1916 lines
46 KiB
C
1916 lines
46 KiB
C
/* $NetBSD: vm_page.c,v 1.47 1998/08/13 02:11:08 eeh Exp $ */
|
|
|
|
#define VM_PAGE_ALLOC_MEMORY_STATS
|
|
|
|
/*-
|
|
* Copyright (c) 1997 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
|
|
* NASA Ames Research Center.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the NetBSD
|
|
* Foundation, Inc. and its contributors.
|
|
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1991, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* The Mach Operating System project at Carnegie-Mellon University.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)vm_page.c 8.4 (Berkeley) 1/9/95
|
|
*
|
|
*
|
|
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
|
|
* All rights reserved.
|
|
*
|
|
* Authors: Avadis Tevanian, Jr., Michael Wayne Young
|
|
*
|
|
* Permission to use, copy, modify and distribute this software and
|
|
* its documentation is hereby granted, provided that both the copyright
|
|
* notice and this permission notice appear in all copies of the
|
|
* software, derivative works or modified versions, and any portions
|
|
* thereof, and that both notices appear in supporting documentation.
|
|
*
|
|
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
|
|
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
|
|
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
|
|
*
|
|
* Carnegie Mellon requests users of this software to return to
|
|
*
|
|
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
|
|
* School of Computer Science
|
|
* Carnegie Mellon University
|
|
* Pittsburgh PA 15213-3890
|
|
*
|
|
* any improvements or extensions that they make and grant Carnegie the
|
|
* rights to redistribute these changes.
|
|
*/
|
|
|
|
/*
|
|
* Resident memory management module.
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/malloc.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_pageout.h>
|
|
|
|
#include <machine/cpu.h>
|
|
|
|
#define VERY_LOW_MEM() (cnt.v_free_count <= vm_page_free_reserved)
|
|
#define KERN_OBJ(object) ((object) == kernel_object || (object) == kmem_object)
|
|
|
|
int vm_page_free_reserved = 10;
|
|
|
|
#if defined(MACHINE_NEW_NONCONTIG)
|
|
|
|
/*
|
|
* physical memory config is stored in vm_physmem.
|
|
*/
|
|
|
|
struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];
|
|
int vm_nphysseg = 0;
|
|
static int vm_page_lost_count = 0; /* XXXCDC: DEBUG DEBUG */
|
|
|
|
#endif
|
|
|
|
#if defined(MACHINE_NONCONTIG) || defined(MACHINE_NEW_NONCONTIG)
|
|
/*
|
|
* These variables record the values returned by vm_page_bootstrap,
|
|
* for debugging purposes.
|
|
*
|
|
* The implementation of vm_bootstrap_steal_memory here also uses
|
|
* them internally.
|
|
*/
|
|
static vaddr_t virtual_space_start;
|
|
static vaddr_t virtual_space_end;
|
|
|
|
vaddr_t vm_bootstrap_steal_memory __P((vsize_t));
|
|
#endif
|
|
|
|
/*
|
|
* Associated with page of user-allocatable memory is a
|
|
* page structure.
|
|
*/
|
|
|
|
struct pglist *vm_page_buckets; /* Array of buckets */
|
|
int vm_page_bucket_count = 0; /* How big is array? */
|
|
int vm_page_hash_mask; /* Mask for hash function */
|
|
simple_lock_data_t bucket_lock; /* lock for all buckets XXX */
|
|
#if defined(MACHINE_NEW_NONCONTIG)
|
|
struct pglist vm_page_bootbucket; /* bootstrap bucket */
|
|
#endif
|
|
|
|
struct pglist vm_page_queue_free;
|
|
struct pglist vm_page_queue_active;
|
|
struct pglist vm_page_queue_inactive;
|
|
simple_lock_data_t vm_page_queue_lock;
|
|
simple_lock_data_t vm_page_queue_free_lock;
|
|
|
|
/* has physical page allocation been initialized? */
|
|
boolean_t vm_page_startup_initialized;
|
|
|
|
vm_page_t vm_page_array;
|
|
#if defined(MACHINE_NEW_NONCONTIG)
|
|
/* NOTHING NEEDED HERE */
|
|
#elif defined(MACHINE_NONCONTIG)
|
|
/* OLD NONCONTIG CODE: NUKE NUKE NUKE ONCE CONVERTED */
|
|
u_long first_page;
|
|
int vm_page_count;
|
|
#else
|
|
/* OLD NCONTIG CODE: NUKE NUKE NUKE ONCE CONVERTED */
|
|
long first_page;
|
|
long last_page;
|
|
paddr_t first_phys_addr;
|
|
paddr_t last_phys_addr;
|
|
int vm_page_count;
|
|
#endif
|
|
vsize_t page_mask;
|
|
int page_shift;
|
|
|
|
#if defined(MACHINE_NEW_NONCONTIG)
|
|
/*
|
|
* local prototypes
|
|
*/
|
|
|
|
#if !defined(PMAP_STEAL_MEMORY)
|
|
static boolean_t vm_page_physget __P((paddr_t *));
|
|
#endif
|
|
#endif
|
|
|
|
/*
|
|
* macros
|
|
*/
|
|
|
|
/*
|
|
* vm_page_hash:
|
|
*
|
|
* Distributes the object/offset key pair among hash buckets.
|
|
*
|
|
* NOTE: This macro depends on vm_page_bucket_count being a power of 2.
|
|
*/
|
|
#define vm_page_hash(object, offset) \
|
|
(((unsigned long)object+(unsigned long)atop(offset))&vm_page_hash_mask)
|
|
|
|
/*
|
|
* vm_set_page_size:
|
|
*
|
|
* Sets the page size, perhaps based upon the memory
|
|
* size. Must be called before any use of page-size
|
|
* dependent functions.
|
|
*
|
|
* Sets page_shift and page_mask from cnt.v_page_size.
|
|
*/
|
|
void
|
|
vm_set_page_size()
|
|
{
|
|
|
|
if (cnt.v_page_size == 0)
|
|
cnt.v_page_size = DEFAULT_PAGE_SIZE;
|
|
page_mask = cnt.v_page_size - 1;
|
|
if ((page_mask & cnt.v_page_size) != 0)
|
|
panic("vm_set_page_size: page size not a power of two");
|
|
for (page_shift = 0; ; page_shift++)
|
|
if ((1 << page_shift) == cnt.v_page_size)
|
|
break;
|
|
}
|
|
|
|
#if defined(MACHINE_NEW_NONCONTIG)
|
|
/*
|
|
* vm_page_bootstrap: initialize the resident memory module (called
|
|
* from vm_mem_init()).
|
|
*
|
|
* - startp and endp are out params which return the boundaries of the
|
|
* free part of the kernel's virtual address space.
|
|
*/
|
|
void
|
|
vm_page_bootstrap(startp, endp)
|
|
vaddr_t *startp, *endp; /* OUT, OUT */
|
|
{
|
|
paddr_t paddr;
|
|
vm_page_t pagearray;
|
|
int lcv, freepages, pagecount, n, i;
|
|
|
|
/*
|
|
* first init all the locks and queues.
