821 lines
19 KiB
C
821 lines
19 KiB
C
/*-
|
|
* Copyright (c) 1994, 1995 Charles M. Hannum. All rights reserved.
|
|
* Copyright (c) 1989, 1992, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This code is derived from software developed by the Computer Systems
|
|
* Engineering group at Lawrence Berkeley Laboratory under DARPA contract
|
|
* BG 91-66 and contributed to Berkeley.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#if defined(LIBC_SCCS) && !defined(lint)
|
|
static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
|
|
#endif /* LIBC_SCCS and not lint */
|
|
|
|
/*
|
|
* Proc traversal interface for kvm. ps and w are (probably) the exclusive
|
|
* users of this code, so we've factored it out into a separate module.
|
|
* Thus, we keep this grunge out of the other kvm applications (i.e.,
|
|
* most other applications are interested only in open/close/read/nlist).
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/user.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/exec.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/tty.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#include <nlist.h>
|
|
#include <kvm.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/swap_pager.h>
|
|
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <limits.h>
|
|
#include <db.h>
|
|
#include <paths.h>
|
|
|
|
#include "kvm_private.h"
|
|
|
|
#define KREAD(kd, addr, obj) \
|
|
(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
|
|
|
|
int _kvm_readfromcore __P((kvm_t *, u_long, u_long));
|
|
int _kvm_readfrompager __P((kvm_t *, struct vm_object *, u_long));
|
|
ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *, size_t));
|
|
|
|
char *
|
|
_kvm_uread(kd, p, va, cnt)
|
|
kvm_t *kd;
|
|
const struct proc *p;
|
|
u_long va;
|
|
u_long *cnt;
|
|
{
|
|
register u_long addr, head;
|
|
register u_long offset;
|
|
struct vm_map_entry vme;
|
|
struct vm_object vmo;
|
|
int rv;
|
|
|
|
if (kd->swapspc == 0) {
|
|
kd->swapspc = (char *)_kvm_malloc(kd, kd->nbpg);
|
|
if (kd->swapspc == 0)
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Look through the address map for the memory object
|
|
* that corresponds to the given virtual address.
|
|
* The header just has the entire valid range.
|
|
*/
|
|
head = (u_long)&p->p_vmspace->vm_map.header;
|
|
addr = head;
|
|
while (1) {
|
|
if (KREAD(kd, addr, &vme))
|
|
return (0);
|
|
|
|
if (va >= vme.start && va < vme.end &&
|
|
vme.object.vm_object != 0)
|
|
break;
|
|
|
|
addr = (u_long)vme.next;
|
|
if (addr == head)
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* We found the right object -- follow shadow links.
|
|
*/
|
|
offset = va - vme.start + vme.offset;
|
|
addr = (u_long)vme.object.vm_object;
|
|
|
|
while (1) {
|
|
