list);
|
|
splx(s);
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
dmafree(dq)
|
|
struct dmaqueue *dq;
|
|
{
|
|
int unit = dq->dq_chan;
|
|
struct dma_softc *sc = &dma_softc;
|
|
struct dma_channel *dc = &sc->sc_chan[unit];
|
|
struct dmaqueue *dn;
|
|
int chan, s;
|
|
|
|
#if 1
|
|
s = splhigh(); /* XXXthorpej */
|
|
#else
|
|
s = splbio();
|
|
#endif
|
|
|
|
#ifdef DEBUG
|
|
dmatimo[unit] = 0;
|
|
#endif
|
|
|
|
DMA_CLEAR(dc);
|
|
|
|
#if defined(CACHE_HAVE_PAC) || defined(M68040)
|
|
/*
|
|
* XXX we may not always go thru the flush code in dmastop()
|
|
*/
|
|
if (dc->dm_flags & DMAF_PCFLUSH) {
|
|
PCIA();
|
|
dc->dm_flags &= ~DMAF_PCFLUSH;
|
|
}
|
|
#endif
|
|
|
|
#if defined(CACHE_HAVE_VAC)
|
|
if (dc->dm_flags & DMAF_VCFLUSH) {
|
|
/*
|
|
* 320/350s have VACs that may also need flushing.
|
|
* In our case we only flush the supervisor side
|
|
* because we know that if we are DMAing to user
|
|
* space, the physical pages will also be mapped
|
|
* in kernel space (via vmapbuf) and hence cache-
|
|
* inhibited by the pmap module due to the multiple
|
|
* mapping.
|
|
*/
|
|
DCIS();
|
|
dc->dm_flags &= ~DMAF_VCFLUSH;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Channel is now free. Look for another job to run on this
|
|
* channel.
|
|
*/
|
|
dc->dm_job = NULL;
|
|
chan = 1 << unit;
|
|
for (dn = sc->sc_queue.tqh_first; dn != NULL;
|
|
dn = dn->dq_list.tqe_next) {
|
|
if (dn->dq_chan & chan) {
|
|
/* Found one... */
|
|
TAILQ_REMOVE(&sc->sc_queue, dn, dq_list);
|
|
dc->dm_job = dn;
|
|
dn->dq_chan = dq->dq_chan;
|
|
splx(s);
|
|
|
|
/* Start the initiator. */
|
|
(*dn->dq_start)(dn->dq_softc);
|
|
return;
|
|
}
|
|
}
|
|
splx(s);
|
|
}
|
|
|
|
void
|
|
dmago(unit, addr, count, flags)
|
|
int unit;
|
|
char *addr;
|
|
int count;
|
|
int flags;
|
|
{
|
|
struct dma_softc *sc = &dma_softc;
|
|
struct dma_channel *dc = &sc->sc_chan[unit];
|
|
char *dmaend = NULL;
|
|
int seg, tcount;
|
|
|
|
if (count > MAXPHYS)
|
|
panic("dmago: count > MAXPHYS");
|
|
|
|
#if defined(HP320)
|
|
if (sc->sc_type == DMA_B && (flags & DMAGO_LWORD))
|
|
panic("dmago: no can do 32-bit DMA");
|
|
#endif
|
|
|
|
#ifdef DEBUG
|
|
if (dmadebug & DDB_FOLLOW)
|
|
printf("dmago(%d, %p, %x, %x)\n",
|
|
unit, addr, count, flags);
|
|
if (flags & DMAGO_LWORD)
|
|
dmalword[unit]++;
|
|
else if (flags & DMAGO_WORD)
|
|
dmaword[unit]++;
|
|
else
|
|
dmabyte[unit]++;
|
|
#endif
|
|
/*
|
|
* Build the DMA chain
|
|
*/
|
|
for (seg = 0; count > 0; seg++) {
|
|
dc->dm_chain[seg].dc_addr = (char *) kvtop(addr);
|
|
#if defined(M68040)
|
|
/*
|
|
* Push back dirty cache lines
|
|
*/
|
|
if (mmutype == MMU_68040)
|
|
DCFP((paddr_t)dc->dm_chain[seg].dc_addr);
|
|
#endif
|
|
if (count < (tcount = NBPG - ((int)addr & PGOFSET)))
|
|
tcount = count;
|
|
dc->dm_chain[seg].dc_count = tcount;
|
|
addr += tcount;
|
|
count -= tcount;
|
|
if (flags & DMAGO_LWORD)
|
|
tcount >>= 2;
|
|
else if (flags & DMAGO_WORD)
|
|
tcount >>= 1;
|
|
|
|
/*
|
|
* Try to compact the DMA transfer if the pages are adjacent.