|
|
*/
|
|
simple_lock_init(&vm_page_queue_free_lock);
|
|
simple_lock_init(&vm_page_queue_lock);
|
|
TAILQ_INIT(&vm_page_queue_free);
|
|
TAILQ_INIT(&vm_page_queue_active);
|
|
TAILQ_INIT(&vm_page_queue_inactive);
|
|
|
|
/*
|
|
* init the <OBJ,OFFSET> => <PAGE> hash table buckets. for now
|
|
* we just have one bucket (the bootstrap bucket). later on we
|
|
* will malloc() new buckets as we dynamically resize the hash table.
|
|
*/
|
|
vm_page_bucket_count = 1;
|
|
vm_page_hash_mask = 0;
|
|
vm_page_buckets = &vm_page_bootbucket;
|
|
TAILQ_INIT(vm_page_buckets);
|
|
simple_lock_init(&bucket_lock);
|
|
|
|
/*
|
|
* before calling this function the MD code is expected to register
|
|
* some free RAM with the vm_page_physload() function. our job
|
|
* now is to allocate vm_page structures for this preloaded memory.
|
|
*/
|
|
if (vm_nphysseg == 0)
|
|
panic("vm_page_bootstrap: no memory pre-allocated");
|
|
|
|
/*
|
|
* first calculate the number of free pages... note that start/end
|
|
* are inclusive so you have to add one to get the number of pages.
|
|
*
|
|
* note that we use start/end rather than avail_start/avail_end.
|
|
* this allows us to allocate extra vm_page structures in case we
|
|
* want to return some memory to the pool after booting.
|
|
*/
|
|
freepages = 0;
|
|
for (lcv = 0; lcv < vm_nphysseg; lcv++) {
|
|
freepages = freepages +
|
|
(vm_physmem[lcv].end - vm_physmem[lcv].start);
|
|
}
|
|
|
|
/*
|
|
* we now know we have (PAGE_SIZE * freepages) bytes of memory we can
|
|
* use. for each page of memory we use we need a vm_page structure.
|
|
* thus, the total number of pages we can use is the total size of
|
|
* the memory divided by the PAGE_SIZE plus the size of the vm_page
|
|
* structure. we add one to freepages as a fudge factor to avoid
|
|
* truncation errors (since we can only allocate in terms of whole
|
|
* pages).
|
|
*/
|
|
pagecount = (PAGE_SIZE * (freepages + 1)) /
|
|
(PAGE_SIZE + sizeof(struct vm_page));
|
|
pagearray = (vm_page_t)
|
|
vm_bootstrap_steal_memory(pagecount * sizeof(struct vm_page));
|
|
memset(pagearray, 0, pagecount * sizeof(struct vm_page));
|
|
|
|
/*
|
|
* now init the page frames
|
|
*/
|
|
for (lcv = 0; lcv < vm_nphysseg; lcv++) {
|
|
|
|
n = vm_physmem[lcv].end - vm_physmem[lcv].start;
|
|
if (n > pagecount) {
|
|
printf("vm_init: lost %d page(s) in init\n",
|
|
n - pagecount);
|
|
vm_page_lost_count += (n - pagecount);
|
|
n = pagecount;
|
|
}
|
|
|
|
/* set up page array pointers */
|
|
vm_physmem[lcv].pgs = pagearray;
|
|
pagearray += n;
|
|
pagecount -= n;
|
|
vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
|
|
|
|
/* init and free vm_pages (we've already zeroed them) */
|
|
paddr = ptoa(vm_physmem[lcv].start);
|
|
for (i = 0; i < n; i++, paddr += PAGE_SIZE) {
|
|
vm_physmem[lcv].pgs[i].phys_addr = paddr;
|
|
if (atop(paddr) >= vm_physmem[lcv].avail_start &&
|
|
atop(paddr) <= vm_physmem[lcv].avail_end)
|
|
vm_page_free(&vm_physmem[lcv].pgs[i]);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* pass up the values of virtual_space_start and virtual_space_end
|
|
* (obtained by vm_bootstrap_steal_memory) to the upper layers of
|
|
* the VM.
|
|
*/
|
|
*startp = round_page(virtual_space_start);
|
|
*endp = trunc_page(virtual_space_end);
|
|
|
|
/*
|
|
* init pagedaemon lock
|
|
*/
|
|
simple_lock_init(&vm_pages_needed_lock);
|
|
}
|
|
|
|
/*
|
|
* vm_bootstrap_steal_memory: steal memory from physmem for bootstrapping
|
|
*/
|
|
vaddr_t
|
|
vm_bootstrap_steal_memory(size)
|
|
vsize_t size;
|
|
{
|
|
#if defined(PMAP_STEAL_MEMORY)
|
|
vaddr_t addr;
|
|
|
|
/*
|
|
* Defer this to machine-dependent code; we may need to allocate
|
|
* from a direct-mapped segment.
|
|
*/
|
|
addr = pmap_steal_memory(size, &virtual_space_start,
|
|
&virtual_space_end);
|
|
|
|
/* round it the way we like it */
|
|
virtual_space_start = round_page(virtual_space_start);
|
|
virtual_space_end = trunc_page(virtual_space_end);
|
|
|
|
return (addr);
|
|
#else /* ! PMAP_STEAL_MEMORY */
|
|
vaddr_t addr, vaddr, paddr;
|
|
|
|
/* round to page size */
|
|
size = round_page(size);
|
|
|
|
/*
|
|
* on first call to this function init ourselves. we detect this
|
|
* by checking virtual_space_start/end which are in the zero'd BSS
|
|
* area.
|
|
*/
|
|
if (virtual_space_start == virtual_space_end) {
|
|
pmap_virtual_space(&virtual_space_start, &virtual_space_end);
|
|
|
|
/* round it the way we like it */
|
|
virtual_space_start = round_page(virtual_space_start);
|
|
virtual_space_end = trunc_page(virtual_space_end);
|
|
}
|
|
|
|
/*
|
|
* allocate virtual memory for this request
|
|
*/
|
|
addr = virtual_space_start;
|
|
virtual_space_start += size;
|
|
|
|
/*
|
|
* allocate and mapin physical pages to back new virtual pages
|
|
*/
|
|
for (vaddr = round_page(addr); vaddr < addr + size;
|
|
vaddr += PAGE_SIZE) {
|
|
if (!vm_page_physget(&paddr))
|
|
panic("vm_bootstrap_steal_memory: out of memory");
|
|
|
|
/* XXX: should be wired, but some pmaps don't like that ... */
|
|
pmap_enter(pmap_kernel(), vaddr, paddr,
|
|
VM_PROT_READ|VM_PROT_WRITE, FALSE);
|
|
}
|
|
return(addr);
|
|
#endif /* PMAP_STEAL_MEMORY */
|
|
}
|
|
|
|
#if !defined(PMAP_STEAL_MEMORY)
|
|
/*
|
|
* vm_page_physget: "steal" one page from the vm_physmem structure.
|
|
*
|
|
* - attempt to allocate it off the end of a segment in which the "avail"
|
|
* values match the start/end values. if we can't do that, then we
|
|
* will advance both values (making them equal, and removing some
|
|
* vm_page structures from the non-avail area).
|
|
* - return false if out of memory.
