2356 lines
80 KiB
C
2356 lines
80 KiB
C
/* $NetBSD: softfloat.c,v 1.3 2013/01/10 08:16:11 matt Exp $ */
|
|
|
|
/*
|
|
* This version hacked for use with gcc -msoft-float by bjh21.
|
|
* (Mostly a case of #ifdefing out things GCC doesn't need or provides
|
|
* itself).
|
|
*/
|
|
|
|
/*
|
|
* Things you may want to define:
|
|
*
|
|
* SOFTFLOAT_FOR_GCC - build only those functions necessary for GCC (with
|
|
* -msoft-float) to work. Include "softfloat-for-gcc.h" to get them
|
|
* properly renamed.
|
|
*/
|
|
|
|
/*
|
|
* This differs from the standard bits32/softfloat.c in that float64
|
|
* is defined to be a 64-bit integer rather than a structure. The
|
|
* structure is float64s, with translation between the two going via
|
|
* float64u.
|
|
*/
|
|
|
|
/*
|
|
===============================================================================
|
|
|
|
This C source file is part of the SoftFloat IEC/IEEE Floating-Point
|
|
Arithmetic Package, Release 2a.
|
|
|
|
Written by John R. Hauser. This work was made possible in part by the
|
|
International Computer Science Institute, located at Suite 600, 1947 Center
|
|
Street, Berkeley, California 94704. Funding was partially provided by the
|
|
National Science Foundation under grant MIP-9311980. The original version
|
|
of this code was written as part of a project to build a fixed-point vector
|
|
processor in collaboration with the University of California at Berkeley,
|
|
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
|
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
|
|
arithmetic/SoftFloat.html'.
|
|
|
|
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
|
|
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
|
|
TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
|
|
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
|
|
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
|
|
|
|
Derivative works are acceptable, even for commercial purposes, so long as
|
|
(1) they include prominent notice that the work is derivative, and (2) they
|
|
include prominent notice akin to these four paragraphs for those parts of
|
|
this code that are retained.
|
|
|
|
===============================================================================
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
#if defined(LIBC_SCCS) && !defined(lint)
|
|
__RCSID("$NetBSD: softfloat.c,v 1.3 2013/01/10 08:16:11 matt Exp $");
|
|
#endif /* LIBC_SCCS and not lint */
|
|
|
|
#ifdef SOFTFLOAT_FOR_GCC
|
|
#include "softfloat-for-gcc.h"
|
|
#endif
|
|
|
|
#include "milieu.h"
|
|
#include "softfloat.h"
|
|
|
|
/*
|
|
* Conversions between floats as stored in memory and floats as
|
|
* SoftFloat uses them
|
|
*/
|
|
#ifndef FLOAT64_DEMANGLE
|
|
#define FLOAT64_DEMANGLE(a) (a)
|
|
#endif
|
|
#ifndef FLOAT64_MANGLE
|
|
#define FLOAT64_MANGLE(a) (a)
|
|
#endif
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Floating-point rounding mode and exception flags.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
#ifndef set_float_rounding_mode
|
|
fp_rnd float_rounding_mode = float_round_nearest_even;
|
|
fp_except float_exception_flags = 0;
|
|
#endif
|
|
#ifndef set_float_exception_inexact_flag
|
|
#define set_float_exception_inexact_flag() \
|
|
((void)(float_exception_flags |= float_flag_inexact))
|
|
#endif
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Primitive arithmetic functions, including multi-word arithmetic, and
|
|
division and square root approximations. (Can be specialized to target if
|
|
desired.)
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
#include "softfloat-macros"
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Functions and definitions to determine: (1) whether tininess for underflow
|
|
is detected before or after rounding by default, (2) what (if anything)
|
|
happens when exceptions are raised, (3) how signaling NaNs are distinguished
|
|
from quiet NaNs, (4) the default generated quiet NaNs, and (4) how NaNs
|
|
are propagated from function inputs to output. These details are target-
|
|
specific.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
#include "softfloat-specialize"
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Returns the fraction bits of the single-precision floating-point value `a'.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
INLINE bits32 extractFloat32Frac( float32 a )
|
|
{
|
|
|
|
return a & 0x007FFFFF;
|
|
|
|
}
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Returns the exponent bits of the single-precision floating-point value `a'.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
INLINE int16 extractFloat32Exp( float32 a )
|
|
{
|
|
|
|
return ( a>>23 ) & 0xFF;
|
|
|
|
}
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Returns the sign bit of the single-precision floating-point value `a'.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
INLINE flag extractFloat32Sign( float32 a )
|
|
{
|
|
|
|
return a>>31;
|
|
|
|
}
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Normalizes the subnormal single-precision floating-point value represented
|
|
by the denormalized significand `aSig'. The normalized exponent and
|
|
significand are stored at the locations pointed to by `zExpPtr' and
|
|
`zSigPtr', respectively.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
static void
|
|
normalizeFloat32Subnormal( bits32 aSig, int16 *zExpPtr, bits32 *zSigPtr )
|
|
{
|
|
int8 shiftCount;
|
|
|
|
shiftCount = countLeadingZeros32( aSig ) - 8;
|
|
*zSigPtr = aSig<<shiftCount;
|
|
*zExpPtr = 1 - shiftCount;
|
|
|
|
}
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
|
|
single-precision floating-point value, returning the result. After being
|
|
shifted into the proper positions, the three fields are simply added
|
|
together to form the result. This means that any integer portion of `zSig'
|
|
will be added into the exponent. Since a properly normalized significand
|
|
will have an integer portion equal to 1, the `zExp' input should be 1 less
|
|
than the desired result exponent whenever `zSig' is a complete, normalized
|
|
significand.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
INLINE float32 packFloat32( flag zSign, int16 zExp, bits32 zSig )
|
|
{
|
|
|
|
return ( ( (bits32) zSign )<<31 ) + ( ( (bits32) zExp )<<23 ) + zSig;
|
|
|
|
}
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Takes an abstract floating-point value having sign `zSign', exponent `zExp',
|
|
and significand `zSig', and returns the proper single-precision floating-
|
|
point value corresponding to the abstract input. Ordinarily, the abstract
|
|
value is simply rounded and packed into the single-precision format, with
|
|
the inexact exception raised if the abstract input cannot be represented
|
|
exactly. However, if the abstract value is too large, the overflow and
|
|
inexact exceptions are raised and an infinity or maximal finite value is
|
|
returned. If the abstract value is too small, the input value is rounded to
|
|
a subnormal number, and the underflow and inexact exceptions are raised if
|
|
the abstract input cannot be represented exactly as a subnormal single-
|
|
precision floating-point number.
|
|
The input significand `zSig' has its binary point between bits 30
|
|
and 29, which is 7 bits to the left of the usual location. This shifted
|
|
significand must be normalized or smaller. If `zSig' is not normalized,
|
|
`zExp' must be 0; in that case, the result returned is a subnormal number,
|
|
and it must not require rounding. In the usual case that `zSig' is
|
|
normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
|
|
The handling of underflow and overflow follows the IEC/IEEE Standard for
|
|
Binary Floating-Point Arithmetic.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
static float32 roundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig )
|
|
{
|
|
int8 roundingMode;
|
|
flag roundNearestEven;
|
|
int8 roundIncrement, roundBits;
|
|
flag isTiny;
|
|
|
|
roundingMode = float_rounding_mode;
|
|
roundNearestEven = roundingMode == float_round_nearest_even;
|
|
roundIncrement = 0x40;
|
|
if ( ! roundNearestEven ) {
|
|
if ( roundingMode == float_round_to_zero ) {
|
|
roundIncrement = 0;
|
|
}
|
|
else {
|
|
roundIncrement = 0x7F;
|
|
if ( zSign ) {
|
|
if ( roundingMode == float_round_up ) roundIncrement = 0;
|
|
}
|
|
else {
|
|
if ( roundingMode == float_round_down ) roundIncrement = 0;
|
|
}
|
|
}
|
|
}
|
|
roundBits = zSig & 0x7F;
|
|
if ( 0xFD <= (bits16) zExp ) {
|
|
if ( ( 0xFD < zExp )
|
|
|| ( ( zExp == 0xFD )
|
|
&& ( (sbits32) ( zSig + roundIncrement ) < 0 ) )
|
|
) {
|
|
float_raise( float_flag_overflow | float_flag_inexact );
|
|
return packFloat32( zSign, 0xFF, 0 ) - ( roundIncrement == 0 );
|
|
}
|
|
if ( zExp < 0 ) {
|
|
isTiny =
|
|
( float_detect_tininess == float_tininess_before_rounding )
|
|
|| ( zExp < -1 )
|
|
|| ( zSig + roundIncrement < (uint32)0x80000000 );
|
|
shift32RightJamming( zSig, - zExp, &zSig );
|
|
zExp = 0;
|
|
roundBits = zSig & 0x7F;
|
|
if ( isTiny && roundBits ) float_raise( float_flag_underflow );
|
|
}
|
|
}
|
|
if ( roundBits ) set_float_exception_inexact_flag();
|
|
zSig = ( zSig + roundIncrement )>>7;
|
|
zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
|
|
if ( zSig == 0 ) zExp = 0;
|
|
return packFloat32( zSign, zExp, zSig );
|
|
|
|
}
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Takes an abstract floating-point value having sign `zSign', exponent `zExp',
|
|
and significand `zSig', and returns the proper single-precision floating-
|
|
point value corresponding to the abstract input. This routine is just like
|
|
`roundAndPackFloat32' except that `zSig' does not have to be normalized.