/* Try reading the page from core first. */
|
|
if ((rv = _kvm_readfromcore(kd, addr, offset)))
|
|
break;
|
|
|
|
if (KREAD(kd, addr, &vmo))
|
|
return (0);
|
|
|
|
/* If there is a pager here, see if it has the page. */
|
|
if (vmo.pager != 0 &&
|
|
(rv = _kvm_readfrompager(kd, &vmo, offset)))
|
|
break;
|
|
|
|
/* Move down the shadow chain. */
|
|
addr = (u_long)vmo.shadow;
|
|
if (addr == 0)
|
|
return (0);
|
|
offset += vmo.shadow_offset;
|
|
}
|
|
|
|
if (rv == -1)
|
|
return (0);
|
|
|
|
/* Found the page. */
|
|
offset %= kd->nbpg;
|
|
*cnt = kd->nbpg - offset;
|
|
return (&kd->swapspc[offset]);
|
|
}
|
|
|
|
#define vm_page_hash(kd, object, offset) \
|
|
(((u_long)object + (u_long)(offset / kd->nbpg)) & kd->vm_page_hash_mask)
|
|
|
|
int
|
|
_kvm_coreinit(kd)
|
|
kvm_t *kd;
|
|
{
|
|
struct nlist nlist[3];
|
|
|
|
nlist[0].n_name = "_vm_page_buckets";
|
|
nlist[1].n_name = "_vm_page_hash_mask";
|
|
nlist[2].n_name = 0;
|
|
if (kvm_nlist(kd, nlist) != 0)
|
|
return (-1);
|
|
|
|
if (KREAD(kd, nlist[0].n_value, &kd->vm_page_buckets) ||
|
|
KREAD(kd, nlist[1].n_value, &kd->vm_page_hash_mask))
|
|
return (-1);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
_kvm_readfromcore(kd, object, offset)
|
|
kvm_t *kd;
|
|
u_long object, offset;
|
|
{
|
|
u_long addr;
|
|
struct pglist bucket;
|
|
struct vm_page mem;
|
|
off_t seekpoint;
|
|
|
|
if (kd->vm_page_buckets == 0 &&
|
|
_kvm_coreinit(kd))
|
|
return (-1);
|
|
|
|
addr = (u_long)&kd->vm_page_buckets[vm_page_hash(kd, object, offset)];
|
|
if (KREAD(kd, addr, &bucket))
|
|
return (-1);
|
|
|
|
addr = (u_long)bucket.tqh_first;
|
|
offset &= ~(kd->nbpg -1);
|
|
while (1) {
|
|
if (addr == 0)
|
|
return (0);
|
|
|
|
if (KREAD(kd, addr, &mem))
|
|
return (-1);
|
|
|
|
if ((u_long)mem.object == object &&
|
|
(u_long)mem.offset == offset)
|
|
break;
|
|
|
|
addr = (u_long)mem.hashq.tqe_next;
|
|
}
|
|
|
|
seekpoint = mem.phys_addr;
|
|
|
|
if (lseek(kd->pmfd, seekpoint, 0) == -1)
|
|
return (-1);
|
|
if (read(kd->pmfd, kd->swapspc, kd->nbpg) != kd->nbpg)
|
|
return (-1);
|
|
|
|
return (1);
|
|
}
|
|
|
|
int
|
|
_kvm_readfrompager(kd, vmop, offset)
|
|
kvm_t *kd;
|
|
struct vm_object *vmop;
|
|
u_long offset;
|
|
{
|
|
u_long addr;
|
|
struct pager_struct pager;
|
|
struct swpager swap;
|
|
int ix;
|
|
struct swblock swb;
|
|
off_t seekpoint;
|
|
|
|
/* Read in the pager info and make sure it's a swap device. */
|
|
addr = (u_long)vmop->pager;
|
|
if (KREAD(kd, addr, &pager) || pager.pg_type != PG_SWAP)
|
|
return (-1);
|
|
|
|
/* Read in the swap_pager private data. */
|
|
addr = (u_long)pager.pg_data;
|
|
if (KREAD(kd, addr, &swap))
|
|
return (-1);
|
|
|
|
/*
|
|
* Calculate the paging offset, and make sure it's within the
|
|
* bounds of the pager.