|
|
*/
|
|
static boolean_t
|
|
vm_page_physget(paddrp)
|
|
paddr_t *paddrp;
|
|
|
|
{
|
|
int lcv, x;
|
|
|
|
/* pass 1: try allocating from a matching end */
|
|
#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
|
|
for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
|
|
#else
|
|
for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
|
|
#endif
|
|
{
|
|
if (vm_physmem[lcv].pgs)
|
|
panic("vm_page_physget: called _after_ bootstrap");
|
|
|
|
/* try from front */
|
|
if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
|
|
vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
|
|
*paddrp = ptoa(vm_physmem[lcv].avail_start);
|
|
vm_physmem[lcv].avail_start++;
|
|
vm_physmem[lcv].start++;
|
|
|
|
/* nothing left? nuke it */
|
|
if (vm_physmem[lcv].avail_start ==
|
|
vm_physmem[lcv].end) {
|
|
if (vm_nphysseg == 1)
|
|
panic("vm_page_physget: out of memory!");
|
|
vm_nphysseg--;
|
|
for (x = lcv; x < vm_nphysseg; x++)
|
|
/* structure copy */
|
|
vm_physmem[x] = vm_physmem[x+1];
|
|
}
|
|
return(TRUE);
|
|
}
|
|
|
|
/* try from rear */
|
|
if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
|
|
vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
|
|
*paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
|
|
vm_physmem[lcv].avail_end--;
|
|
vm_physmem[lcv].end--;
|
|
|
|
/* nothing left? nuke it */
|
|
if (vm_physmem[lcv].avail_end ==
|
|
vm_physmem[lcv].start) {
|
|
if (vm_nphysseg == 1)
|
|
panic("vm_page_physget: out of memory!");
|
|
vm_nphysseg--;
|
|
for (x = lcv; x < vm_nphysseg; x++)
|
|
/* structure copy */
|
|
vm_physmem[x] = vm_physmem[x+1];
|
|
}
|
|
return(TRUE);
|
|
}
|
|
}
|
|
|
|
/* pass2: forget about matching ends, just allocate something */
|
|
#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
|
|
for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
|
|
#else
|
|
for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
|
|
#endif
|
|
{
|
|
/* any room in this bank? */
|
|
if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
|
|
continue; /* nope */
|
|
|
|
*paddrp = ptoa(vm_physmem[lcv].avail_start);
|
|
vm_physmem[lcv].avail_start++;
|
|
vm_physmem[lcv].start = vm_physmem[lcv].avail_start; /* truncate! */
|
|
|
|
/* nothing left? nuke it */
|
|
if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
|
|
if (vm_nphysseg == 1)
|
|
panic("vm_page_physget: out of memory!");
|
|
vm_nphysseg--;
|
|
for (x = lcv; x < vm_nphysseg; x++)
|
|
vm_physmem[x] = vm_physmem[x+1]; /* structure copy */
|
|
}
|
|
return(TRUE);
|
|
}
|
|
|
|
return(FALSE); /* whoops! */
|
|
}
|
|
#endif /* ! PMAP_STEAL_MEMORY */
|
|
|
|
/*
|
|
* vm_page_physload: load physical memory into VM system
|
|
*
|
|
* - all args are PFs
|
|
* - all pages in start/end get vm_page structures
|
|
* - areas marked by avail_start/avail_end get added to the free page pool
|
|
* - we are limited to VM_PHYSSEG_MAX physical memory segments
|
|
*/
|
|
void
|
|
vm_page_physload(start, end, avail_start, avail_end)
|
|
vaddr_t start, end, avail_start, avail_end;
|
|
{
|
|
struct vm_page *pgs;
|
|
struct vm_physseg *ps;
|
|
int preload, lcv, npages;
|
|
#if (VM_PHYSSEG_STRAT != VM_PSTRAT_RANDOM)
|
|
int x;
|
|
#endif
|
|
|
|
if (page_shift == 0)
|
|
panic("vm_page_physload: page size not set!");
|
|
|
|
/*
|
|
* do we have room?
|
|
*/
|
|
if (vm_nphysseg == VM_PHYSSEG_MAX) {
|
|
printf("vm_page_physload: unable to load physical memory segment\n");
|
|
printf("\t%d segments allocated, ignoring 0x%lx -> 0x%lx\n",
|
|
VM_PHYSSEG_MAX, start, end);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* check to see if this is a "preload" (i.e. vm_mem_init hasn't been
|
|
* called yet, so malloc is not available).
|
|
*/
|
|
for (lcv = 0; lcv < vm_nphysseg; lcv++) {
|
|
if (vm_physmem[lcv].pgs)
|
|
break;
|
|
}
|
|
preload = (lcv == vm_nphysseg);
|
|
|
|
/*
|
|
* if VM is already running, attempt to malloc() vm_page structures
|
|
*/
|
|
if (!preload) {
|
|
#if defined(VM_PHYSSEG_NOADD)
|
|
panic("vm_page_physload: tried to add RAM after vm_mem_init");
|
|
#else
|
|
/* XXXCDC: need some sort of lockout for this case */
|
|
paddr_t paddr;
|
|
|
|
/* # of pages */
|
|
npages = end - start;
|
|
MALLOC(pgs, struct vm_page *, sizeof(struct vm_page) * npages,
|
|
M_VMPAGE, M_NOWAIT);
|
|
if (pgs == NULL) {
|
|
printf("vm_page_physload: can not malloc vm_page structs for segment\n");
|
|
printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
|
|
return;
|
|
}
|
|
/* zero data, init phys_addr, and free pages */
|
|
memset(pgs, 0, sizeof(struct vm_page) * npages);
|
|
for (lcv = 0, paddr = ptoa(start); lcv < npages;
|
|
lcv++, paddr += PAGE_SIZE) {
|
|
pgs[lcv].phys_addr = paddr;
|
|
if (atop(paddr) >= avail_start &&
|
|
atop(paddr) <= avail_end)
|
|
vm_page_free(&pgs[lcv]);
|
|
}
|
|
/* XXXCDC: incomplete: need to update v_free_count, what else? */
|
|
/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
|
|
#endif
|
|
} else {
|
|
/* XXX/gcc complains if these don't get init'd */
|
|
pgs = NULL;
|
|
npages = 0;
|
|
}
|
|
|
|
/*
|
|
* now insert us in the proper place in vm_physmem[]
|
|
*/
|
|
#if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
|
|
/* random: put it at the end (easy!) */
|
|
ps = &vm_physmem[vm_nphysseg];
|
|
|
|
#else
|
|
#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
|
|
|
|
/* sort by address for binary search */
|
|
for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
|
|
if (start < vm_physmem[lcv].start)
|
|
break;
|
|
ps = &vm_physmem[lcv];
|
|
|
|
/* move back other entries, if necessary ... */
|
|
for (x = vm_nphysseg ; x > lcv ; x--)
|
|
/* structure copy */
|
|
vm_physmem[x] = vm_physmem[x - 1];
|
|
|
|
#else
|
|
#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
|
|
|
|
/* sort by largest segment first */
|
|
for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
|
|
if ((end - start) >
|
|
(vm_physmem[lcv].end - vm_physmem[lcv].start))
|
|
break;
|
|
ps = &vm_physmem[lcv];
|
|
|
|
/* move back other entries, if necessary ... */
|
|
for (x = vm_nphysseg ; x > lcv ; x--)
|
|
/* structure copy */
|
|
vm_physmem[x] = vm_physmem[x - 1];
|
|
|
|
#else
|
|
|
|
panic("vm_page_physload: unknown physseg strategy selected!");
|
|
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
ps->start = start;
|
|
ps->end = end;
|
|
ps->avail_start = avail_start;
|
|
ps->avail_end = avail_end;
|
|
if (preload) {
|
|
ps->pgs = NULL;
|
|
} else {
|
|
ps->pgs = pgs;
|
|
ps->lastpg = pgs + npages - 1;
|
|
}
|
|
vm_nphysseg++;
|
|
|
|
/*
|
|
* done!