|
|
* Note: this will never happen on the first iteration.
|
|
*/
|
|
if (dc->dm_chain[seg].dc_addr == dmaend
|
|
#if defined(HP320)
|
|
/* only 16-bit count on 98620B */
|
|
&& (sc->sc_type != DMA_B ||
|
|
dc->dm_chain[seg - 1].dc_count + tcount <= 65536)
|
|
#endif
|
|
) {
|
|
#ifdef DEBUG
|
|
dmahits[unit]++;
|
|
#endif
|
|
dmaend += dc->dm_chain[seg].dc_count;
|
|
dc->dm_chain[--seg].dc_count += tcount;
|
|
} else {
|
|
#ifdef DEBUG
|
|
dmamisses[unit]++;
|
|
#endif
|
|
dmaend = dc->dm_chain[seg].dc_addr +
|
|
dc->dm_chain[seg].dc_count;
|
|
dc->dm_chain[seg].dc_count = tcount;
|
|
}
|
|
}
|
|
dc->dm_cur = 0;
|
|
dc->dm_last = --seg;
|
|
dc->dm_flags = 0;
|
|
/*
|
|
* Set up the command word based on flags
|
|
*/
|
|
dc->dm_cmd = DMA_ENAB | DMA_IPL(sc->sc_ipl) | DMA_START;
|
|
if ((flags & DMAGO_READ) == 0)
|
|
dc->dm_cmd |= DMA_WRT;
|
|
if (flags & DMAGO_LWORD)
|
|
dc->dm_cmd |= DMA_LWORD;
|
|
else if (flags & DMAGO_WORD)
|
|
dc->dm_cmd |= DMA_WORD;
|
|
if (flags & DMAGO_PRI)
|
|
dc->dm_cmd |= DMA_PRI;
|
|
|
|
#if defined(M68040)
|
|
/*
|
|
* On the 68040 we need to flush (push) the data cache before a
|
|
* DMA (already done above) and flush again after DMA completes.
|
|
* In theory we should only need to flush prior to a write DMA
|
|
* and purge after a read DMA but if the entire page is not
|
|
* involved in the DMA we might purge some valid data.
|
|
*/
|
|
if (mmutype == MMU_68040 && (flags & DMAGO_READ))
|
|
dc->dm_flags |= DMAF_PCFLUSH;
|
|
#endif
|
|
|
|
#if defined(CACHE_HAVE_PAC)
|
|
/*
|
|
* Remember if we need to flush external physical cache when
|
|
* DMA is done. We only do this if we are reading (writing memory).
|
|
*/
|
|
if (ectype == EC_PHYS && (flags & DMAGO_READ))
|
|
dc->dm_flags |= DMAF_PCFLUSH;
|
|
#endif
|
|
|
|
#if defined(CACHE_HAVE_VAC)
|
|
if (ectype == EC_VIRT && (flags & DMAGO_READ))
|
|
dc->dm_flags |= DMAF_VCFLUSH;
|
|
#endif
|
|
|
|
/*
|
|
* Remember if we can skip the dma completion interrupt on
|
|
* the last segment in the chain.
|
|
*/
|
|
if (flags & DMAGO_NOINT) {
|
|
if (dc->dm_cur == dc->dm_last)
|
|
dc->dm_cmd &= ~DMA_ENAB;
|
|
else
|
|
dc->dm_flags |= DMAF_NOINTR;
|
|
}
|
|
#ifdef DEBUG
|
|
if (dmadebug & DDB_IO) {
|
|
if (((dmadebug&DDB_WORD) && (dc->dm_cmd&DMA_WORD)) ||
|
|
((dmadebug&DDB_LWORD) && (dc->dm_cmd&DMA_LWORD))) {
|
|
printf("dmago: cmd %x, flags %x\n",
|
|
dc->dm_cmd, dc->dm_flags);
|
|
for (seg = 0; seg <= dc->dm_last; seg++)
|
|
printf(" %d: %d@%p\n", seg,
|
|
dc->dm_chain[seg].dc_count,
|
|
dc->dm_chain[seg].dc_addr);
|
|
}
|
|
}
|
|
dmatimo[unit] = 1;
|
|
#endif
|
|
DMA_ARM(sc, dc);
|
|
}
|
|
|
|
void
|
|
dmastop(unit)
|
|
int unit;
|
|
{
|
|
struct dma_softc *sc = &dma_softc;
|
|
struct dma_channel *dc = &sc->sc_chan[unit];
|
|
|
|
#ifdef DEBUG
|
|
if (dmadebug & DDB_FOLLOW)
|
|
printf("dmastop(%d)\n", unit);
|
|
dmatimo[unit] = 0;
|
|
#endif
|
|
DMA_CLEAR(dc);
|
|
|
|
#if defined(CACHE_HAVE_PAC) || defined(M68040)
|
|
if (dc->dm_flags & DMAF_PCFLUSH) {
|
|
PCIA();
|
|
dc->dm_flags &= ~DMAF_PCFLUSH;
|
|
}
|
|
#endif
|
|
|
|
#if defined(CACHE_HAVE_VAC)
|
|
if (dc->dm_flags & DMAF_VCFLUSH) {
|
|
/*
|
|
* 320/350s have VACs that may also need flushing.