|
|
*/
|
|
offset += vmop->paging_offset;
|
|
ix = offset / dbtob(swap.sw_bsize);
|
|
#if 0
|
|
if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks)
|
|
return (-1);
|
|
#else
|
|
if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks) {
|
|
int i;
|
|
printf("BUG BUG BUG BUG:\n");
|
|
printf("object %x offset %x pgoffset %x pager %x swpager %x\n",
|
|
vmop, offset - vmop->paging_offset, vmop->paging_offset,
|
|
vmop->pager, pager.pg_data);
|
|
printf("osize %x bsize %x blocks %x nblocks %x\n",
|
|
swap.sw_osize, swap.sw_bsize, swap.sw_blocks,
|
|
swap.sw_nblocks);
|
|
for (ix = 0; ix < swap.sw_nblocks; ix++) {
|
|
addr = (u_long)&swap.sw_blocks[ix];
|
|
if (KREAD(kd, addr, &swb))
|
|
return (0);
|
|
printf("sw_blocks[%d]: block %x mask %x\n", ix,
|
|
swb.swb_block, swb.swb_mask);
|
|
}
|
|
return (-1);
|
|
}
|
|
#endif
|
|
|
|
/* Read in the swap records. */
|
|
addr = (u_long)&swap.sw_blocks[ix];
|
|
if (KREAD(kd, addr, &swb))
|
|
return (-1);
|
|
|
|
/* Calculate offset within pager. */
|
|
offset %= dbtob(swap.sw_bsize);
|
|
|
|
/* Check that the page is actually present. */
|
|
if ((swb.swb_mask & (1 << (offset / kd->nbpg))) == 0)
|
|
return (0);
|
|
|
|
if (!ISALIVE(kd))
|
|
return (-1);
|
|
|
|
/* Calculate the physical address and read the page. */
|
|
seekpoint = dbtob(swb.swb_block) + (offset & ~(kd->nbpg -1));
|
|
|
|
if (lseek(kd->swfd, seekpoint, 0) == -1)
|
|
return (-1);
|
|
if (read(kd->swfd, kd->swapspc, kd->nbpg) != kd->nbpg)
|
|
return (-1);
|
|
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Read proc's from memory file into buffer bp, which has space to hold
|
|
* at most maxcnt procs.
|
|
*/
|
|
static int
|
|
kvm_proclist(kd, what, arg, p, bp, maxcnt)
|
|
kvm_t *kd;
|
|
int what, arg;
|
|
struct proc *p;
|
|
struct kinfo_proc *bp;
|
|
int maxcnt;
|
|
{
|
|
register int cnt = 0;
|
|
struct eproc eproc;
|
|
struct pgrp pgrp;
|
|
struct session sess;
|
|
struct tty tty;
|
|
struct proc proc;
|
|
|
|
for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
|
|
if (KREAD(kd, (u_long)p, &proc)) {
|
|
_kvm_err(kd, kd->program, "can't read proc at %x", p);
|
|
return (-1);
|
|
}
|
|
if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
|
|
KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
|
|
&eproc.e_ucred);
|
|
|
|
switch(what) {
|
|
|
|
case KERN_PROC_PID:
|
|
if (proc.p_pid != (pid_t)arg)
|
|
continue;
|
|
break;
|
|
|
|
case KERN_PROC_UID:
|
|
if (eproc.e_ucred.cr_uid != (uid_t)arg)
|
|
continue;
|
|
break;
|
|
|
|
case KERN_PROC_RUID:
|
|
if (eproc.e_pcred.p_ruid != (uid_t)arg)
|
|
continue;
|
|
break;
|
|
}
|
|
/*
|
|
* We're going to add another proc to the set. If this
|
|
* will overflow the buffer, assume the reason is because
|
|
* nprocs (or the proc list) is corrupt and declare an error.