|
|
*/
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* vm_page_physrehash: reallocate hash table based on number of
|
|
* free pages.
|
|
*/
|
|
void
|
|
vm_page_physrehash()
|
|
{
|
|
struct pglist *newbuckets, *oldbuckets;
|
|
struct vm_page *pg;
|
|
int freepages, lcv, bucketcount, s, oldcount;
|
|
|
|
/*
|
|
* compute number of pages that can go in the free pool
|
|
*/
|
|
freepages = 0;
|
|
for (lcv = 0; lcv < vm_nphysseg; lcv++)
|
|
freepages = freepages + (vm_physmem[lcv].avail_end -
|
|
vm_physmem[lcv].avail_start);
|
|
|
|
/*
|
|
* compute number of buckets needed for this number of pages
|
|
*/
|
|
bucketcount = 1;
|
|
while (bucketcount < freepages)
|
|
bucketcount = bucketcount * 2;
|
|
|
|
/*
|
|
* malloc new buckets
|
|
*/
|
|
MALLOC(newbuckets, struct pglist *, sizeof(struct pglist) * bucketcount,
|
|
M_VMPBUCKET, M_NOWAIT);
|
|
if (newbuckets == NULL) {
|
|
printf("vm_page_physrehash: WARNING: could not grow page hash table\n");
|
|
return;
|
|
}
|
|
for (lcv = 0; lcv < bucketcount; lcv++)
|
|
TAILQ_INIT(&newbuckets[lcv]);
|
|
|
|
/*
|
|
* now replace the old buckets with the new ones and rehash everything
|
|
*/
|
|
s = splimp();
|
|
simple_lock(&bucket_lock);
|
|
/* swap old for new ... */
|
|
oldbuckets = vm_page_buckets;
|
|
oldcount = vm_page_bucket_count;
|
|
vm_page_buckets = newbuckets;
|
|
vm_page_bucket_count = bucketcount;
|
|
vm_page_hash_mask = bucketcount - 1; /* power of 2 */
|
|
|
|
/* ... and rehash */
|
|
for (lcv = 0 ; lcv < oldcount ; lcv++) {
|
|
while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
|
|
TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
|
|
TAILQ_INSERT_TAIL(&vm_page_buckets[
|
|
vm_page_hash(pg->object, pg->offset)], pg, hashq);
|
|
}
|
|
}
|
|
simple_unlock(&bucket_lock);
|
|
splx(s);
|
|
|
|
/*
|
|
* free old bucket array if we malloc'd it previously
|
|
*/
|
|
if (oldbuckets != &vm_page_bootbucket)
|
|
FREE(oldbuckets, M_VMPBUCKET);
|
|
|
|
/*
|
|
* done
|
|
*/
|
|
return;
|
|
}
|
|
|
|
#if 1 /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
|
|
|
|
void vm_page_physdump __P((void)); /* SHUT UP GCC */
|
|
|
|
/* call from DDB */
|
|
void
|
|
vm_page_physdump()
|
|
{
|
|
int lcv;
|
|
|
|
printf("rehash: physical memory config [segs=%d of %d]:\n",
|
|
vm_nphysseg, VM_PHYSSEG_MAX);
|
|
for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
|
|
printf("0x%lx->0x%lx [0x%lx->0x%lx]\n", vm_physmem[lcv].start,
|
|
vm_physmem[lcv].end, vm_physmem[lcv].avail_start,
|
|
vm_physmem[lcv].avail_end);
|
|
printf("STRATEGY = ");
|
|
|
|
switch (VM_PHYSSEG_STRAT) {
|
|
case VM_PSTRAT_RANDOM:
|
|
printf("RANDOM\n");
|
|
break;
|
|
|
|
case VM_PSTRAT_BSEARCH:
|
|
printf("BSEARCH\n");
|
|
break;
|
|
|
|
case VM_PSTRAT_BIGFIRST:
|
|
printf("BIGFIRST\n");
|
|
break;
|
|
|
|
default:
|
|
printf("<<UNKNOWN>>!!!!\n");
|
|
}
|
|
printf("number of buckets = %d\n", vm_page_bucket_count);
|
|
printf("number of lost pages = %d\n", vm_page_lost_count);
|
|
}
|
|
#endif
|
|
|
|
#elif defined(MACHINE_NONCONTIG)
|
|
/* OLD NONCONTIG CODE: NUKE NUKE NUKE ONCE CONVERTED */
|
|
|
|
/*
|
|
* We implement vm_page_bootstrap and vm_bootstrap_steal_memory with
|
|
* the help of two simpler functions:
|
|
*
|
|
* pmap_virtual_space and pmap_next_page
|
|
*/
|
|
|
|
/*
|
|
* vm_page_bootstrap:
|
|
*
|
|
* Initializes the resident memory module.
|
|
*
|
|
* Allocates memory for the page cells, and
|
|
* for the object/offset-to-page hash table headers.
|
|
* Each page cell is initialized and placed on the free list.
|
|
* Returns the range of available kernel virtual memory.
|
|
*/
|
|
void
|
|
vm_page_bootstrap(startp, endp)
|
|
vaddr_t *startp;
|
|
vaddr_t *endp;
|
|
{
|
|
unsigned int i, freepages;
|
|
register struct pglist *bucket;
|
|
paddr_t paddr;
|
|
|
|
extern vaddr_t kentry_data;
|
|
extern vsize_t kentry_data_size;
|
|
|
|
|
|
/*
|
|
* Initialize the locks
|
|
*/
|
|
simple_lock_init(&vm_page_queue_free_lock);
|
|
simple_lock_init(&vm_page_queue_lock);
|
|
|
|
/*
|
|
* Initialize the queue headers for the free queue,
|
|
* the active queue and the inactive queue.
|
|
*/
|
|
TAILQ_INIT(&vm_page_queue_free);
|
|
TAILQ_INIT(&vm_page_queue_active);
|
|
TAILQ_INIT(&vm_page_queue_inactive);
|
|
|
|
/*
|
|
* Pre-allocate maps and map entries that cannot be dynamically
|
|
* allocated via malloc(). The maps include the kernel_map and
|
|
* kmem_map which must be initialized before malloc() will
|
|
* work (obviously). Also could include pager maps which would
|
|
* be allocated before kmeminit.
|
|
*
|
|
* Allow some kernel map entries... this should be plenty
|
|
* since people shouldn't be cluttering up the kernel
|
|
* map (they should use their own maps).
|
|
*/
|
|
|
|
kentry_data_size = round_page(MAX_KMAP*sizeof(struct vm_map) +
|
|
MAX_KMAPENT*sizeof(struct vm_map_entry));
|
|
kentry_data = vm_bootstrap_steal_memory(kentry_data_size);
|
|
|
|
/*
|
|
* Validate these zone addresses.
|
|
*/
|
|
memset((caddr_t) kentry_data, 0, kentry_data_size);
|
|
|
|
/*
|
|
* Allocate (and initialize) the virtual-to-physical
|
|
* table hash buckets.
|
|
*
|
|
* The number of buckets MUST BE a power of 2, and
|
|
* the actual value is the next power of 2 greater
|
|
* than the number of physical pages in the system.