|
|
Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
|
|
floating-point exponent.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
static float32
|
|
normalizeRoundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig )
|
|
{
|
|
int8 shiftCount;
|
|
|
|
shiftCount = countLeadingZeros32( zSig ) - 1;
|
|
return roundAndPackFloat32( zSign, zExp - shiftCount, zSig<<shiftCount );
|
|
|
|
}
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Returns the least-significant 32 fraction bits of the double-precision
|
|
floating-point value `a'.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
INLINE bits32 extractFloat64Frac1( float64 a )
|
|
{
|
|
|
|
return (bits32)(FLOAT64_DEMANGLE(a) & LIT64(0x00000000FFFFFFFF));
|
|
|
|
}
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Returns the most-significant 20 fraction bits of the double-precision
|
|
floating-point value `a'.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
INLINE bits32 extractFloat64Frac0( float64 a )
|
|
{
|
|
|
|
return (bits32)((FLOAT64_DEMANGLE(a) >> 32) & 0x000FFFFF);
|
|
|
|
}
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Returns the exponent bits of the double-precision floating-point value `a'.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
INLINE int16 extractFloat64Exp( float64 a )
|
|
{
|
|
|
|
return (int16)((FLOAT64_DEMANGLE(a) >> 52) & 0x7FF);
|
|
|
|
}
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Returns the sign bit of the double-precision floating-point value `a'.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
INLINE flag extractFloat64Sign( float64 a )
|
|
{
|
|
|
|
return (flag)(FLOAT64_DEMANGLE(a) >> 63);
|
|
|
|
}
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Normalizes the subnormal double-precision floating-point value represented
|
|
by the denormalized significand formed by the concatenation of `aSig0' and
|
|
`aSig1'. The normalized exponent is stored at the location pointed to by
|
|
`zExpPtr'. The most significant 21 bits of the normalized significand are
|
|
stored at the location pointed to by `zSig0Ptr', and the least significant
|
|
32 bits of the normalized significand are stored at the location pointed to
|
|
by `zSig1Ptr'.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
static void
|
|
normalizeFloat64Subnormal(
|
|
bits32 aSig0,
|
|
bits32 aSig1,
|
|
int16 *zExpPtr,
|
|
bits32 *zSig0Ptr,
|
|
bits32 *zSig1Ptr
|
|
)
|
|
{
|
|
int8 shiftCount;
|
|
|
|
if ( aSig0 == 0 ) {
|
|
shiftCount = countLeadingZeros32( aSig1 ) - 11;
|
|
if ( shiftCount < 0 ) {
|
|
*zSig0Ptr = aSig1>>( - shiftCount );
|
|
*zSig1Ptr = aSig1<<( shiftCount & 31 );
|
|
}
|
|
else {
|
|
*zSig0Ptr = aSig1<<shiftCount;
|
|
*zSig1Ptr = 0;
|
|
}
|
|
*zExpPtr = - shiftCount - 31;
|
|
}
|
|
else {
|
|
shiftCount = countLeadingZeros32( aSig0 ) - 11;
|
|
shortShift64Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr );
|
|
*zExpPtr = 1 - shiftCount;
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Packs the sign `zSign', the exponent `zExp', and the significand formed by
|
|
the concatenation of `zSig0' and `zSig1' into a double-precision floating-
|
|
point value, returning the result. After being shifted into the proper
|
|
positions, the three fields `zSign', `zExp', and `zSig0' are simply added
|
|
together to form the most significant 32 bits of the result. This means
|
|
that any integer portion of `zSig0' will be added into the exponent. Since
|
|
a properly normalized significand will have an integer portion equal to 1,
|
|
the `zExp' input should be 1 less than the desired result exponent whenever
|
|
`zSig0' and `zSig1' concatenated form a complete, normalized significand.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
INLINE float64
|
|
packFloat64( flag zSign, int16 zExp, bits32 zSig0, bits32 zSig1 )
|
|
{
|
|
|
|
return FLOAT64_MANGLE( ( ( (bits64) zSign )<<63 ) +
|
|
( ( (bits64) zExp )<<52 ) +
|
|
( ( (bits64) zSig0 )<<32 ) + zSig1 );
|
|
|
|
|
|
}
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Takes an abstract floating-point value having sign `zSign', exponent `zExp',
|
|
and extended significand formed by the concatenation of `zSig0', `zSig1',
|
|
and `zSig2', and returns the proper double-precision floating-point value
|
|
corresponding to the abstract input. Ordinarily, the abstract value is
|
|
simply rounded and packed into the double-precision format, with the inexact
|
|
exception raised if the abstract input cannot be represented exactly.
|
|
However, if the abstract value is too large, the overflow and inexact
|
|
exceptions are raised and an infinity or maximal finite value is returned.
|
|
If the abstract value is too small, the input value is rounded to a
|
|
subnormal number, and the underflow and inexact exceptions are raised if the
|
|
abstract input cannot be represented exactly as a subnormal double-precision
|
|
floating-point number.
|
|
The input significand must be normalized or smaller. If the input
|
|
significand is not normalized, `zExp' must be 0; in that case, the result
|
|
returned is a subnormal number, and it must not require rounding. In the
|
|
usual case that the input significand is normalized, `zExp' must be 1 less
|
|
than the ``true'' floating-point exponent. The handling of underflow and
|
|
overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
static float64
|
|
roundAndPackFloat64(
|
|
flag zSign, int16 zExp, bits32 zSig0, bits32 zSig1, bits32 zSig2 )
|
|
{
|
|
int8 roundingMode;
|
|
flag roundNearestEven, increment, isTiny;
|
|
|
|
roundingMode = float_rounding_mode;
|
|
roundNearestEven = ( roundingMode == float_round_nearest_even );
|
|
increment = ( (sbits32) zSig2 < 0 );
|
|
if ( ! roundNearestEven ) {
|
|
if ( roundingMode == float_round_to_zero ) {
|
|
increment = 0;
|
|
}
|
|
else {
|
|
if ( zSign ) {
|
|
increment = ( roundingMode == float_round_down ) && zSig2;
|
|
}
|
|
else {
|
|
increment = ( roundingMode == float_round_up ) && zSig2;
|
|
}
|
|
}
|
|
}
|
|
if ( 0x7FD <= (bits16) zExp ) {
|
|
if ( ( 0x7FD < zExp )
|
|
|| ( ( zExp == 0x7FD )
|
|
&& eq64( 0x001FFFFF, 0xFFFFFFFF, zSig0, zSig1 )
|
|
&& increment
|
|
)
|
|
) {
|
|
float_raise( float_flag_overflow | float_flag_inexact );
|
|
if ( ( roundingMode == float_round_to_zero )
|
|
|| ( zSign && ( roundingMode == float_round_up ) )
|
|
|| ( ! zSign && ( roundingMode == float_round_down ) )
|
|
) {
|
|
return packFloat64( zSign, 0x7FE, 0x000FFFFF, 0xFFFFFFFF );
|
|
}
|
|
return packFloat64( zSign, 0x7FF, 0, 0 );
|
|
}
|
|
if ( zExp < 0 ) {
|
|
isTiny =
|
|
( float_detect_tininess == float_tininess_before_rounding )
|
|
|| ( zExp < -1 )
|
|
|| ! increment
|
|
|| lt64( zSig0, zSig1, 0x001FFFFF, 0xFFFFFFFF );
|
|
shift64ExtraRightJamming(
|
|
zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 );
|
|
zExp = 0;
|
|
if ( isTiny && zSig2 ) float_raise( float_flag_underflow );
|
|
if ( roundNearestEven ) {
|
|
increment = ( (sbits32) zSig2 < 0 );
|
|
}
|
|
else {
|
|
if ( zSign ) {
|
|
increment = ( roundingMode == float_round_down ) && zSig2;
|
|
}
|
|
else {
|
|
increment = ( roundingMode == float_round_up ) && zSig2;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if ( zSig2 ) set_float_exception_inexact_flag();
|
|
if ( increment ) {
|
|
add64( zSig0, zSig1, 0, 1, &zSig0, &zSig1 );
|
|
zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven );
|
|
}
|
|
else {
|
|
if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0;
|
|
}
|
|
return packFloat64( zSign, zExp, zSig0, zSig1 );
|
|
|
|
}
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Takes an abstract floating-point value having sign `zSign', exponent `zExp',
|
|
and significand formed by the concatenation of `zSig0' and `zSig1', and
|
|
returns the proper double-precision floating-point value corresponding
|
|
to the abstract input. This routine is just like `roundAndPackFloat64'
|
|
except that the input significand has fewer bits and does not have to be
|
|
normalized. In all cases, `zExp' must be 1 less than the ``true'' floating-
|
|
point exponent.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
static float64
|
|
normalizeRoundAndPackFloat64(
|
|
flag zSign, int16 zExp, bits32 zSig0, bits32 zSig1 )
|
|
{
|
|
int8 shiftCount;
|
|
bits32 zSig2;
|
|
|
|
if ( zSig0 == 0 ) {
|
|
zSig0 = zSig1;
|
|
zSig1 = 0;
|
|
zExp -= 32;
|
|
}
|
|
shiftCount = countLeadingZeros32( zSig0 ) - 11;
|
|
if ( 0 <= shiftCount ) {
|
|
zSig2 = 0;
|
|
shortShift64Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
|
|
}
|
|
else {
|
|
shift64ExtraRightJamming(
|
|
zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 );
|
|
}
|
|
zExp -= shiftCount;
|
|
return roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2 );
|
|
|
|
}
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Returns the result of converting the 32-bit two's complement integer `a' to
|
|
the single-precision floating-point format. The conversion is performed
|
|
according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
float32 int32_to_float32( int32 a )
|
|
{
|
|
flag zSign;
|
|
|
|
if ( a == 0 ) return 0;
|
|
if ( a == (sbits32) 0x80000000 ) return packFloat32( 1, 0x9E, 0 );
|
|
zSign = ( a < 0 );
|
|
return normalizeRoundAndPackFloat32(zSign, 0x9C, (uint32)(zSign ? - a : a));
|
|
|
|
}
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Returns the result of converting the 32-bit two's complement integer `a' to
|
|
the double-precision floating-point format. The conversion is performed
|
|
according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
float64 int32_to_float64( int32 a )
|
|
{
|
|
flag zSign;
|
|
bits32 absA;
|
|
int8 shiftCount;
|
|
bits32 zSig0, zSig1;
|
|
|
|
if ( a == 0 ) return packFloat64( 0, 0, 0, 0 );
|
|
zSign = ( a < 0 );
|
|
absA = zSign ? - a : a;
|
|
shiftCount = countLeadingZeros32( absA ) - 11;
|
|
if ( 0 <= shiftCount ) {
|
|
zSig0 = absA<<shiftCount;
|
|
zSig1 = 0;
|
|
}
|
|
else {
|
|
shift64Right( absA, 0, - shiftCount, &zSig0, &zSig1 );
|
|
}
|
|
return packFloat64( zSign, 0x412 - shiftCount, zSig0, zSig1 );
|
|
|
|
}
|
|
|
|
#ifndef SOFTFLOAT_FOR_GCC
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Returns the result of converting the single-precision floating-point value
|
|
`a' to the 32-bit two's complement integer format. The conversion is
|
|
performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
Arithmetic---which means in particular that the conversion is rounded
|
|
according to the current rounding mode. If `a' is a NaN, the largest
|
|
positive integer is returned. Otherwise, if the conversion overflows, the
|
|
largest integer with the same sign as `a' is returned.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
int32 float32_to_int32( float32 a )
|
|
{
|
|
flag aSign;
|
|
int16 aExp, shiftCount;
|
|
bits32 aSig, aSigExtra;
|
|
int32 z;
|
|
int8 roundingMode;
|
|
|
|
aSig = extractFloat32Frac( a );
|
|
aExp = extractFloat32Exp( a );
|
|
aSign = extractFloat32Sign( a );
|
|
shiftCount = aExp - 0x96;
|
|
if ( 0 <= shiftCount ) {
|
|
if ( 0x9E <= aExp ) {
|
|
if ( a != 0xCF000000 ) {
|
|
float_raise( float_flag_invalid );
|
|
if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
|
|
return 0x7FFFFFFF;
|
|
}
|
|
}
|
|
return (sbits32) 0x80000000;
|
|
}
|
|
z = ( aSig | 0x00800000 )<<shiftCount;
|
|
if ( aSign ) z = - z;
|
|
}
|
|
else {
|
|
if ( aExp < 0x7E ) {
|
|
aSigExtra = aExp | aSig;
|
|
z = 0;
|
|
}
|
|
else {
|
|
aSig |= 0x00800000;
|
|
aSigExtra = aSig<<( shiftCount & 31 );
|
|
z = aSig>>( - shiftCount );
|
|
}
|
|
if ( aSigExtra ) set_float_exception_inexact_flag();
|
|
roundingMode = float_rounding_mode;
|
|
if ( roundingMode == float_round_nearest_even ) {
|
|
if ( (sbits32) aSigExtra < 0 ) {
|
|
++z;
|
|
if ( (bits32) ( aSigExtra<<1 ) == 0 ) z &= ~1;
|
|
}
|
|
if ( aSign ) z = - z;
|
|
}
|
|
else {
|
|
aSigExtra = ( aSigExtra != 0 );
|
|
if ( aSign ) {
|
|
z += ( roundingMode == float_round_down ) & aSigExtra;
|
|
z = - z;
|
|
}
|
|
else {
|
|
z += ( roundingMode == float_round_up ) & aSigExtra;
|
|
}
|
|
}
|
|
}
|
|
return z;
|
|
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Returns the result of converting the single-precision floating-point value
|
|
`a' to the 32-bit two's complement integer format. The conversion is
|
|
performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
Arithmetic, except that the conversion is always rounded toward zero.