|
|
*/
|
|
if (cnt >= maxcnt) {
|
|
_kvm_err(kd, kd->program, "nprocs corrupt");
|
|
return (-1);
|
|
}
|
|
/*
|
|
* gather eproc
|
|
*/
|
|
eproc.e_paddr = p;
|
|
if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
|
|
_kvm_err(kd, kd->program, "can't read pgrp at %x",
|
|
proc.p_pgrp);
|
|
return (-1);
|
|
}
|
|
eproc.e_sess = pgrp.pg_session;
|
|
eproc.e_pgid = pgrp.pg_id;
|
|
eproc.e_jobc = pgrp.pg_jobc;
|
|
if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
|
|
_kvm_err(kd, kd->program, "can't read session at %x",
|
|
pgrp.pg_session);
|
|
return (-1);
|
|
}
|
|
if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
|
|
if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
|
|
_kvm_err(kd, kd->program,
|
|
"can't read tty at %x", sess.s_ttyp);
|
|
return (-1);
|
|
}
|
|
eproc.e_tdev = tty.t_dev;
|
|
eproc.e_tsess = tty.t_session;
|
|
if (tty.t_pgrp != NULL) {
|
|
if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
|
|
_kvm_err(kd, kd->program,
|
|
"can't read tpgrp at &x",
|
|
tty.t_pgrp);
|
|
return (-1);
|
|
}
|
|
eproc.e_tpgid = pgrp.pg_id;
|
|
} else
|
|
eproc.e_tpgid = -1;
|
|
} else
|
|
eproc.e_tdev = NODEV;
|
|
eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
|
|
if (sess.s_leader == p)
|
|
eproc.e_flag |= EPROC_SLEADER;
|
|
if (proc.p_wmesg)
|
|
(void)kvm_read(kd, (u_long)proc.p_wmesg,
|
|
eproc.e_wmesg, WMESGLEN);
|
|
|
|
(void)kvm_read(kd, (u_long)proc.p_vmspace,
|
|
(char *)&eproc.e_vm, sizeof(eproc.e_vm));
|
|
|
|
eproc.e_xsize = eproc.e_xrssize = 0;
|
|
eproc.e_xccount = eproc.e_xswrss = 0;
|
|
|
|
switch (what) {
|
|
|
|
case KERN_PROC_PGRP:
|
|
if (eproc.e_pgid != (pid_t)arg)
|
|
continue;
|
|
break;
|
|
|
|
case KERN_PROC_TTY:
|
|
if ((proc.p_flag & P_CONTROLT) == 0 ||
|
|
eproc.e_tdev != (dev_t)arg)
|
|
continue;
|
|
break;
|
|
}
|
|
bcopy(&proc, &bp->kp_proc, sizeof(proc));
|
|
bcopy(&eproc, &bp->kp_eproc, sizeof(eproc));
|
|
++bp;
|
|
++cnt;
|
|
}
|
|
return (cnt);
|
|
}
|
|
|
|
/*
|
|
* Build proc info array by reading in proc list from a crash dump.
|
|
* Return number of procs read. maxcnt is the max we will read.
|
|
*/
|
|
static int
|
|
kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
|
|
kvm_t *kd;
|
|
int what, arg;
|
|
u_long a_allproc;
|
|
u_long a_zombproc;
|
|
int maxcnt;
|
|
{
|
|
register struct kinfo_proc *bp = kd->procbase;
|
|
register int acnt, zcnt;
|
|
struct proc *p;
|
|
|
|
if (KREAD(kd, a_allproc, &p)) {
|
|
_kvm_err(kd, kd->program, "cannot read allproc");
|
|
return (-1);
|
|
}
|
|
acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
|
|
if (acnt < 0)
|
|
return (acnt);
|
|
|
|
if (KREAD(kd, a_zombproc, &p)) {
|
|
_kvm_err(kd, kd->program, "cannot read zombproc");
|
|
return (-1);
|
|
}
|
|
zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
|
|
if (zcnt < 0)
|
|
zcnt = 0;
|
|
|
|
return (acnt + zcnt);
|
|
}
|
|
|
|
struct kinfo_proc *
|
|
kvm_getprocs(kd, op, arg, cnt)
|
|
kvm_t *kd;
|
|
int op, arg;
|
|
int *cnt;
|
|
{
|
|
size_t size;
|
|
int mib[4], st, nprocs;
|
|
|
|
if (kd->procbase != 0) {
|
|
free((void *)kd->procbase);
|
|
/*
|
|
* Clear this pointer in case this call fails. Otherwise,
|
|
* kvm_close() will free it again.