|
|
*
|
|
* Note:
|
|
* This computation can be tweaked if desired.
|
|
*/
|
|
if (vm_page_bucket_count == 0) {
|
|
unsigned int npages = pmap_free_pages();
|
|
|
|
vm_page_bucket_count = 1;
|
|
while (vm_page_bucket_count < npages)
|
|
vm_page_bucket_count <<= 1;
|
|
}
|
|
|
|
vm_page_hash_mask = vm_page_bucket_count - 1;
|
|
|
|
vm_page_buckets = (struct pglist *)
|
|
vm_bootstrap_steal_memory(vm_page_bucket_count *
|
|
sizeof(*vm_page_buckets));
|
|
bucket = vm_page_buckets;
|
|
|
|
for (i = vm_page_bucket_count; i--;) {
|
|
TAILQ_INIT(bucket);
|
|
bucket++;
|
|
}
|
|
|
|
simple_lock_init(&bucket_lock);
|
|
|
|
/*
|
|
* We calculate how many page frames we will have and
|
|
* then allocate the page structures in one chunk.
|
|
* The calculation is non-trivial. We want:
|
|
*
|
|
* vmpages > (freepages - (vmpages / sizeof(vm_page_t)))
|
|
*
|
|
* ...which, with some algebra, becomes:
|
|
*
|
|
* vmpages > (freepages * sizeof(...) / (1 + sizeof(...)))
|
|
*
|
|
* The value of vm_page_count need not be exact, but must
|
|
* be large enough so vm_page_array handles the index range.
|
|
*/
|
|
|
|
freepages = pmap_free_pages();
|
|
/* Fudge slightly to deal with truncation error. */
|
|
freepages += 1; /* fudge */
|
|
|
|
vm_page_count = (PAGE_SIZE * freepages) /
|
|
(PAGE_SIZE + sizeof(*vm_page_array));
|
|
|
|
vm_page_array = (vm_page_t)
|
|
vm_bootstrap_steal_memory(vm_page_count * sizeof(*vm_page_array));
|
|
memset(vm_page_array, 0, vm_page_count * sizeof(*vm_page_array));
|
|
|
|
#ifdef DIAGNOSTIC
|
|
/*
|
|
* Initialize everything in case the holes are stepped in,
|
|
* and set PA to something that will cause a panic...
|
|
*/
|
|
for (i = 0; i < vm_page_count; i++)
|
|
vm_page_array[i].phys_addr = 0xdeadbeef;
|
|
#endif
|
|
|
|
/*
|
|
* Initialize the page frames. Note that some page
|
|
* indices may not be usable when pmap_free_pages()
|
|
* counts pages in a hole.
|
|
*/
|
|
|
|
if (!pmap_next_page(&paddr))
|
|
panic("vm_page_bootstrap: can't get first page");
|
|
|
|
first_page = pmap_page_index(paddr);
|
|
for (i = 0;;) {
|
|
/*
|
|
* Initialize a page array element.
|
|
*/
|
|
|
|
VM_PAGE_INIT(&vm_page_array[i], NULL, NULL);
|
|
vm_page_array[i].phys_addr = paddr;
|
|
vm_page_free(&vm_page_array[i]);
|
|
|
|
/*
|
|
* Are there any more physical pages?
|
|
*/
|
|
|
|
if (!pmap_next_page(&paddr))
|
|
break;
|
|
i = pmap_page_index(paddr) - first_page;
|
|
|
|
/*
|
|
* Don't trust pmap_page_index()...
|
|
*/
|
|
|
|
if (
|
|
#if 0
|
|
i < 0 || /* can't happen, i is unsigned */
|
|
#endif
|
|
i >= vm_page_count)
|
|
panic("vm_page_bootstrap: bad i = 0x%x", i);
|
|
}
|
|
|
|
/*
|
|
* Make sure we have nice, round values.
|
|
*/
|
|
|
|
virtual_space_start = round_page(virtual_space_start);
|
|
virtual_space_end = trunc_page(virtual_space_end);
|
|
|
|
*startp = virtual_space_start;
|
|
*endp = virtual_space_end;
|
|
|
|
simple_lock_init(&vm_pages_needed_lock);
|
|
}
|
|
|
|
vaddr_t
|
|
vm_bootstrap_steal_memory(size)
|
|
vsize_t size;
|
|
{
|
|
vaddr_t addr, vaddr, paddr;
|
|
|
|
/*
|
|
* We round to page size.
|
|
*/
|
|
|
|
size = round_page(size);
|
|
|
|
/*
|
|
* If this is the first call to vm_bootstrap_steal_memory,
|
|
* we have to initialize ourself.
|
|
*/
|
|
|
|
if (virtual_space_start == virtual_space_end) {
|
|
pmap_virtual_space(&virtual_space_start, &virtual_space_end);
|
|
|
|
/*
|
|
* The initial values must be aligned properly, and
|
|
* we don't trust the pmap module to do it right.
|
|
*/
|
|
|
|
virtual_space_start = round_page(virtual_space_start);
|
|
virtual_space_end = trunc_page(virtual_space_end);
|
|
}
|
|
|
|
/*
|
|
* Allocate virtual memory for this request.
|
|
*/
|
|
|
|
addr = virtual_space_start;
|
|
virtual_space_start += size;
|
|
|
|
/*
|
|
* Allocate and map physical pages to back new virtual pages.
|
|
*/
|
|
|
|
for (vaddr = round_page(addr);
|
|
vaddr < addr + size;
|
|
vaddr += PAGE_SIZE) {
|
|
if (!pmap_next_page(&paddr))
|
|
panic("vm_bootstrap_steal_memory");
|
|
|
|
/*
|
|
* XXX Logically, these mappings should be wired,
|
|
* but some pmap modules barf if they are.
|
|
*/
|
|
|
|
pmap_enter(pmap_kernel(), vaddr, paddr,
|
|
VM_PROT_READ|VM_PROT_WRITE, FALSE);
|
|
}
|
|
|
|
return addr;
|
|
}
|
|
|
|
#else /* MACHINE_NONCONTIG */
|
|
|
|
/* OLD CONTIG CODE: NUKE NUKE NUKE ONCE CONVERTED */
|
|
/*
|
|
* vm_page_startup:
|
|
*
|
|
* Initializes the resident memory module.
|
|
*
|
|
* Allocates memory for the page cells, and
|
|
* for the object/offset-to-page hash table headers.
|
|
* Each page cell is initialized and placed on the free list.
|
|
*/
|
|
void
|
|
vm_page_startup(start, end)
|
|
vaddr_t *start;
|
|
vaddr_t *end;
|
|
{
|
|
register vm_page_t m;
|
|
register struct pglist *bucket;
|
|
int npages;
|
|
int i;
|
|
paddr_t pa;
|
|
extern vaddr_t kentry_data;
|
|
extern vsize_t kentry_data_size;
|
|
|
|
|
|
/*
|
|
* Initialize the locks
|
|
*/
|
|
simple_lock_init(&vm_page_queue_free_lock);
|
|
simple_lock_init(&vm_page_queue_lock);
|
|
|
|
/*
|
|
* Initialize the queue headers for the free queue,
|
|
* the active queue and the inactive queue.