|
|
If `a' is a NaN, the largest positive integer is returned. Otherwise, if
|
|
the conversion overflows, the largest integer with the same sign as `a' is
|
|
returned.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
int32 float32_to_int32_round_to_zero( float32 a )
|
|
{
|
|
flag aSign;
|
|
int16 aExp, shiftCount;
|
|
bits32 aSig;
|
|
int32 z;
|
|
|
|
aSig = extractFloat32Frac( a );
|
|
aExp = extractFloat32Exp( a );
|
|
aSign = extractFloat32Sign( a );
|
|
shiftCount = aExp - 0x9E;
|
|
if ( 0 <= shiftCount ) {
|
|
if ( a != 0xCF000000 ) {
|
|
float_raise( float_flag_invalid );
|
|
if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF;
|
|
}
|
|
return (sbits32) 0x80000000;
|
|
}
|
|
else if ( aExp <= 0x7E ) {
|
|
if ( aExp | aSig ) set_float_exception_inexact_flag();
|
|
return 0;
|
|
}
|
|
aSig = ( aSig | 0x00800000 )<<8;
|
|
z = aSig>>( - shiftCount );
|
|
if ( (bits32) ( aSig<<( shiftCount & 31 ) ) ) {
|
|
set_float_exception_inexact_flag();
|
|
}
|
|
if ( aSign ) z = - z;
|
|
return z;
|
|
|
|
}
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Returns the result of converting the single-precision floating-point value
|
|
`a' to the double-precision floating-point format. The conversion is
|
|
performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
Arithmetic.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
float64 float32_to_float64( float32 a )
|
|
{
|
|
flag aSign;
|
|
int16 aExp;
|
|
bits32 aSig, zSig0, zSig1;
|
|
|
|
aSig = extractFloat32Frac( a );
|
|
aExp = extractFloat32Exp( a );
|
|
aSign = extractFloat32Sign( a );
|
|
if ( aExp == 0xFF ) {
|
|
if ( aSig ) return commonNaNToFloat64( float32ToCommonNaN( a ) );
|
|
return packFloat64( aSign, 0x7FF, 0, 0 );
|
|
}
|
|
if ( aExp == 0 ) {
|
|
if ( aSig == 0 ) return packFloat64( aSign, 0, 0, 0 );
|
|
normalizeFloat32Subnormal( aSig, &aExp, &aSig );
|
|
--aExp;
|
|
}
|
|
shift64Right( aSig, 0, 3, &zSig0, &zSig1 );
|
|
return packFloat64( aSign, aExp + 0x380, zSig0, zSig1 );
|
|
|
|
}
|
|
|
|
#ifndef SOFTFLOAT_FOR_GCC
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Rounds the single-precision floating-point value `a' to an integer,
|
|
and returns the result as a single-precision floating-point value. The
|
|
operation is performed according to the IEC/IEEE Standard for Binary
|
|
Floating-Point Arithmetic.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
float32 float32_round_to_int( float32 a )
|
|
{
|
|
flag aSign;
|
|
int16 aExp;
|
|
bits32 lastBitMask, roundBitsMask;
|
|
int8 roundingMode;
|
|
float32 z;
|
|
|
|
aExp = extractFloat32Exp( a );
|
|
if ( 0x96 <= aExp ) {
|
|
if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) {
|
|
return propagateFloat32NaN( a, a );
|
|
}
|
|
return a;
|
|
}
|
|
if ( aExp <= 0x7E ) {
|
|
if ( (bits32) ( a<<1 ) == 0 ) return a;
|
|
set_float_exception_inexact_flag();
|
|
aSign = extractFloat32Sign( a );
|
|
switch ( float_rounding_mode ) {
|
|
case float_round_nearest_even:
|
|
if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) {
|
|
return packFloat32( aSign, 0x7F, 0 );
|
|
}
|
|
break;
|
|
case float_round_to_zero:
|
|
break;
|
|
case float_round_down:
|
|
return aSign ? 0xBF800000 : 0;
|
|
case float_round_up:
|
|
return aSign ? 0x80000000 : 0x3F800000;
|
|
}
|
|
return packFloat32( aSign, 0, 0 );
|
|
}
|
|
lastBitMask = 1;
|
|
lastBitMask <<= 0x96 - aExp;
|
|
roundBitsMask = lastBitMask - 1;
|
|
z = a;
|
|
roundingMode = float_rounding_mode;
|
|
if ( roundingMode == float_round_nearest_even ) {
|
|
z += lastBitMask>>1;
|
|
if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask;
|
|
}
|
|
else if ( roundingMode != float_round_to_zero ) {
|
|
if ( extractFloat32Sign( z ) ^ ( roundingMode == float_round_up ) ) {
|
|
z += roundBitsMask;
|
|
}
|
|
}
|
|
z &= ~ roundBitsMask;
|
|
if ( z != a ) set_float_exception_inexact_flag();
|
|
return z;
|
|
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Returns the result of adding the absolute values of the single-precision
|
|
floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
|
|
before being returned. `zSign' is ignored if the result is a NaN.
|
|
The addition is performed according to the IEC/IEEE Standard for Binary
|
|
Floating-Point Arithmetic.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
static float32 addFloat32Sigs( float32 a, float32 b, flag zSign )
|
|
{
|
|
int16 aExp, bExp, zExp;
|
|
bits32 aSig, bSig, zSig;
|
|
int16 expDiff;
|
|
|
|
aSig = extractFloat32Frac( a );
|
|
aExp = extractFloat32Exp( a );
|
|
bSig = extractFloat32Frac( b );
|
|
bExp = extractFloat32Exp( b );
|
|
expDiff = aExp - bExp;
|
|
aSig <<= 6;
|
|
bSig <<= 6;
|
|
if ( 0 < expDiff ) {
|
|
if ( aExp == 0xFF ) {
|
|
if ( aSig ) return propagateFloat32NaN( a, b );
|
|
return a;
|
|
}
|
|
if ( bExp == 0 ) {
|
|
--expDiff;
|
|
}
|
|
else {
|
|
bSig |= 0x20000000;
|
|
}
|
|
shift32RightJamming( bSig, expDiff, &bSig );
|
|
zExp = aExp;
|
|
}
|
|
else if ( expDiff < 0 ) {
|
|
if ( bExp == 0xFF ) {
|
|
if ( bSig ) return propagateFloat32NaN( a, b );
|
|
return packFloat32( zSign, 0xFF, 0 );
|
|
}
|
|
if ( aExp == 0 ) {
|
|
++expDiff;
|
|
}
|
|
else {
|
|
aSig |= 0x20000000;
|
|
}
|
|
shift32RightJamming( aSig, - expDiff, &aSig );
|
|
zExp = bExp;
|
|
}
|
|
else {
|
|
if ( aExp == 0xFF ) {
|
|
if ( aSig | bSig ) return propagateFloat32NaN( a, b );
|
|
return a;
|
|
}
|
|
if ( aExp == 0 ) return packFloat32( zSign, 0, ( aSig + bSig )>>6 );
|
|
zSig = 0x40000000 + aSig + bSig;
|
|
zExp = aExp;
|
|
goto roundAndPack;
|
|
}
|
|
aSig |= 0x20000000;
|
|
zSig = ( aSig + bSig )<<1;
|
|
--zExp;
|
|
if ( (sbits32) zSig < 0 ) {
|
|
zSig = aSig + bSig;
|
|
++zExp;
|
|
}
|
|
roundAndPack:
|
|
return roundAndPackFloat32( zSign, zExp, zSig );
|
|
|
|
}
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Returns the result of subtracting the absolute values of the single-
|
|
precision floating-point values `a' and `b'. If `zSign' is 1, the
|
|
difference is negated before being returned. `zSign' is ignored if the
|
|
result is a NaN. The subtraction is performed according to the IEC/IEEE
|
|
Standard for Binary Floating-Point Arithmetic.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
static float32 subFloat32Sigs( float32 a, float32 b, flag zSign )
|
|
{
|
|
int16 aExp, bExp, zExp;
|
|
bits32 aSig, bSig, zSig;
|
|
int16 expDiff;
|
|
|
|
aSig = extractFloat32Frac( a );
|
|
aExp = extractFloat32Exp( a );
|
|
bSig = extractFloat32Frac( b );
|
|
bExp = extractFloat32Exp( b );
|
|
expDiff = aExp - bExp;
|
|
aSig <<= 7;
|
|
bSig <<= 7;
|
|
if ( 0 < expDiff ) goto aExpBigger;
|
|
if ( expDiff < 0 ) goto bExpBigger;
|
|
if ( aExp == 0xFF ) {
|
|
if ( aSig | bSig ) return propagateFloat32NaN( a, b );
|
|
float_raise( float_flag_invalid );
|
|
return float32_default_nan;
|
|
}
|
|
if ( aExp == 0 ) {
|
|
aExp = 1;
|
|
bExp = 1;
|
|
}
|
|
if ( bSig < aSig ) goto aBigger;
|
|
if ( aSig < bSig ) goto bBigger;
|
|
return packFloat32( float_rounding_mode == float_round_down, 0, 0 );
|
|
bExpBigger:
|
|
if ( bExp == 0xFF ) {
|
|
if ( bSig ) return propagateFloat32NaN( a, b );
|
|
return packFloat32( zSign ^ 1, 0xFF, 0 );
|
|
}
|
|
if ( aExp == 0 ) {
|
|
++expDiff;
|
|
}
|
|
else {
|
|
aSig |= 0x40000000;
|
|
}
|
|
shift32RightJamming( aSig, - expDiff, &aSig );
|
|
bSig |= 0x40000000;
|
|
bBigger:
|
|
zSig = bSig - aSig;
|
|
zExp = bExp;
|
|
zSign ^= 1;
|
|
goto normalizeRoundAndPack;
|
|
aExpBigger:
|
|
if ( aExp == 0xFF ) {
|
|
if ( aSig ) return propagateFloat32NaN( a, b );
|
|
return a;
|
|
}
|
|
if ( bExp == 0 ) {
|
|
--expDiff;
|
|
}
|
|
else {
|
|
bSig |= 0x40000000;
|
|
}
|
|
shift32RightJamming( bSig, expDiff, &bSig );
|
|
aSig |= 0x40000000;
|
|
aBigger:
|
|
zSig = aSig - bSig;
|
|
zExp = aExp;
|
|