|
|
*/
|
|
kd->procbase = 0;
|
|
}
|
|
if (ISALIVE(kd)) {
|
|
size = 0;
|
|
mib[0] = CTL_KERN;
|
|
mib[1] = KERN_PROC;
|
|
mib[2] = op;
|
|
mib[3] = arg;
|
|
st = sysctl(mib, 4, NULL, &size, NULL, 0);
|
|
if (st == -1) {
|
|
_kvm_syserr(kd, kd->program, "kvm_getprocs");
|
|
return (0);
|
|
}
|
|
kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
|
|
if (kd->procbase == 0)
|
|
return (0);
|
|
st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
|
|
if (st == -1) {
|
|
_kvm_syserr(kd, kd->program, "kvm_getprocs");
|
|
return (0);
|
|
}
|
|
if (size % sizeof(struct kinfo_proc) != 0) {
|
|
_kvm_err(kd, kd->program,
|
|
"proc size mismatch (%d total, %d chunks)",
|
|
size, sizeof(struct kinfo_proc));
|
|
return (0);
|
|
}
|
|
nprocs = size / sizeof(struct kinfo_proc);
|
|
} else {
|
|
struct nlist nl[4], *p;
|
|
|
|
nl[0].n_name = "_nprocs";
|
|
nl[1].n_name = "_allproc";
|
|
nl[2].n_name = "_zombproc";
|
|
nl[3].n_name = 0;
|
|
|
|
if (kvm_nlist(kd, nl) != 0) {
|
|
for (p = nl; p->n_type != 0; ++p)
|
|
;
|
|
_kvm_err(kd, kd->program,
|
|
"%s: no such symbol", p->n_name);
|
|
return (0);
|
|
}
|
|
if (KREAD(kd, nl[0].n_value, &nprocs)) {
|
|
_kvm_err(kd, kd->program, "can't read nprocs");
|
|
return (0);
|
|
}
|
|
size = nprocs * sizeof(struct kinfo_proc);
|
|
kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
|
|
if (kd->procbase == 0)
|
|
return (0);
|
|
|
|
nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
|
|
nl[2].n_value, nprocs);
|
|
#ifdef notdef
|
|
size = nprocs * sizeof(struct kinfo_proc);
|
|
(void)realloc(kd->procbase, size);
|
|
#endif
|
|
}
|
|
*cnt = nprocs;
|
|
return (kd->procbase);
|
|
}
|
|
|
|
void
|
|
_kvm_freeprocs(kd)
|
|
kvm_t *kd;
|
|
{
|
|
if (kd->procbase) {
|
|
free(kd->procbase);
|
|
kd->procbase = 0;
|
|
}
|
|
}
|
|
|
|
void *
|
|
_kvm_realloc(kd, p, n)
|
|
kvm_t *kd;
|
|
void *p;
|
|
size_t n;
|
|
{
|
|
void *np = (void *)realloc(p, n);
|
|
|
|
if (np == 0)
|
|
_kvm_err(kd, kd->program, "out of memory");
|
|
return (np);
|
|
}
|
|
|
|
#ifndef MAX
|
|
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
|
#endif
|
|
|
|
/*
|
|
* Read in an argument vector from the user address space of process p.
|
|
* addr if the user-space base address of narg null-terminated contiguous
|
|
* strings. This is used to read in both the command arguments and
|
|
* environment strings. Read at most maxcnt characters of strings.
|
|
*/
|
|
static char **
|
|
kvm_argv(kd, p, addr, narg, maxcnt)
|
|
kvm_t *kd;
|
|
struct proc *p;
|
|
register u_long addr;
|
|
register int narg;
|
|
register int maxcnt;
|
|
{
|
|
register char *np, *cp, *ep, *ap;
|
|
register u_long oaddr = -1;
|
|
register int len, cc;
|
|
register char **argv;
|
|
|
|
/*
|
|
* Check that there aren't an unreasonable number of agruments,
|
|
* and that the address is in user space.
|
|
*/
|
|
if (narg > ARG_MAX || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
|
|
return (0);
|
|
|
|
if (kd->argv == 0) {
|
|
/*
|
|
* Try to avoid reallocs.