|
|
*/
|
|
TAILQ_INIT(&vm_page_queue_free);
|
|
TAILQ_INIT(&vm_page_queue_active);
|
|
TAILQ_INIT(&vm_page_queue_inactive);
|
|
|
|
/*
|
|
* Calculate the number of hash table buckets.
|
|
*
|
|
* The number of buckets MUST BE a power of 2, and
|
|
* the actual value is the next power of 2 greater
|
|
* than the number of physical pages in the system.
|
|
*
|
|
* Note:
|
|
* This computation can be tweaked if desired.
|
|
*/
|
|
if (vm_page_bucket_count == 0) {
|
|
vm_page_bucket_count = 1;
|
|
while (vm_page_bucket_count < atop(*end - *start))
|
|
vm_page_bucket_count <<= 1;
|
|
}
|
|
|
|
vm_page_hash_mask = vm_page_bucket_count - 1;
|
|
|
|
/*
|
|
* Allocate (and initialize) the hash table buckets.
|
|
*/
|
|
vm_page_buckets = (struct pglist *)
|
|
pmap_bootstrap_alloc(vm_page_bucket_count * sizeof(struct pglist));
|
|
bucket = vm_page_buckets;
|
|
|
|
for (i = vm_page_bucket_count; i--;) {
|
|
TAILQ_INIT(bucket);
|
|
bucket++;
|
|
}
|
|
|
|
simple_lock_init(&bucket_lock);
|
|
|
|
/*
|
|
* Truncate the remainder of physical memory to our page size.
|
|
*/
|
|
*end = trunc_page(*end);
|
|
|
|
/*
|
|
* Pre-allocate maps and map entries that cannot be dynamically
|
|
* allocated via malloc(). The maps include the kernel_map and
|
|
* kmem_map which must be initialized before malloc() will
|
|
* work (obviously). Also could include pager maps which would
|
|
* be allocated before kmeminit.
|
|
*
|
|
* Allow some kernel map entries... this should be plenty
|
|
* since people shouldn't be cluttering up the kernel
|
|
* map (they should use their own maps).
|
|
*/
|
|
kentry_data_size = round_page(MAX_KMAP*sizeof(struct vm_map) +
|
|
MAX_KMAPENT*sizeof(struct vm_map_entry));
|
|
kentry_data = (vaddr_t) pmap_bootstrap_alloc(kentry_data_size);
|
|
|
|
/*
|
|
* Compute the number of pages of memory that will be
|
|
* available for use (taking into account the overhead
|
|
* of a page structure per page).
|
|
*/
|
|
cnt.v_free_count = vm_page_count =
|
|
(*end - *start + sizeof(struct vm_page)) /
|
|
(PAGE_SIZE + sizeof(struct vm_page));
|
|
|
|
/*
|
|
* Record the extent of physical memory that the
|
|
* virtual memory system manages.
|
|
*/
|
|
first_page = *start;
|
|
first_page += vm_page_count * sizeof(struct vm_page);
|
|
first_page = atop(round_page(first_page));
|
|
last_page = first_page + vm_page_count - 1;
|
|
|
|
first_phys_addr = ptoa(first_page);
|
|
last_phys_addr = ptoa(last_page) + PAGE_MASK;
|
|
|
|
/*
|
|
* Allocate and clear the mem entry structures.
|
|
*/
|
|
m = vm_page_array = (vm_page_t)
|
|
pmap_bootstrap_alloc(vm_page_count * sizeof(struct vm_page));
|
|
memset(vm_page_array, 0, vm_page_count * sizeof(struct vm_page));
|
|
|
|
/*
|
|
* Initialize the mem entry structures now, and
|
|
* put them in the free queue.
|
|
*/
|
|
pa = first_phys_addr;
|
|
npages = vm_page_count;
|
|
while (npages--) {
|
|
m->flags = PG_FREE;
|
|
m->object = NULL;
|
|
m->phys_addr = pa;
|
|
TAILQ_INSERT_TAIL(&vm_page_queue_free, m, pageq);
|
|
m++;
|
|
pa += PAGE_SIZE;
|
|
}
|
|
|
|
/*
|
|
* Initialize vm_pages_needed lock here - don't wait for pageout
|
|
* daemon XXX
|
|
*/
|
|
simple_lock_init(&vm_pages_needed_lock);
|
|
|
|
/* from now on, pmap_bootstrap_alloc can't be used */
|
|
vm_page_startup_initialized = TRUE;
|
|
}
|
|
#endif /* MACHINE_NONCONTIG */
|
|
|
|
/*
|
|
* vm_page_insert: [ internal use only ]
|
|
*
|
|
* Inserts the given mem entry into the object/object-page
|
|
* table and object list.
|
|
*
|
|
* The object and page must be locked.
|
|
*/
|
|
void
|
|
vm_page_insert(mem, object, offset)
|
|
register vm_page_t mem;
|
|
register vm_object_t object;
|
|
register vaddr_t offset;
|
|
{
|
|
register struct pglist *bucket;
|
|
int spl;
|
|
|
|
VM_PAGE_CHECK(mem);
|
|
|
|
if (mem->flags & PG_TABLED)
|
|
panic("vm_page_insert: already inserted");
|
|
|
|
/*
|
|
* Record the object/offset pair in this page
|
|
*/
|
|
|
|
mem->object = object;
|
|
mem->offset = offset;
|
|
|
|
/*
|
|
* Insert it into the object_object/offset hash table
|
|
*/
|
|
|
|
bucket = &vm_page_buckets[vm_page_hash(object, offset)];
|
|
spl = splimp();
|
|
simple_lock(&bucket_lock);
|
|
TAILQ_INSERT_TAIL(bucket, mem, hashq);
|
|
simple_unlock(&bucket_lock);
|
|
(void) splx(spl);
|
|
|
|
/*
|
|
* Now link into the object's list of backed pages.
|
|
*/
|
|
|
|
TAILQ_INSERT_TAIL(&object->memq, mem, listq);
|
|
mem->flags |= PG_TABLED;
|
|
|
|
/*
|
|
* And show that the object has one more resident
|
|
* page.
|
|
*/
|
|
|
|
object->resident_page_count++;
|
|
}
|
|
|
|
/*
|
|
* vm_page_remove: [ internal use only ]
|
|
* XXX: used by device pager as well
|
|
*
|
|
* Removes the given mem entry from the object/offset-page
|
|
* table and the object page list.
|
|
*
|
|
* The object and page must be locked.
|
|
*/
|
|
void
|
|
vm_page_remove(mem)
|
|
register vm_page_t mem;
|
|
{
|
|
register struct pglist *bucket;
|
|
int spl;
|
|
|
|
VM_PAGE_CHECK(mem);
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (mem->flags & PG_FAULTING)
|
|
panic("vm_page_remove: page is faulting");
|
|
#endif
|
|
|
|
if (!(mem->flags & PG_TABLED))
|
|
return;
|
|
|
|
/*
|
|
* Remove from the object_object/offset hash table
|
|
*/
|
|
|
|
bucket = &vm_page_buckets[vm_page_hash(mem->object, mem->offset)];
|
|
spl = splimp();
|
|
simple_lock(&bucket_lock);
|
|
TAILQ_REMOVE(bucket, mem, hashq);
|
|
simple_unlock(&bucket_lock);
|
|
(void) splx(spl);
|
|
|
|
/*
|
|
* Now remove from the object's list of backed pages.