normalizeRoundAndPack:
|
|
--zExp;
|
|
return normalizeRoundAndPackFloat32( zSign, zExp, zSig );
|
|
|
|
}
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Returns the result of adding the single-precision floating-point values `a'
|
|
and `b'. The operation is performed according to the IEC/IEEE Standard for
|
|
Binary Floating-Point Arithmetic.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
float32 float32_add( float32 a, float32 b )
|
|
{
|
|
flag aSign, bSign;
|
|
|
|
aSign = extractFloat32Sign( a );
|
|
bSign = extractFloat32Sign( b );
|
|
if ( aSign == bSign ) {
|
|
return addFloat32Sigs( a, b, aSign );
|
|
}
|
|
else {
|
|
return subFloat32Sigs( a, b, aSign );
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Returns the result of subtracting the single-precision floating-point values
|
|
`a' and `b'. The operation is performed according to the IEC/IEEE Standard
|
|
for Binary Floating-Point Arithmetic.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
float32 float32_sub( float32 a, float32 b )
|
|
{
|
|
flag aSign, bSign;
|
|
|
|
aSign = extractFloat32Sign( a );
|
|
bSign = extractFloat32Sign( b );
|
|
if ( aSign == bSign ) {
|
|
return subFloat32Sigs( a, b, aSign );
|
|
}
|
|
else {
|
|
return addFloat32Sigs( a, b, aSign );
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Returns the result of multiplying the single-precision floating-point values
|
|
`a' and `b'. The operation is performed according to the IEC/IEEE Standard
|
|
for Binary Floating-Point Arithmetic.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
float32 float32_mul( float32 a, float32 b )
|
|
{
|
|
flag aSign, bSign, zSign;
|
|
int16 aExp, bExp, zExp;
|
|
bits32 aSig, bSig, zSig0, zSig1;
|
|
|
|
aSig = extractFloat32Frac( a );
|
|
aExp = extractFloat32Exp( a );
|
|
aSign = extractFloat32Sign( a );
|
|
bSig = extractFloat32Frac( b );
|
|
bExp = extractFloat32Exp( b );
|
|
bSign = extractFloat32Sign( b );
|
|
zSign = aSign ^ bSign;
|
|
if ( aExp == 0xFF ) {
|
|
if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
|
|
return propagateFloat32NaN( a, b );
|
|
}
|
|
if ( ( bExp | bSig ) == 0 ) {
|
|
float_raise( float_flag_invalid );
|
|
return float32_default_nan;
|
|
}
|
|
return packFloat32( zSign, 0xFF, 0 );
|
|
}
|
|
if ( bExp == 0xFF ) {
|
|
if ( bSig ) return propagateFloat32NaN( a, b );
|
|
if ( ( aExp | aSig ) == 0 ) {
|
|
float_raise( float_flag_invalid );
|
|
return float32_default_nan;
|
|
}
|
|
return packFloat32( zSign, 0xFF, 0 );
|
|
}
|
|
if ( aExp == 0 ) {
|
|
if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
|
|
normalizeFloat32Subnormal( aSig, &aExp, &aSig );
|
|
}
|
|
if ( bExp == 0 ) {
|
|
if ( bSig == 0 ) return packFloat32( zSign, 0, 0 );
|
|
normalizeFloat32Subnormal( bSig, &bExp, &bSig );
|
|
}
|
|
zExp = aExp + bExp - 0x7F;
|
|
aSig = ( aSig | 0x00800000 )<<7;
|
|
bSig = ( bSig | 0x00800000 )<<8;
|
|
mul32To64( aSig, bSig, &zSig0, &zSig1 );
|
|
zSig0 |= ( zSig1 != 0 );
|
|
if ( 0 <= (sbits32) ( zSig0<<1 ) ) {
|
|
zSig0 <<= 1;
|
|
--zExp;
|
|
}
|
|
return roundAndPackFloat32( zSign, zExp, zSig0 );
|
|
|
|
}
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Returns the result of dividing the single-precision floating-point value `a'
|
|
by the corresponding value `b'. The operation is performed according to the
|
|
IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
float32 float32_div( float32 a, float32 b )
|
|
{
|
|
flag aSign, bSign, zSign;
|
|
int16 aExp, bExp, zExp;
|
|
bits32 aSig, bSig, zSig, rem0, rem1, term0, term1;
|
|
|
|
aSig = extractFloat32Frac( a );
|
|
aExp = extractFloat32Exp( a );
|
|
aSign = extractFloat32Sign( a );
|
|
bSig = extractFloat32Frac( b );
|
|
bExp = extractFloat32Exp( b );
|
|
bSign = extractFloat32Sign( b );
|
|
zSign = aSign ^ bSign;
|
|
if ( aExp == 0xFF ) {
|
|
if ( aSig ) return propagateFloat32NaN( a, b );
|
|
if ( bExp == 0xFF ) {
|
|
if ( bSig ) return propagateFloat32NaN( a, b );
|
|
float_raise( float_flag_invalid );
|
|
return float32_default_nan;
|
|
}
|
|
return packFloat32( zSign, 0xFF, 0 );
|
|
}
|
|
if ( bExp == 0xFF ) {
|
|
if ( bSig ) return propagateFloat32NaN( a, b );
|
|
return packFloat32( zSign, 0, 0 );
|
|
}
|
|
if ( bExp == 0 ) {
|
|
if ( bSig == 0 ) {
|
|
if ( ( aExp | aSig ) == 0 ) {
|
|
float_raise( float_flag_invalid );
|
|
return float32_default_nan;
|
|
}
|
|
float_raise( float_flag_divbyzero );
|
|
return packFloat32( zSign, 0xFF, 0 );
|
|
}
|
|
normalizeFloat32Subnormal( bSig, &bExp, &bSig );
|
|
}
|
|
if ( aExp == 0 ) {
|
|
if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
|
|
normalizeFloat32Subnormal( aSig, &aExp, &aSig );
|
|
}
|
|
zExp = aExp - bExp + 0x7D;
|
|
aSig = ( aSig | 0x00800000 )<<7;
|
|
bSig = ( bSig | 0x00800000 )<<8;
|
|
if ( bSig <= ( aSig + aSig ) ) {
|
|
aSig >>= 1;
|
|
++zExp;
|
|
}
|
|
zSig = estimateDiv64To32( aSig, 0, bSig );
|
|
if ( ( zSig & 0x3F ) <= 2 ) {
|
|
mul32To64( bSig, zSig, &term0, &term1 );
|
|
sub64( aSig, 0, term0, term1, &rem0, &rem1 );
|
|
while ( (sbits32) rem0 < 0 ) {
|
|
--zSig;
|
|
add64( rem0, rem1, 0, bSig, &rem0, &rem1 );
|
|
}
|
|
zSig |= ( rem1 != 0 );
|
|
}
|
|
return roundAndPackFloat32( zSign, zExp, zSig );
|
|
|
|
}
|
|
|
|
#ifndef SOFTFLOAT_FOR_GCC
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Returns the remainder of the single-precision floating-point value `a'
|
|
with respect to the corresponding value `b'. The operation is performed
|
|
according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
float32 float32_rem( float32 a, float32 b )
|
|
{
|
|
flag aSign, bSign, zSign;
|
|
int16 aExp, bExp, expDiff;
|
|
bits32 aSig, bSig, q, allZero, alternateASig;
|
|
sbits32 sigMean;
|
|
|
|
aSig = extractFloat32Frac( a );
|
|
aExp = extractFloat32Exp( a );
|
|
aSign = extractFloat32Sign( a );
|
|
bSig = extractFloat32Frac( b );
|
|
bExp = extractFloat32Exp( b );
|
|
bSign = extractFloat32Sign( b );
|
|
if ( aExp == 0xFF ) {
|
|
if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
|
|
return propagateFloat32NaN( a, b );
|
|
}
|
|
float_raise( float_flag_invalid );
|
|
return float32_default_nan;
|
|
}
|
|
if ( bExp == 0xFF ) {
|
|
if ( bSig ) return propagateFloat32NaN( a, b );
|
|
return a;
|
|
}
|
|
if ( bExp == 0 ) {
|
|
if ( bSig == 0 ) {
|
|
float_raise( float_flag_invalid );
|
|
return float32_default_nan;
|
|
}
|
|
normalizeFloat32Subnormal( bSig, &bExp, &bSig );
|
|
}
|
|
if ( aExp == 0 ) {
|
|
if ( aSig == 0 ) return a;
|
|
normalizeFloat32Subnormal( aSig, &aExp, &aSig );
|
|
}
|
|
expDiff = aExp - bExp;
|
|
aSig = ( aSig | 0x00800000 )<<8;
|
|
bSig = ( bSig | 0x00800000 )<<8;
|
|
if ( expDiff < 0 ) {
|
|
if ( expDiff < -1 ) return a;
|
|
aSig >>= 1;
|
|
}
|
|
q = ( bSig <= aSig );
|
|
if ( q ) aSig -= bSig;
|
|
expDiff -= 32;
|
|
while ( 0 < expDiff ) {
|
|
q = estimateDiv64To32( aSig, 0, bSig );
|
|
q = ( 2 < q ) ? q - 2 : 0;
|
|
aSig = - ( ( bSig>>2 ) * q );
|
|
expDiff -= 30;
|
|
}
|
|
expDiff += 32;
|
|
if ( 0 < expDiff ) {
|
|
q = estimateDiv64To32( aSig, 0, bSig );
|
|
q = ( 2 < q ) ? q - 2 : 0;
|
|
q >>= 32 - expDiff;
|
|
bSig >>= 2;
|
|
aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
|
|
}
|
|
else {
|
|
aSig >>= 2;
|
|
bSig >>= 2;
|
|
}
|
|
do {
|
|
alternateASig = aSig;
|
|
++q;
|
|
aSig -= bSig;
|
|
} while ( 0 <= (sbits32) aSig );
|
|
sigMean = aSig + alternateASig;
|
|
if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
|
|
aSig = alternateASig;
|
|
}
|
|
zSign = ( (sbits32) aSig < 0 );
|
|
if ( zSign ) aSig = - aSig;
|
|
return normalizeRoundAndPackFloat32( aSign ^ zSign, bExp, aSig );
|
|
|
|
}
|
|
#endif
|
|
|
|
#ifndef SOFTFLOAT_FOR_GCC
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Returns the square root of the single-precision floating-point value `a'.