|
|
*/
|
|
kd->argc = MAX(narg + 1, 32);
|
|
kd->argv = (char **)_kvm_malloc(kd, kd->argc *
|
|
sizeof(*kd->argv));
|
|
if (kd->argv == 0)
|
|
return (0);
|
|
} else if (narg + 1 > kd->argc) {
|
|
kd->argc = MAX(2 * kd->argc, narg + 1);
|
|
kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
|
|
sizeof(*kd->argv));
|
|
if (kd->argv == 0)
|
|
return (0);
|
|
}
|
|
if (kd->argspc == 0) {
|
|
kd->argspc = (char *)_kvm_malloc(kd, kd->nbpg);
|
|
if (kd->argspc == 0)
|
|
return (0);
|
|
kd->arglen = kd->nbpg;
|
|
}
|
|
if (kd->argbuf == 0) {
|
|
kd->argbuf = (char *)_kvm_malloc(kd, kd->nbpg);
|
|
if (kd->argbuf == 0)
|
|
return (0);
|
|
}
|
|
cc = sizeof(char *) * narg;
|
|
if (kvm_uread(kd, p, addr, (char *)kd->argv, cc) != cc)
|
|
return (0);
|
|
ap = np = kd->argspc;
|
|
argv = kd->argv;
|
|
len = 0;
|
|
/*
|
|
* Loop over pages, filling in the argument vector.
|
|
*/
|
|
while (argv < kd->argv + narg && *argv != 0) {
|
|
addr = (u_long)*argv & ~(kd->nbpg - 1);
|
|
if (addr != oaddr) {
|
|
if (kvm_uread(kd, p, addr, kd->argbuf, kd->nbpg) !=
|
|
kd->nbpg)
|
|
return (0);
|
|
oaddr = addr;
|
|
}
|
|
addr = (u_long)*argv & (kd->nbpg - 1);
|
|
cp = kd->argbuf + addr;
|
|
cc = kd->nbpg - addr;
|
|
if (maxcnt > 0 && cc > maxcnt - len)
|
|
cc = maxcnt - len;;
|
|
ep = memchr(cp, '\0', cc);
|
|
if (ep != 0)
|
|
cc = ep - cp + 1;
|
|
if (len + cc > kd->arglen) {
|
|
register int off;
|
|
register char **pp;
|
|
register char *op = kd->argspc;
|
|
|
|
kd->arglen *= 2;
|
|
kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
|
|
kd->arglen);
|
|
if (kd->argspc == 0)
|
|
return (0);
|
|
/*
|
|
* Adjust argv pointers in case realloc moved
|
|
* the string space.
|
|
*/
|
|
off = kd->argspc - op;
|
|
for (pp = kd->argv; pp < argv; pp++)
|
|
*pp += off;
|
|
ap += off;
|
|
np += off;
|
|
}
|
|
memcpy(np, cp, cc);
|
|
np += cc;
|
|
len += cc;
|
|
if (ep != 0) {
|
|
*argv++ = ap;
|
|
ap = np;
|
|
} else
|
|
*argv += cc;
|
|
if (maxcnt > 0 && len >= maxcnt) {
|
|
/*
|
|
* We're stopping prematurely. Terminate the
|
|
* current string.
|
|
*/
|
|
if (ep == 0) {
|
|
*np = '\0';
|
|
*argv++ = ap;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
/* Make sure argv is terminated. */
|
|
*argv = 0;
|
|
return (kd->argv);
|
|
}
|
|
|
|
static void
|
|
ps_str_a(p, addr, n)
|
|
struct ps_strings *p;
|
|
u_long *addr;
|
|
int *n;
|
|
{
|
|
*addr = (u_long)p->ps_argvstr;
|
|
*n = p->ps_nargvstr;
|
|
}
|
|
|
|
static void
|
|
ps_str_e(p, addr, n)
|
|
struct ps_strings *p;
|
|
u_long *addr;
|
|
int *n;
|
|
{
|
|
*addr = (u_long)p->ps_envstr;
|
|
*n = p->ps_nenvstr;
|
|
}
|
|
|
|
/*
|
|
* Determine if the proc indicated by p is still active.