|
|
*/
|
|
|
|
TAILQ_REMOVE(&mem->object->memq, mem, listq);
|
|
|
|
/*
|
|
* And show that the object has one fewer resident
|
|
* page.
|
|
*/
|
|
|
|
mem->object->resident_page_count--;
|
|
|
|
mem->flags &= ~PG_TABLED;
|
|
}
|
|
|
|
/*
|
|
* vm_page_lookup:
|
|
*
|
|
* Returns the page associated with the object/offset
|
|
* pair specified; if none is found, NULL is returned.
|
|
*
|
|
* The object must be locked. No side effects.
|
|
*/
|
|
vm_page_t
|
|
vm_page_lookup(object, offset)
|
|
register vm_object_t object;
|
|
register vaddr_t offset;
|
|
{
|
|
register vm_page_t mem;
|
|
register struct pglist *bucket;
|
|
int spl;
|
|
|
|
/*
|
|
* Search the hash table for this object/offset pair
|
|
*/
|
|
|
|
bucket = &vm_page_buckets[vm_page_hash(object, offset)];
|
|
|
|
spl = splimp();
|
|
simple_lock(&bucket_lock);
|
|
for (mem = bucket->tqh_first; mem != NULL; mem = mem->hashq.tqe_next) {
|
|
VM_PAGE_CHECK(mem);
|
|
if ((mem->object == object) && (mem->offset == offset)) {
|
|
simple_unlock(&bucket_lock);
|
|
splx(spl);
|
|
return(mem);
|
|
}
|
|
}
|
|
|
|
simple_unlock(&bucket_lock);
|
|
splx(spl);
|
|
return(NULL);
|
|
}
|
|
|
|
/*
|
|
* vm_page_rename:
|
|
*
|
|
* Move the given memory entry from its
|
|
* current object to the specified target object/offset.
|
|
*
|
|
* The object must be locked.
|
|
*/
|
|
void
|
|
vm_page_rename(mem, new_object, new_offset)
|
|
register vm_page_t mem;
|
|
register vm_object_t new_object;
|
|
vaddr_t new_offset;
|
|
{
|
|
|
|
if (mem->object == new_object)
|
|
return;
|
|
|
|
vm_page_lock_queues(); /* keep page from moving out from
|
|
under pageout daemon */
|
|
vm_page_remove(mem);
|
|
vm_page_insert(mem, new_object, new_offset);
|
|
vm_page_unlock_queues();
|
|
}
|
|
|
|
/*
|
|
* vm_page_alloc:
|
|
*
|
|
* Allocate and return a memory cell associated
|
|
* with this VM object/offset pair.
|
|
*
|
|
* Object must be locked.
|
|
*/
|
|
|
|
vm_page_t
|
|
vm_page_alloc(object, offset)
|
|
vm_object_t object;
|
|
vaddr_t offset;
|
|
{
|
|
register vm_page_t mem;
|
|
int spl;
|
|
|
|
spl = splimp(); /* XXX */
|
|
simple_lock(&vm_page_queue_free_lock);
|
|
mem = vm_page_queue_free.tqh_first;
|
|
|
|
if (VERY_LOW_MEM()) {
|
|
if ((!KERN_OBJ(object) && curproc != pageout_daemon)
|
|
|| mem == NULL) {
|
|
simple_unlock(&vm_page_queue_free_lock);
|
|
splx(spl);
|
|
return(NULL);
|
|
}
|
|
}
|
|
#ifdef DIAGNOSTIC
|
|
if (mem == NULL) /* because we now depend on VERY_LOW_MEM() */
|
|
panic("vm_page_alloc");
|
|
#endif
|
|
TAILQ_REMOVE(&vm_page_queue_free, mem, pageq);
|
|
|
|
cnt.v_free_count--;
|
|
simple_unlock(&vm_page_queue_free_lock);
|
|
splx(spl);
|
|
|
|
VM_PAGE_INIT(mem, object, offset);
|
|
|
|
/*
|
|
* Decide if we should poke the pageout daemon.
|
|
* We do this if the free count is less than the low
|
|
* water mark, or if the free count is less than the high
|
|
* water mark (but above the low water mark) and the inactive
|
|
* count is less than its target.
|
|
*
|
|
* We don't have the counts locked ... if they change a little,
|
|
* it doesn't really matter.
|
|
*/
|
|
|
|
if (cnt.v_free_count < cnt.v_free_min ||
|
|
(cnt.v_free_count < cnt.v_free_target &&
|
|
cnt.v_inactive_count < cnt.v_inactive_target))
|
|
thread_wakeup(&vm_pages_needed);
|
|
return (mem);
|
|
}
|
|
|
|
/*
|
|
* vm_page_free:
|
|
*
|
|
* Returns the given page to the free list,
|
|
* disassociating it with any VM object.
|
|
*
|
|
* Object and page must be locked prior to entry.
|
|
*/
|
|
void
|
|
vm_page_free(mem)
|
|
register vm_page_t mem;
|
|
{
|
|
|
|
vm_page_remove(mem);
|
|
vm_page_free1(mem);
|
|
}
|
|
|
|
/*
|
|
* vm_page_alloc1:
|
|
*
|
|
* Allocate and return a memory cell with no associated object.
|
|
*/
|
|
vm_page_t
|
|
vm_page_alloc1()
|
|
{
|
|
vm_page_t mem;
|
|
int spl;
|
|
|
|
spl = splimp();
|
|
simple_lock(&vm_page_queue_free_lock);
|
|
if (vm_page_queue_free.tqh_first == NULL) {
|
|
simple_unlock(&vm_page_queue_free_lock);
|
|
splx(spl);
|
|
return (NULL);
|
|
}
|
|
|
|
mem = vm_page_queue_free.tqh_first;
|
|
TAILQ_REMOVE(&vm_page_queue_free, mem, pageq);
|
|
|
|
cnt.v_free_count--;
|
|
simple_unlock(&vm_page_queue_free_lock);
|
|
splx(spl);
|
|
|
|
mem->flags = PG_BUSY | PG_CLEAN | PG_FAKE;
|
|
mem->wire_count = 0;
|
|
|
|
/*
|
|
* Decide if we should poke the pageout daemon.
|
|
* We do this if the free count is less than the low
|
|
* water mark, or if the free count is less than the high
|
|
* water mark (but above the low water mark) and the inactive
|
|
* count is less than its target.
|
|
*
|
|
* We don't have the counts locked ... if they change a little,
|
|
* it doesn't really matter.
|
|
*/
|
|
|
|
if (cnt.v_free_count < cnt.v_free_min ||
|
|
(cnt.v_free_count < cnt.v_free_target &&
|
|
cnt.v_inactive_count < cnt.v_inactive_target))
|
|
thread_wakeup((void *)&vm_pages_needed);
|
|
|
|
return (mem);
|
|
}
|
|
|
|
/*
|
|
* vm_page_free1:
|
|
*
|
|
* Returns the given page to the free list.
|
|
*
|
|
* The page must already be disassociated with
|
|
* any objects.