|
|
The operation is performed according to the IEC/IEEE Standard for Binary
|
|
Floating-Point Arithmetic.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
float32 float32_sqrt( float32 a )
|
|
{
|
|
flag aSign;
|
|
int16 aExp, zExp;
|
|
bits32 aSig, zSig, rem0, rem1, term0, term1;
|
|
|
|
aSig = extractFloat32Frac( a );
|
|
aExp = extractFloat32Exp( a );
|
|
aSign = extractFloat32Sign( a );
|
|
if ( aExp == 0xFF ) {
|
|
if ( aSig ) return propagateFloat32NaN( a, 0 );
|
|
if ( ! aSign ) return a;
|
|
float_raise( float_flag_invalid );
|
|
return float32_default_nan;
|
|
}
|
|
if ( aSign ) {
|
|
if ( ( aExp | aSig ) == 0 ) return a;
|
|
float_raise( float_flag_invalid );
|
|
return float32_default_nan;
|
|
}
|
|
if ( aExp == 0 ) {
|
|
if ( aSig == 0 ) return 0;
|
|
normalizeFloat32Subnormal( aSig, &aExp, &aSig );
|
|
}
|
|
zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E;
|
|
aSig = ( aSig | 0x00800000 )<<8;
|
|
zSig = estimateSqrt32( aExp, aSig ) + 2;
|
|
if ( ( zSig & 0x7F ) <= 5 ) {
|
|
if ( zSig < 2 ) {
|
|
zSig = 0x7FFFFFFF;
|
|
goto roundAndPack;
|
|
}
|
|
else {
|
|
aSig >>= aExp & 1;
|
|
mul32To64( zSig, zSig, &term0, &term1 );
|
|
sub64( aSig, 0, term0, term1, &rem0, &rem1 );
|
|
while ( (sbits32) rem0 < 0 ) {
|
|
--zSig;
|
|
shortShift64Left( 0, zSig, 1, &term0, &term1 );
|
|
term1 |= 1;
|
|
add64( rem0, rem1, term0, term1, &rem0, &rem1 );
|
|
}
|
|
zSig |= ( ( rem0 | rem1 ) != 0 );
|
|
}
|
|
}
|
|
shift32RightJamming( zSig, 1, &zSig );
|
|
roundAndPack:
|
|
return roundAndPackFloat32( 0, zExp, zSig );
|
|
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Returns 1 if the single-precision floating-point value `a' is equal to
|
|
the corresponding value `b', and 0 otherwise. The comparison is performed
|
|
according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
flag float32_eq( float32 a, float32 b )
|
|
{
|
|
|
|
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|
|
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
|
|
) {
|
|
if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
|
|
float_raise( float_flag_invalid );
|
|
}
|
|
return 0;
|
|
}
|
|
return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 );
|
|
|
|
}
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Returns 1 if the single-precision floating-point value `a' is less than
|
|
or equal to the corresponding value `b', and 0 otherwise. The comparison
|
|
is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
Arithmetic.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
flag float32_le( float32 a, float32 b )
|
|
{
|
|
flag aSign, bSign;
|
|
|
|
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|
|
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
|
|
) {
|
|
float_raise( float_flag_invalid );
|
|
return 0;
|
|
}
|
|
aSign = extractFloat32Sign( a );
|
|
bSign = extractFloat32Sign( b );
|
|
if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 );
|
|
return ( a == b ) || ( aSign ^ ( a < b ) );
|
|
|
|
}
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Returns 1 if the single-precision floating-point value `a' is less than
|
|
the corresponding value `b', and 0 otherwise. The comparison is performed
|
|
according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
flag float32_lt( float32 a, float32 b )
|
|
{
|
|
flag aSign, bSign;
|
|
|
|
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|
|
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
|
|
) {
|
|
float_raise( float_flag_invalid );
|
|
return 0;
|
|
}
|
|
aSign = extractFloat32Sign( a );
|
|
bSign = extractFloat32Sign( b );
|
|
if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 );
|
|
return ( a != b ) && ( aSign ^ ( a < b ) );
|
|
|
|
}
|
|
|
|
#ifndef SOFTFLOAT_FOR_GCC /* Not needed */
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Returns 1 if the single-precision floating-point value `a' is equal to
|
|
the corresponding value `b', and 0 otherwise. The invalid exception is
|
|
raised if either operand is a NaN. Otherwise, the comparison is performed
|
|
according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
flag float32_eq_signaling( float32 a, float32 b )
|
|
{
|
|
|
|
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|
|
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
|
|
) {
|
|
float_raise( float_flag_invalid );
|
|
return 0;
|
|
}
|
|
return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 );
|
|
|
|
}
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Returns 1 if the single-precision floating-point value `a' is less than or
|
|
equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
|
|
cause an exception. Otherwise, the comparison is performed according to the
|
|
IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
flag float32_le_quiet( float32 a, float32 b )
|
|
{
|
|
flag aSign, bSign;
|
|
int16 aExp, bExp;
|
|
|
|
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|
|
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
|
|
) {
|
|
if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
|
|
float_raise( float_flag_invalid );
|
|
}
|
|
return 0;
|
|
}
|
|
aSign = extractFloat32Sign( a );
|
|
bSign = extractFloat32Sign( b );
|
|
if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 );
|
|
return ( a == b ) || ( aSign ^ ( a < b ) );
|
|
|
|
}
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Returns 1 if the single-precision floating-point value `a' is less than
|
|
the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
|
|
exception. Otherwise, the comparison is performed according to the IEC/IEEE
|
|
Standard for Binary Floating-Point Arithmetic.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
flag float32_lt_quiet( float32 a, float32 b )
|
|
{
|
|
flag aSign, bSign;
|
|
|
|
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|
|
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
|
|
) {
|
|
if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
|
|
float_raise( float_flag_invalid );
|
|
}
|
|
return 0;
|
|
}
|
|
aSign = extractFloat32Sign( a );
|
|
bSign = extractFloat32Sign( b );
|
|
if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 );
|
|
return ( a != b ) && ( aSign ^ ( a < b ) );
|
|
|
|
}
|
|
#endif /* !SOFTFLOAT_FOR_GCC */
|
|
|
|
#ifndef SOFTFLOAT_FOR_GCC /* Not needed */
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Returns the result of converting the double-precision floating-point value
|
|
`a' to the 32-bit two's complement integer format. The conversion is
|
|
performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
Arithmetic---which means in particular that the conversion is rounded
|
|
according to the current rounding mode. If `a' is a NaN, the largest
|
|
positive integer is returned. Otherwise, if the conversion overflows, the
|
|
largest integer with the same sign as `a' is returned.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
int32 float64_to_int32( float64 a )
|
|
{
|
|
flag aSign;
|
|
int16 aExp, shiftCount;
|
|
bits32 aSig0, aSig1, absZ, aSigExtra;
|
|
int32 z;
|
|
int8 roundingMode;
|
|
|
|
aSig1 = extractFloat64Frac1( a );
|
|
aSig0 = extractFloat64Frac0( a );
|
|
aExp = extractFloat64Exp( a );
|
|
aSign = extractFloat64Sign( a );
|
|
shiftCount = aExp - 0x413;
|
|
if ( 0 <= shiftCount ) {
|
|
if ( 0x41E < aExp ) {
|
|
if ( ( aExp == 0x7FF ) && ( aSig0 | aSig1 ) ) aSign = 0;
|
|
goto invalid;
|
|
}
|
|
shortShift64Left(
|
|
aSig0 | 0x00100000, aSig1, shiftCount, &absZ, &aSigExtra );
|
|
if ( 0x80000000 < absZ ) goto invalid;
|
|
}
|
|
else {
|
|
aSig1 = ( aSig1 != 0 );
|
|
if ( aExp < 0x3FE ) {
|
|
aSigExtra = aExp | aSig0 | aSig1;
|
|
absZ = 0;
|
|
}
|
|
else {
|
|
aSig0 |= 0x00100000;
|
|
aSigExtra = ( aSig0<<( shiftCount & 31 ) ) | aSig1;
|
|
absZ = aSig0>>( - shiftCount );
|
|
}
|
|
}
|
|
roundingMode = float_rounding_mode;
|
|
if ( roundingMode == float_round_nearest_even ) {
|
|
if ( (sbits32) aSigExtra < 0 ) {
|
|
++absZ;
|
|
if ( (bits32) ( aSigExtra<<1 ) == 0 ) absZ &= ~1;
|
|
}
|
|
z = aSign ? - absZ : absZ;
|
|
}
|
|
else {
|
|
aSigExtra = ( aSigExtra != 0 );
|
|
if ( aSign ) {
|
|
z = - ( absZ
|
|
+ ( ( roundingMode == float_round_down ) & aSigExtra ) );
|
|
}
|
|
else {
|
|
z = absZ + ( ( roundingMode == float_round_up ) & aSigExtra );
|
|
}
|
|
}
|
|
if ( ( aSign ^ ( z < 0 ) ) && z ) {
|
|
invalid:
|
|
float_raise( float_flag_invalid );
|
|
return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;
|
|
}
|
|
if ( aSigExtra ) set_float_exception_inexact_flag();
|
|
return z;
|
|
|
|
}
|
|
#endif /* !SOFTFLOAT_FOR_GCC */
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Returns the result of converting the double-precision floating-point value
|
|
`a' to the 32-bit two's complement integer format. The conversion is
|
|
performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
Arithmetic, except that the conversion is always rounded toward zero.