|
|
* In our case we only flush the supervisor side
|
|
* because we know that if we are DMAing to user
|
|
* space, the physical pages will also be mapped
|
|
* in kernel space (via vmapbuf) and hence cache-
|
|
* inhibited by the pmap module due to the multiple
|
|
* mapping.
|
|
*/
|
|
DCIS();
|
|
dc->dm_flags &= ~DMAF_VCFLUSH;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* We may get this interrupt after a device service routine
|
|
* has freed the dma channel. So, ignore the intr if there's
|
|
* nothing on the queue.
|
|
*/
|
|
if (dc->dm_job != NULL)
|
|
(*dc->dm_job->dq_done)(dc->dm_job->dq_softc);
|
|
}
|
|
|
|
int
|
|
dmaintr(arg)
|
|
void *arg;
|
|
{
|
|
struct dma_softc *sc = arg;
|
|
struct dma_channel *dc;
|
|
int i, stat;
|
|
int found = 0;
|
|
|
|
#ifdef DEBUG
|
|
if (dmadebug & DDB_FOLLOW)
|
|
printf("dmaintr\n");
|
|
#endif
|
|
for (i = 0; i < NDMACHAN; i++) {
|
|
dc = &sc->sc_chan[i];
|
|
stat = DMA_STAT(dc);
|
|
if ((stat & DMA_INTR) == 0)
|
|
continue;
|
|
found++;
|
|
#ifdef DEBUG
|
|
if (dmadebug & DDB_IO) {
|
|
if (((dmadebug&DDB_WORD) && (dc->dm_cmd&DMA_WORD)) ||
|
|
((dmadebug&DDB_LWORD) && (dc->dm_cmd&DMA_LWORD)))
|
|
printf("dmaintr: flags %x unit %d stat %x next %d\n",
|
|
dc->dm_flags, i, stat, dc->dm_cur + 1);
|
|
}
|
|
if (stat & DMA_ARMED)
|
|
printf("dma channel %d: intr when armed\n", i);
|
|
#endif
|
|
/*
|
|
* Load the next segemnt, or finish up if we're done.
|
|
*/
|
|
dc->dm_cur++;
|
|
if (dc->dm_cur <= dc->dm_last) {
|
|
#ifdef DEBUG
|
|
dmatimo[i] = 1;
|
|
#endif
|
|
/*
|
|
* If we're the last segment, disable the
|
|
* completion interrupt, if necessary.
|
|
*/
|
|
if (dc->dm_cur == dc->dm_last &&
|
|
(dc->dm_flags & DMAF_NOINTR))
|
|
dc->dm_cmd &= ~DMA_ENAB;
|
|
DMA_CLEAR(dc);
|
|
DMA_ARM(sc, dc);
|
|
} else
|
|
dmastop(i);
|
|
}
|
|
return(found);
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
void
|
|
dmatimeout(arg)
|
|
void *arg;
|
|
{
|
|
int i, s;
|
|
struct dma_softc *sc = arg;
|
|
|
|
for (i = 0; i < NDMACHAN; i++) {
|
|
s = splbio();
|
|
if (dmatimo[i]) {
|
|
if (dmatimo[i] > 1)
|
|
printf("dma channel %d timeout #%d\n",
|
|
i, dmatimo[i]-1);
|
|
dmatimo[i]++;
|
|
}
|
|
splx(s);
|
|
}
|
|
timeout(dmatimeout, sc, 30 * hz);
|
|
}
|
|
#endif
|