|
|
* This test is not 100% foolproof in theory, but chances of
|
|
* being wrong are very low.
|
|
*/
|
|
static int
|
|
proc_verify(kd, kernp, p)
|
|
kvm_t *kd;
|
|
u_long kernp;
|
|
const struct proc *p;
|
|
{
|
|
struct proc kernproc;
|
|
|
|
/*
|
|
* Just read in the whole proc. It's not that big relative
|
|
* to the cost of the read system call.
|
|
*/
|
|
if (kvm_read(kd, kernp, (char *)&kernproc, sizeof(kernproc)) !=
|
|
sizeof(kernproc))
|
|
return (0);
|
|
return (p->p_pid == kernproc.p_pid &&
|
|
(kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
|
|
}
|
|
|
|
static char **
|
|
kvm_doargv(kd, kp, nchr, info)
|
|
kvm_t *kd;
|
|
const struct kinfo_proc *kp;
|
|
int nchr;
|
|
void (*info)(struct ps_strings *, u_long *, int *);
|
|
{
|
|
register const struct proc *p = &kp->kp_proc;
|
|
register char **ap;
|
|
u_long addr;
|
|
int cnt;
|
|
struct ps_strings arginfo;
|
|
|
|
/*
|
|
* Pointers are stored at the top of the user stack.
|
|
*/
|
|
if (p->p_stat == SZOMB ||
|
|
kvm_uread(kd, p, USRSTACK - sizeof(arginfo), (char *)&arginfo,
|
|
sizeof(arginfo)) != sizeof(arginfo))
|
|
return (0);
|
|
|
|
(*info)(&arginfo, &addr, &cnt);
|
|
if (cnt == 0)
|
|
return (0);
|
|
ap = kvm_argv(kd, p, addr, cnt, nchr);
|
|
/*
|
|
* For live kernels, make sure this process didn't go away.
|
|
*/
|
|
if (ap != 0 && ISALIVE(kd) &&
|
|
!proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
|
|
ap = 0;
|
|
return (ap);
|
|
}
|
|
|
|
/*
|
|
* Get the command args. This code is now machine independent.
|
|
*/
|
|
char **
|
|
kvm_getargv(kd, kp, nchr)
|
|
kvm_t *kd;
|
|
const struct kinfo_proc *kp;
|
|
int nchr;
|
|
{
|
|
return (kvm_doargv(kd, kp, nchr, ps_str_a));
|
|
}
|
|
|
|
char **
|
|
kvm_getenvv(kd, kp, nchr)
|
|
kvm_t *kd;
|
|
const struct kinfo_proc *kp;
|
|
int nchr;
|
|
{
|
|
return (kvm_doargv(kd, kp, nchr, ps_str_e));
|
|
}
|
|
|
|
/*
|
|
* Read from user space. The user context is given by p.
|
|
*/
|
|
ssize_t
|
|
kvm_uread(kd, p, uva, buf, len)
|
|
kvm_t *kd;
|
|
register const struct proc *p;
|
|
register u_long uva;
|
|
register char *buf;
|
|
register size_t len;
|
|
{
|
|
register char *cp;
|
|
|
|
cp = buf;
|
|
while (len > 0) {
|
|
register int cc;
|
|
register char *dp;
|
|
int cnt;
|
|
|
|
dp = _kvm_uread(kd, p, uva, &cnt);
|
|
if (dp == 0) {
|
|
_kvm_err(kd, 0, "invalid address (%x)", uva);
|
|
return (0);
|
|
}
|
|
cc = MIN(cnt, len);
|
|
bcopy(dp, cp, cc);
|
|
|
|
cp += cc;
|
|
uva += cc;
|
|
len -= cc;
|
|
}
|
|
return (ssize_t)(cp - buf);
|
|
}
|