|
|
If `a' is a NaN, the largest positive integer is returned. Otherwise, if
|
|
the conversion overflows, the largest integer with the same sign as `a' is
|
|
returned.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
int32 float64_to_int32_round_to_zero( float64 a )
|
|
{
|
|
flag aSign;
|
|
int16 aExp, shiftCount;
|
|
bits32 aSig0, aSig1, absZ, aSigExtra;
|
|
int32 z;
|
|
|
|
aSig1 = extractFloat64Frac1( a );
|
|
aSig0 = extractFloat64Frac0( a );
|
|
aExp = extractFloat64Exp( a );
|
|
aSign = extractFloat64Sign( a );
|
|
shiftCount = aExp - 0x413;
|
|
if ( 0 <= shiftCount ) {
|
|
if ( 0x41E < aExp ) {
|
|
if ( ( aExp == 0x7FF ) && ( aSig0 | aSig1 ) ) aSign = 0;
|
|
goto invalid;
|
|
}
|
|
shortShift64Left(
|
|
aSig0 | 0x00100000, aSig1, shiftCount, &absZ, &aSigExtra );
|
|
}
|
|
else {
|
|
if ( aExp < 0x3FF ) {
|
|
if ( aExp | aSig0 | aSig1 ) {
|
|
set_float_exception_inexact_flag();
|
|
}
|
|
return 0;
|
|
}
|
|
aSig0 |= 0x00100000;
|
|
aSigExtra = ( aSig0<<( shiftCount & 31 ) ) | aSig1;
|
|
absZ = aSig0>>( - shiftCount );
|
|
}
|
|
z = aSign ? - absZ : absZ;
|
|
if ( ( aSign ^ ( z < 0 ) ) && z ) {
|
|
invalid:
|
|
float_raise( float_flag_invalid );
|
|
return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;
|
|
}
|
|
if ( aSigExtra ) set_float_exception_inexact_flag();
|
|
return z;
|
|
|
|
}
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Returns the result of converting the double-precision floating-point value
|
|
`a' to the single-precision floating-point format. The conversion is
|
|
performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
Arithmetic.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
float32 float64_to_float32( float64 a )
|
|
{
|
|
flag aSign;
|
|
int16 aExp;
|
|
bits32 aSig0, aSig1, zSig;
|
|
bits32 allZero;
|
|
|
|
aSig1 = extractFloat64Frac1( a );
|
|
aSig0 = extractFloat64Frac0( a );
|
|
aExp = extractFloat64Exp( a );
|
|
aSign = extractFloat64Sign( a );
|
|
if ( aExp == 0x7FF ) {
|
|
if ( aSig0 | aSig1 ) {
|
|
return commonNaNToFloat32( float64ToCommonNaN( a ) );
|
|
}
|
|
return packFloat32( aSign, 0xFF, 0 );
|
|
}
|
|
shift64RightJamming( aSig0, aSig1, 22, &allZero, &zSig );
|
|
if ( aExp ) zSig |= 0x40000000;
|
|
return roundAndPackFloat32( aSign, aExp - 0x381, zSig );
|
|
|
|
}
|
|
|
|
#ifndef SOFTFLOAT_FOR_GCC
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Rounds the double-precision floating-point value `a' to an integer,
|
|
and returns the result as a double-precision floating-point value. The
|
|
operation is performed according to the IEC/IEEE Standard for Binary
|
|
Floating-Point Arithmetic.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
float64 float64_round_to_int( float64 a )
|
|
{
|
|
flag aSign;
|
|
int16 aExp;
|
|
bits32 lastBitMask, roundBitsMask;
|
|
int8 roundingMode;
|
|
float64 z;
|
|
|
|
aExp = extractFloat64Exp( a );
|
|
if ( 0x413 <= aExp ) {
|
|
if ( 0x433 <= aExp ) {
|
|
if ( ( aExp == 0x7FF )
|
|
&& ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) ) {
|
|
return propagateFloat64NaN( a, a );
|
|
}
|
|
return a;
|
|
}
|
|
lastBitMask = 1;
|
|
lastBitMask = ( lastBitMask<<( 0x432 - aExp ) )<<1;
|
|
roundBitsMask = lastBitMask - 1;
|
|
z = a;
|
|
roundingMode = float_rounding_mode;
|
|
if ( roundingMode == float_round_nearest_even ) {
|
|
if ( lastBitMask ) {
|
|
add64( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low );
|
|
if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
|
|
}
|
|
else {
|
|
if ( (sbits32) z.low < 0 ) {
|
|
++z.high;
|
|
if ( (bits32) ( z.low<<1 ) == 0 ) z.high &= ~1;
|
|
}
|
|
}
|
|
}
|
|
else if ( roundingMode != float_round_to_zero ) {
|
|
if ( extractFloat64Sign( z )
|
|
^ ( roundingMode == float_round_up ) ) {
|
|
add64( z.high, z.low, 0, roundBitsMask, &z.high, &z.low );
|
|
}
|
|
}
|
|
z.low &= ~ roundBitsMask;
|
|
}
|
|
else {
|
|
if ( aExp <= 0x3FE ) {
|
|
if ( ( ( (bits32) ( a.high<<1 ) ) | a.low ) == 0 ) return a;
|
|
set_float_exception_inexact_flag();
|
|
aSign = extractFloat64Sign( a );
|
|
switch ( float_rounding_mode ) {
|
|
case float_round_nearest_even:
|
|
if ( ( aExp == 0x3FE )
|
|
&& ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) )
|
|
) {
|
|
return packFloat64( aSign, 0x3FF, 0, 0 );
|
|
}
|
|
break;
|
|
case float_round_down:
|
|
return
|
|
aSign ? packFloat64( 1, 0x3FF, 0, 0 )
|
|
: packFloat64( 0, 0, 0, 0 );
|
|
case float_round_up:
|
|
return
|
|
aSign ? packFloat64( 1, 0, 0, 0 )
|
|
: packFloat64( 0, 0x3FF, 0, 0 );
|
|
}
|
|
return packFloat64( aSign, 0, 0, 0 );
|
|
}
|
|
lastBitMask = 1;
|
|
lastBitMask <<= 0x413 - aExp;
|
|
roundBitsMask = lastBitMask - 1;
|
|
z.low = 0;
|
|
z.high = a.high;
|
|
roundingMode = float_rounding_mode;
|
|
if ( roundingMode == float_round_nearest_even ) {
|
|
z.high += lastBitMask>>1;
|
|
if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) {
|
|
z.high &= ~ lastBitMask;
|
|
}
|
|
}
|
|
else if ( roundingMode != float_round_to_zero ) {
|
|
if ( extractFloat64Sign( z )
|
|
^ ( roundingMode == float_round_up ) ) {
|
|
z.high |= ( a.low != 0 );
|
|
z.high += roundBitsMask;
|
|
}
|
|
}
|
|
z.high &= ~ roundBitsMask;
|
|
}
|
|
if ( ( z.low != a.low ) || ( z.high != a.high ) ) {
|
|
set_float_exception_inexact_flag();
|
|
}
|
|
return z;
|
|
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Returns the result of adding the absolute values of the double-precision
|
|
floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
|
|
before being returned. `zSign' is ignored if the result is a NaN.
|
|
The addition is performed according to the IEC/IEEE Standard for Binary
|
|
Floating-Point Arithmetic.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
static float64 addFloat64Sigs( float64 a, float64 b, flag zSign )
|
|
{
|
|
int16 aExp, bExp, zExp;
|
|
bits32 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
|
|
int16 expDiff;
|
|
|
|
aSig1 = extractFloat64Frac1( a );
|
|
aSig0 = extractFloat64Frac0( a );
|
|
aExp = extractFloat64Exp( a );
|
|
bSig1 = extractFloat64Frac1( b );
|
|
bSig0 = extractFloat64Frac0( b );
|
|
bExp = extractFloat64Exp( b );
|
|
expDiff = aExp - bExp;
|
|
if ( 0 < expDiff ) {
|
|
if ( aExp == 0x7FF ) {
|
|
if ( aSig0 | aSig1 ) return propagateFloat64NaN( a, b );
|
|
return a;
|
|
}
|
|
if ( bExp == 0 ) {
|
|
--expDiff;
|
|
}
|
|
else {
|
|
bSig0 |= 0x00100000;
|
|
}
|
|
shift64ExtraRightJamming(
|
|
bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 );
|
|
zExp = aExp;
|
|
}
|
|
else if ( expDiff < 0 ) {
|
|
if ( bExp == 0x7FF ) {
|
|
if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b );
|
|
return packFloat64( zSign, 0x7FF, 0, 0 );
|
|
}
|
|
if ( aExp == 0 ) {
|
|
++expDiff;
|
|
}
|
|
else {
|
|
aSig0 |= 0x00100000;
|
|
}
|
|
shift64ExtraRightJamming(
|
|
aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 );
|
|
zExp = bExp;
|
|
}
|
|
else {
|
|
if ( aExp == 0x7FF ) {
|
|
if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
|
|
return propagateFloat64NaN( a, b );
|
|
}
|
|
return a;
|
|
}
|
|
add64( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
|
|
if ( aExp == 0 ) return packFloat64( zSign, 0, zSig0, zSig1 );
|
|
zSig2 = 0;
|
|
zSig0 |= 0x00200000;
|
|
zExp = aExp;
|
|
goto shiftRight1;
|
|
}
|
|
aSig0 |= 0x00100000;
|
|
add64( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
|
|
--zExp;
|
|
if ( zSig0 < 0x00200000 ) goto roundAndPack;
|
|
++zExp;
|
|
shiftRight1:
|
|
shift64ExtraRightJamming( zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
|
|
roundAndPack:
|
|
return roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2 );
|
|
|
|
}
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Returns the result of subtracting the absolute values of the double-
|
|
precision floating-point values `a' and `b'. If `zSign' is 1, the
|
|
difference is negated before being returned. `zSign' is ignored if the
|
|
result is a NaN. The subtraction is performed according to the IEC/IEEE
|
|
Standard for Binary Floating-Point Arithmetic.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
static float64 subFloat64Sigs( float64 a, float64 b, flag zSign )
|
|
{
|
|
int16 aExp, bExp, zExp;
|
|
bits32 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1;
|
|
int16 expDiff;
|
|
|
|
aSig1 = extractFloat64Frac1( a );
|
|
aSig0 = extractFloat64Frac0( a );
|
|
aExp = extractFloat64Exp( a );
|
|
bSig1 = extractFloat64Frac1( b );
|
|
bSig0 = extractFloat64Frac0( b );
|
|
bExp = extractFloat64Exp( b );
|
|
expDiff = aExp - bExp;
|
|
shortShift64Left( aSig0, aSig1, 10, &aSig0, &aSig1 );
|
|
shortShift64Left( bSig0, bSig1, 10, &bSig0, &bSig1 );
|
|
if ( 0 < expDiff ) goto aExpBigger;
|
|
if ( expDiff < 0 ) goto bExpBigger;
|
|
if ( aExp == 0x7FF ) {
|
|
if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
|
|
return propagateFloat64NaN( a, b );
|
|
}
|
|
float_raise( float_flag_invalid );
|
|
return float64_default_nan;
|
|
}
|
|
if ( aExp == 0 ) {
|
|
aExp = 1;
|
|
bExp = 1;
|
|
}
|
|
if ( bSig0 < aSig0 ) goto aBigger;
|
|
if ( aSig0 < bSig0 ) goto bBigger;
|
|
if ( bSig1 < aSig1 ) goto aBigger;
|
|
if ( aSig1 < bSig1 ) goto bBigger;
|
|
return packFloat64( float_rounding_mode == float_round_down, 0, 0, 0 );
|
|
bExpBigger:
|
|
if ( bExp == 0x7FF ) {
|
|
if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b );
|
|
return packFloat64( zSign ^ 1, 0x7FF, 0, 0 );
|
|
}
|
|
if ( aExp == 0 ) {
|
|
++expDiff;
|
|
}
|
|
else {
|
|
aSig0 |= 0x40000000;
|
|
}
|
|
shift64RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
|
|
bSig0 |= 0x40000000;
|
|
bBigger:
|
|
sub64( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 );
|
|
zExp = bExp;
|
|
zSign ^= 1;
|
|
goto normalizeRoundAndPack;
|
|
aExpBigger:
|
|
if ( aExp == 0x7FF ) {
|
|
if ( aSig0 | aSig1 ) return propagateFloat64NaN( a, b );
|
|
return a;
|
|
}
|
|
if ( bExp == 0 ) {
|
|
--expDiff;
|
|
}
|
|
else {
|
|
bSig0 |= 0x40000000;
|
|
}
|
|
shift64RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 );
|
|
aSig0 |= 0x40000000;
|
|
aBigger:
|
|
sub64( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
|
|
zExp = aExp;
|
|
normalizeRoundAndPack:
|
|
--zExp;
|
|
return normalizeRoundAndPackFloat64( zSign, zExp - 10, zSig0, zSig1 );
|
|
|
|
}
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Returns the result of adding the double-precision floating-point values `a'
|
|
and `b'. The operation is performed according to the IEC/IEEE Standard for
|
|
Binary Floating-Point Arithmetic.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
float64 float64_add( float64 a, float64 b )
|
|
{
|
|
flag aSign, bSign;
|
|
|
|
aSign = extractFloat64Sign( a );
|
|
bSign = extractFloat64Sign( b );
|
|
if ( aSign == bSign ) {
|
|
return addFloat64Sigs( a, b, aSign );
|
|
}
|
|
else {
|
|
return subFloat64Sigs( a, b, aSign );
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Returns the result of subtracting the double-precision floating-point values
|
|
`a' and `b'. The operation is performed according to the IEC/IEEE Standard
|
|
for Binary Floating-Point Arithmetic.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
float64 float64_sub( float64 a, float64 b )
|
|
{
|
|
flag aSign, bSign;
|
|
|
|
aSign = extractFloat64Sign( a );
|
|
bSign = extractFloat64Sign( b );
|
|
if ( aSign == bSign ) {
|
|
return subFloat64Sigs( a, b, aSign );
|
|
}
|
|
else {
|
|
return addFloat64Sigs( a, b, aSign );
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Returns the result of multiplying the double-precision floating-point values
|
|
`a' and `b'. The operation is performed according to the IEC/IEEE Standard
|
|
for Binary Floating-Point Arithmetic.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
float64 float64_mul( float64 a, float64 b )
|
|
{
|
|
flag aSign, bSign, zSign;
|
|
int16 aExp, bExp, zExp;
|
|
bits32 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3;
|
|
|
|
aSig1 = extractFloat64Frac1( a );
|
|
aSig0 = extractFloat64Frac0( a );
|
|
aExp = extractFloat64Exp( a );
|
|
aSign = extractFloat64Sign( a );
|
|
bSig1 = extractFloat64Frac1( b );
|
|
bSig0 = extractFloat64Frac0( b );
|
|
bExp = extractFloat64Exp( b );
|
|
bSign = extractFloat64Sign( b );
|
|
zSign = aSign ^ bSign;
|
|
if ( aExp == 0x7FF ) {
|
|
if ( ( aSig0 | aSig1 )
|
|
|| ( ( bExp == 0x7FF ) && ( bSig0 | bSig1 ) ) ) {
|
|
return propagateFloat64NaN( a, b );
|
|
}
|
|
if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid;
|
|
return packFloat64( zSign, 0x7FF, 0, 0 );
|
|
}
|
|
if ( bExp == 0x7FF ) {
|
|
if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b );
|
|
if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
|
|
invalid:
|
|
float_raise( float_flag_invalid );
|
|
return float64_default_nan;
|
|
}
|
|
return packFloat64( zSign, 0x7FF, 0, 0 );
|
|
}
|
|
if ( aExp == 0 ) {
|
|
if ( ( aSig0 | aSig1 ) == 0 ) return packFloat64( zSign, 0, 0, 0 );
|
|
normalizeFloat64Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
|
|
}
|
|
if ( bExp == 0 ) {
|
|
if ( ( bSig0 | bSig1 ) == 0 ) return packFloat64( zSign, 0, 0, 0 );
|
|
normalizeFloat64Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
|
|
}
|
|
zExp = aExp + bExp - 0x400;
|
|
aSig0 |= 0x00100000;
|
|
shortShift64Left( bSig0, bSig1, 12, &bSig0, &bSig1 );
|
|
mul64To128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 );
|
|
add64( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 );
|
|
zSig2 |= ( zSig3 != 0 );
|
|
if ( 0x00200000 <= zSig0 ) {
|
|
shift64ExtraRightJamming(
|
|
zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
|
|
++zExp;
|
|
}
|
|
return roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2 );
|
|
|
|
}
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Returns the result of dividing the double-precision floating-point value `a'
|
|
by the corresponding value `b'. The operation is performed according to the
|
|
IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
float64 float64_div( float64 a, float64 b )
|
|
{
|
|
flag aSign, bSign, zSign;
|
|
int16 aExp, bExp, zExp;
|
|
bits32 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
|
|
bits32 rem0, rem1, rem2, rem3, term0, term1, term2, term3;
|
|
|
|
aSig1 = extractFloat64Frac1( a );
|
|
aSig0 = extractFloat64Frac0( a );
|
|
aExp = extractFloat64Exp( a );
|
|
aSign = extractFloat64Sign( a );
|
|
bSig1 = extractFloat64Frac1( b );
|
|
bSig0 = extractFloat64Frac0( b );
|
|
bExp = extractFloat64Exp( b );
|
|
bSign = extractFloat64Sign( b );
|
|
zSign = aSign ^ bSign;
|
|
if ( aExp == 0x7FF ) {
|
|
if ( aSig0 | aSig1 ) return propagateFloat64NaN( a, b );
|
|
if ( bExp == 0x7FF ) {
|
|
if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b );
|
|
goto invalid;
|
|
}
|
|
return packFloat64( zSign, 0x7FF, 0, 0 );
|
|
}
|
|
if ( bExp == 0x7FF ) {
|
|
if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b );
|
|
return packFloat64( zSign, 0, 0, 0 );
|
|
}
|
|
if ( bExp == 0 ) {
|
|
if ( ( bSig0 | bSig1 ) == 0 ) {
|
|
if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
|
|
invalid:
|
|
float_raise( float_flag_invalid );
|
|
return float64_default_nan;
|
|
}
|
|
float_raise( float_flag_divbyzero );
|
|
return packFloat64( zSign, 0x7FF, 0, 0 );
|
|
}
|
|
normalizeFloat64Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
|
|
}
|
|
if ( aExp == 0 ) {
|
|
if ( ( aSig0 | aSig1 ) == 0 ) return packFloat64( zSign, 0, 0, 0 );
|
|
normalizeFloat64Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
|
|
}
|
|
zExp = aExp - bExp + 0x3FD;
|
|
shortShift64Left( aSig0 | 0x00100000, aSig1, 11, &aSig0, &aSig1 );
|
|
shortShift64Left( bSig0 | 0x00100000, bSig1, 11, &bSig0, &bSig1 );
|
|
if ( le64( bSig0, bSig1, aSig0, aSig1 ) ) {
|
|
shift64Right( aSig0, aSig1, 1, &aSig0, &aSig1 );
|
|
++zExp;
|
|
}
|
|
zSig0 = estimateDiv64To32( aSig0, aSig1, bSig0 );
|
|
mul64By32To96( bSig0, bSig1, zSig0, &term0, &term1, &term2 );
|
|
sub96( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 );
|
|
while ( (sbits32) rem0 < 0 ) {
|
|
--zSig0;
|
|
add96( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 );
|
|
}
|
|
zSig1 = estimateDiv64To32( rem1, rem2, bSig0 );
|
|
if ( ( zSig1 & 0x3FF ) <= 4 ) {
|
|
mul64By32To96( bSig0, bSig1, zSig1, &term1, &term2, &term3 );
|
|
sub96( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 );
|
|
while ( (sbits32) rem1 < 0 ) {
|
|
--zSig1;
|
|
add96( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 );
|
|
}
|
|
zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
|
|
}
|
|
shift64ExtraRightJamming( zSig0, zSig1, 0, 11, &zSig0, &zSig1, &zSig2 );
|
|
return roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2 );
|
|
|
|
}
|
|
|
|
#ifndef SOFTFLOAT_FOR_GCC
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Returns the remainder of the double-precision floating-point value `a'
|
|
with respect to the corresponding value `b'. The operation is performed
|
|
according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
float64 float64_rem( float64 a, float64 b )
|
|
{
|
|
flag aSign, bSign, zSign;
|
|
int16 aExp, bExp, expDiff;
|
|
bits32 aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2;
|
|
bits32 allZero, alternateASig0, alternateASig1, sigMean1;
|
|
sbits32 sigMean0;
|
|
float64 z;
|
|
|
|
aSig1 = extractFloat64Frac1( a );
|
|
aSig0 = extractFloat64Frac0( a );
|
|
aExp = extractFloat64Exp( a );
|
|
aSign = extractFloat64Sign( a );
|
|
bSig1 = extractFloat64Frac1( b );
|
|
bSig0 = extractFloat64Frac0( b );
|
|
bExp = extractFloat64Exp( b );
|
|
bSign = extractFloat64Sign( b );
|
|
if ( aExp == 0x7FF ) {
|
|
if ( ( aSig0 | aSig1 )
|
|
|| ( ( bExp == 0x7FF ) && ( bSig0 | bSig1 ) ) ) {
|
|
return propagateFloat64NaN( a, b );
|
|
}
|
|
goto invalid;
|
|
}
|
|
if ( bExp == 0x7FF ) {
|
|
if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b );
|
|
return a;
|
|
}
|
|
if ( bExp == 0 ) {
|
|
if ( ( bSig0 | bSig1 ) == 0 ) {
|
|
invalid:
|
|
float_raise( float_flag_invalid );
|
|
return float64_default_nan;
|
|
}
|
|
normalizeFloat64Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
|
|
}
|
|
if ( aExp == 0 ) {
|
|
if ( ( aSig0 | aSig1 ) == 0 ) return a;
|
|
normalizeFloat64Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
|
|
}
|
|
expDiff = aExp - bExp;
|
|
if ( expDiff < -1 ) return a;
|
|
shortShift64Left(
|
|
aSig0 | 0x00100000, aSig1, 11 - ( expDiff < 0 ), &aSig0, &aSig1 );
|
|
shortShift64Left( bSig0 | 0x00100000, bSig1, 11, &bSig0, &bSig1 );
|
|
q = le64( bSig0, bSig1, aSig0, aSig1 );
|
|
if ( q ) sub64( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
|
|
expDiff -= 32;
|
|
while ( 0 < expDiff ) {
|
|
q = estimateDiv64To32( aSig0, aSig1, bSig0 );
|
|
q = ( 4 < q ) ? q - 4 : 0;
|
|
mul64By32To96( bSig0, bSig1, q, &term0, &term1, &term2 );
|
|
shortShift96Left( term0, term1, term2, 29, &term1, &term2, &allZero );
|
|
shortShift64Left( aSig0, aSig1, 29, &aSig0, &allZero );
|
|
sub64( aSig0, 0, term1, term2, &aSig0, &aSig1 );
|
|
expDiff -= 29;
|
|
}
|
|
if ( -32 < expDiff ) {
|
|
q = estimateDiv64To32( aSig0, aSig1, bSig0 );
|
|
q = ( 4 < q ) ? q - 4 : 0;
|
|
q >>= - expDiff;
|
|
shift64Right( bSig0, bSig1, 8, &bSig0, &bSig1 );
|
|
expDiff += 24;
|
|
if ( expDiff < 0 ) {
|
|
shift64Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
|
|
}
|
|
else {
|
|
shortShift64Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 );
|
|
}
|
|
mul64By32To96( bSig0, bSig1, q, &term0, &term1, &term2 );
|
|
sub64( aSig0, aSig1, term1, term2, &aSig0, &aSig1 );
|
|
}
|
|
else {
|
|
shift64Right( aSig0, aSig1, 8, &aSig0, &aSig1 );
|
|
shift64Right( bSig0, bSig1, 8, &bSig0, &bSig1 );
|
|
}
|
|
do {
|
|
alternateASig0 = aSig0;
|
|
alternateASig1 = aSig1;
|
|
++q;
|
|
sub64( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
|
|
} while ( 0 <= (sbits32) aSig0 );
|
|
add64(
|
|
aSig0, aSig1, alternateASig0, alternateASig1, &sigMean0, &sigMean1 );
|
|
if ( ( sigMean0 < 0 )
|
|
|| ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) {
|
|
aSig0 = alternateASig0;
|
|
aSig1 = alternateASig1;
|
|
}
|
|
zSign = ( (sbits32) aSig0 < 0 );
|
|
if ( zSign ) sub64( 0, 0, aSig0, aSig1, &aSig0, &aSig1 );
|
|
return
|
|
normalizeRoundAndPackFloat64( aSign ^ zSign, bExp - 4, aSig0, aSig1 );
|
|
|
|
}
|
|
#endif
|
|
|
|
#ifndef SOFTFLOAT_FOR_GCC
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Returns the square root of the double-precision floating-point value `a'.
|
|
The operation is performed according to the IEC/IEEE Standard for Binary
|
|
Floating-Point Arithmetic.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
float64 float64_sqrt( float64 a )
|
|
{
|
|
flag aSign;
|
|
int16 aExp, zExp;
|
|
bits32 aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0;
|
|
bits32 rem0, rem1, rem2, rem3, term0, term1, term2, term3;
|
|
float64 z;
|
|
|
|
aSig1 = extractFloat64Frac1( a );
|
|
aSig0 = extractFloat64Frac0( a );
|
|
aExp = extractFloat64Exp( a );
|
|
aSign = extractFloat64Sign( a );
|
|
if ( aExp == 0x7FF ) {
|
|
if ( aSig0 | aSig1 ) return propagateFloat64NaN( a, a );
|
|
if ( ! aSign ) return a;
|
|
goto invalid;
|
|
}
|
|
if ( aSign ) {
|
|
if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a;
|
|
invalid:
|
|
float_raise( float_flag_invalid );
|
|
return float64_default_nan;
|
|
}
|
|
if ( aExp == 0 ) {
|
|
if ( ( aSig0 | aSig1 ) == 0 ) return packFloat64( 0, 0, 0, 0 );
|
|
normalizeFloat64Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
|
|
}
|
|
zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE;
|
|
aSig0 |= 0x00100000;
|
|
shortShift64Left( aSig0, aSig1, 11, &term0, &term1 );
|
|
zSig0 = ( estimateSqrt32( aExp, term0 )>>1 ) + 1;
|
|
if ( zSig0 == 0 ) zSig0 = 0x7FFFFFFF;
|
|
doubleZSig0 = zSig0 + zSig0;
|
|
shortShift64Left( aSig0, aSig1, 9 - ( aExp & 1 ), &aSig0, &aSig1 );
|
|
mul32To64( zSig0, zSig0, &term0, &term1 );
|
|
sub64( aSig0, aSig1, term0, term1, &rem0, &rem1 );
|
|
while ( (sbits32) rem0 < 0 ) {
|
|
--zSig0;
|
|
doubleZSig0 -= 2;
|
|
add64( rem0, rem1, 0, doubleZSig0 | 1, &rem0, &rem1 );
|
|
}
|
|
zSig1 = estimateDiv64To32( rem1, 0, doubleZSig0 );
|
|
if ( ( zSig1 & 0x1FF ) <= 5 ) {
|
|
if ( zSig1 == 0 ) zSig1 = 1;
|
|
mul32To64( doubleZSig0, zSig1, &term1, &term2 );
|
|
sub64( rem1, 0, term1, term2, &rem1, &rem2 );
|
|
mul32To64( zSig1, zSig1, &term2, &term3 );
|
|
sub96( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
|
|
while ( (sbits32) rem1 < 0 ) {
|
|
--zSig1;
|
|
shortShift64Left( 0, zSig1, 1, &term2, &term3 );
|
|
term3 |= 1;
|
|
term2 |= doubleZSig0;
|
|
add96( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
|
|
}
|
|
zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
|
|
}
|
|
shift64ExtraRightJamming( zSig0, zSig1, 0, 10, &zSig0, &zSig1, &zSig2 );
|
|
return roundAndPackFloat64( 0, zExp, zSig0, zSig1, zSig2 );
|
|
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Returns 1 if the double-precision floating-point value `a' is equal to
|
|
the corresponding value `b', and 0 otherwise. The comparison is performed
|
|
according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
flag float64_eq( float64 a, float64 b )
|
|
{
|
|
|
|
if ( ( ( extractFloat64Exp( a ) == 0x7FF )
|
|
&& ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) )
|
|
|| ( ( extractFloat64Exp( b ) == 0x7FF )
|
|
&& ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) )
|
|
) {
|
|
if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
|
|
float_raise( float_flag_invalid );
|
|
}
|
|
return 0;
|
|
}
|
|
return ( a == b ) ||
|
|
( (bits64) ( ( FLOAT64_DEMANGLE(a) | FLOAT64_DEMANGLE(b) )<<1 ) == 0 );
|
|
|
|
}
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Returns 1 if the double-precision floating-point value `a' is less than
|
|
or equal to the corresponding value `b', and 0 otherwise. The comparison
|
|
is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
Arithmetic.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
flag float64_le( float64 a, float64 b )
|
|
{
|
|
flag aSign, bSign;
|
|
|
|
if ( ( ( extractFloat64Exp( a ) == 0x7FF )
|
|
&& ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) )
|
|
|| ( ( extractFloat64Exp( b ) == 0x7FF )
|
|
&& ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) )
|
|
) {
|
|
float_raise( float_flag_invalid );
|
|
return 0;
|
|
}
|
|
aSign = extractFloat64Sign( a );
|
|
bSign = extractFloat64Sign( b );
|
|
if ( aSign != bSign )
|
|
return aSign ||
|
|
( (bits64) ( ( FLOAT64_DEMANGLE(a) | FLOAT64_DEMANGLE(b) )<<1 ) ==
|
|
0 );
|
|
return ( a == b ) ||
|
|
( aSign ^ ( FLOAT64_DEMANGLE(a) < FLOAT64_DEMANGLE(b) ) );
|
|
}
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Returns 1 if the double-precision floating-point value `a' is less than
|
|
the corresponding value `b', and 0 otherwise. The comparison is performed
|
|
according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
flag float64_lt( float64 a, float64 b )
|
|
{
|
|
flag aSign, bSign;
|
|
|
|
if ( ( ( extractFloat64Exp( a ) == 0x7FF )
|
|
&& ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) )
|
|
|| ( ( extractFloat64Exp( b ) == 0x7FF )
|
|
&& ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) )
|
|
) {
|
|
float_raise( float_flag_invalid );
|
|
return 0;
|
|
}
|
|
aSign = extractFloat64Sign( a );
|
|
bSign = extractFloat64Sign( b );
|
|
if ( aSign != bSign )
|
|
return aSign &&
|
|
( (bits64) ( ( FLOAT64_DEMANGLE(a) | FLOAT64_DEMANGLE(b) )<<1 ) !=
|
|
0 );
|
|
return ( a != b ) &&
|
|
( aSign ^ ( FLOAT64_DEMANGLE(a) < FLOAT64_DEMANGLE(b) ) );
|
|
|
|
}
|
|
|
|
#ifndef SOFTFLOAT_FOR_GCC
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Returns 1 if the double-precision floating-point value `a' is equal to
|
|
the corresponding value `b', and 0 otherwise. The invalid exception is
|
|
raised if either operand is a NaN. Otherwise, the comparison is performed
|
|
according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
flag float64_eq_signaling( float64 a, float64 b )
|
|
{
|
|
|
|
if ( ( ( extractFloat64Exp( a ) == 0x7FF )
|
|
&& ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) )
|
|
|| ( ( extractFloat64Exp( b ) == 0x7FF )
|
|
&& ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) )
|
|
) {
|
|
float_raise( float_flag_invalid );
|
|
return 0;
|
|
}
|
|
return ( a == b ) || ( (bits64) ( ( a | b )<<1 ) == 0 );
|
|
|
|
}
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Returns 1 if the double-precision floating-point value `a' is less than or
|
|
equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
|
|
cause an exception. Otherwise, the comparison is performed according to the
|
|
IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
flag float64_le_quiet( float64 a, float64 b )
|
|
{
|
|
flag aSign, bSign;
|
|
|
|
if ( ( ( extractFloat64Exp( a ) == 0x7FF )
|
|
&& ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) )
|
|
|| ( ( extractFloat64Exp( b ) == 0x7FF )
|
|
&& ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) )
|
|
) {
|
|
if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
|
|
float_raise( float_flag_invalid );
|
|
}
|
|
return 0;
|
|
}
|
|
aSign = extractFloat64Sign( a );
|
|
bSign = extractFloat64Sign( b );
|
|
if ( aSign != bSign ) return aSign || ( (bits64) ( ( a | b )<<1 ) == 0 );
|
|
return ( a == b ) || ( aSign ^ ( a < b ) );
|
|
|
|
}
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Returns 1 if the double-precision floating-point value `a' is less than
|
|
the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
|
|
exception. Otherwise, the comparison is performed according to the IEC/IEEE
|
|
Standard for Binary Floating-Point Arithmetic.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
flag float64_lt_quiet( float64 a, float64 b )
|
|
{
|
|
flag aSign, bSign;
|
|
|
|
if ( ( ( extractFloat64Exp( a ) == 0x7FF )
|
|
&& ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) )
|
|
|| ( ( extractFloat64Exp( b ) == 0x7FF )
|
|
&& ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) )
|
|
) {
|
|
if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
|
|
float_raise( float_flag_invalid );
|
|
}
|
|
return 0;
|
|
}
|
|
aSign = extractFloat64Sign( a );
|
|
bSign = extractFloat64Sign( b );
|
|
if ( aSign != bSign ) return aSign && ( (bits64) ( ( a | b )<<1 ) != 0 );
|
|
return ( a != b ) && ( aSign ^ ( a < b ) );
|
|
|
|
}
|
|
|
|
#endif
|