|
|
*/
|
|
void
|
|
vm_page_free1(mem)
|
|
vm_page_t mem;
|
|
{
|
|
|
|
if (mem->flags & PG_ACTIVE) {
|
|
TAILQ_REMOVE(&vm_page_queue_active, mem, pageq);
|
|
mem->flags &= ~PG_ACTIVE;
|
|
cnt.v_active_count--;
|
|
}
|
|
|
|
if (mem->flags & PG_INACTIVE) {
|
|
TAILQ_REMOVE(&vm_page_queue_inactive, mem, pageq);
|
|
mem->flags &= ~PG_INACTIVE;
|
|
cnt.v_inactive_count--;
|
|
}
|
|
|
|
if (!(mem->flags & PG_FICTITIOUS)) {
|
|
int spl;
|
|
|
|
spl = splimp();
|
|
simple_lock(&vm_page_queue_free_lock);
|
|
mem->flags |= PG_FREE;
|
|
TAILQ_INSERT_TAIL(&vm_page_queue_free, mem, pageq);
|
|
|
|
cnt.v_free_count++;
|
|
simple_unlock(&vm_page_queue_free_lock);
|
|
splx(spl);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* vm_page_wire:
|
|
*
|
|
* Mark this page as wired down by yet
|
|
* another map, removing it from paging queues
|
|
* as necessary.
|
|
*
|
|
* The page queues must be locked.
|
|
*/
|
|
void
|
|
vm_page_wire(mem)
|
|
register vm_page_t mem;
|
|
{
|
|
|
|
VM_PAGE_CHECK(mem);
|
|
|
|
if (mem->wire_count == 0) {
|
|
if (mem->flags & PG_ACTIVE) {
|
|
TAILQ_REMOVE(&vm_page_queue_active, mem, pageq);
|
|
cnt.v_active_count--;
|
|
mem->flags &= ~PG_ACTIVE;
|
|
}
|
|
if (mem->flags & PG_INACTIVE) {
|
|
TAILQ_REMOVE(&vm_page_queue_inactive, mem, pageq);
|
|
cnt.v_inactive_count--;
|
|
mem->flags &= ~PG_INACTIVE;
|
|
}
|
|
cnt.v_wire_count++;
|
|
}
|
|
mem->wire_count++;
|
|
}
|
|
|
|
/*
|
|
* vm_page_unwire:
|
|
*
|
|
* Release one wiring of this page, potentially
|
|
* enabling it to be paged again.
|
|
*
|
|
* The page queues must be locked.
|
|
*/
|
|
void
|
|
vm_page_unwire(mem)
|
|
register vm_page_t mem;
|
|
{
|
|
|
|
VM_PAGE_CHECK(mem);
|
|
|
|
mem->wire_count--;
|
|
if (mem->wire_count == 0) {
|
|
TAILQ_INSERT_TAIL(&vm_page_queue_active, mem, pageq);
|
|
cnt.v_active_count++;
|
|
mem->flags |= PG_ACTIVE;
|
|
cnt.v_wire_count--;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* vm_page_deactivate:
|
|
*
|
|
* Returns the given page to the inactive list,
|
|
* indicating that no physical maps have access
|
|
* to this page. [Used by the physical mapping system.]
|
|
*
|
|
* The page queues must be locked.
|
|
*/
|
|
void
|
|
vm_page_deactivate(m)
|
|
register vm_page_t m;
|
|
{
|
|
|
|
VM_PAGE_CHECK(m);
|
|
|
|
/*
|
|
* Only move active pages -- ignore locked or already
|
|
* inactive ones.
|
|
*/
|
|
|
|
if (m->flags & PG_ACTIVE) {
|
|
TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
|
|
m->flags &= ~PG_ACTIVE;
|
|
cnt.v_active_count--;
|
|
goto deact;
|
|
}
|
|
if ((m->flags & PG_INACTIVE) == 0) {
|
|
deact:
|
|
TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq);
|
|
m->flags |= PG_INACTIVE;
|
|
cnt.v_inactive_count++;
|
|
pmap_clear_reference(VM_PAGE_TO_PHYS(m));
|
|
if (pmap_is_modified(VM_PAGE_TO_PHYS(m)))
|
|
m->flags &= ~PG_CLEAN;
|
|
if (m->flags & PG_CLEAN)
|
|
m->flags &= ~PG_LAUNDRY;
|
|
else
|
|
m->flags |= PG_LAUNDRY;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* vm_page_activate:
|
|
*
|
|
* Put the specified page on the active list (if appropriate).
|
|
*
|
|
* The page queues must be locked.
|
|
*/
|
|
void
|
|
vm_page_activate(m)
|
|
register vm_page_t m;
|
|
{
|
|
|
|
VM_PAGE_CHECK(m);
|
|
|
|
if (m->flags & PG_INACTIVE) {
|
|
TAILQ_REMOVE(&vm_page_queue_inactive, m, pageq);
|
|
m->flags &= ~PG_INACTIVE;
|
|
cnt.v_inactive_count--;
|
|
}
|
|
if (m->wire_count == 0) {
|
|
if (m->flags & PG_ACTIVE)
|
|
panic("vm_page_activate: already active");
|
|
|
|
TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
|
|
m->flags |= PG_ACTIVE;
|
|
cnt.v_active_count++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* vm_page_zero_fill:
|
|
*
|
|
* Zero-fill the specified page.
|
|
* Written as a standard pagein routine, to
|
|
* be used by the zero-fill object.
|
|
*/
|
|
boolean_t
|
|
vm_page_zero_fill(m)
|
|
vm_page_t m;
|
|
{
|
|
|
|
VM_PAGE_CHECK(m);
|
|
|
|
m->flags &= ~PG_CLEAN;
|
|
pmap_zero_page(VM_PAGE_TO_PHYS(m));
|
|
return(TRUE);
|
|
}
|
|
|
|
/*
|
|
* vm_page_copy:
|
|
*
|
|
* Copy one page to another
|
|
*/
|
|
void
|
|
vm_page_copy(src_m, dest_m)
|
|
vm_page_t src_m;
|
|
vm_page_t dest_m;
|
|
{
|
|
|
|
VM_PAGE_CHECK(src_m);
|
|
VM_PAGE_CHECK(dest_m);
|
|
|
|
dest_m->flags &= ~PG_CLEAN;
|
|
pmap_copy_page(VM_PAGE_TO_PHYS(src_m), VM_PAGE_TO_PHYS(dest_m));
|
|
}
|
|
|
|
#ifdef VM_PAGE_ALLOC_MEMORY_STATS
|
|
#define STAT_INCR(v) (v)++
|
|
#define STAT_DECR(v) do { \
|
|
if ((v) == 0) \
|
|
printf("%s:%d -- Already 0!\n", __FILE__, __LINE__); \
|
|
else \
|
|
(v)--; \
|
|
} while (0)
|
|
u_long vm_page_alloc_memory_npages;
|
|
#else
|
|
#define STAT_INCR(v)
|
|
#define STAT_DECR(v)
|
|
#endif
|
|
|
|
/*
|
|
* vm_page_alloc_memory:
|
|
*
|
|
* Allocate physical pages conforming to the restrictions
|
|
* provided:
|
|
*
|
|
* size The size of the allocation,
|
|
* rounded to page size.
|
|
*
|
|
* low The low address of the allowed
|
|
* allocation range.
|
|
*
|
|
* high The high address of the allowed
|
|
* allocation range.
|
|
*
|
|
* alignment Allocation must be aligned to this
|
|
* power-of-two boundary.
|
|
*
|
|
* boundary No segment in the allocation may
|
|
* cross this power-of-two boundary
|
|
* (relative to zero).
|
|
*
|
|
* The allocated pages are placed at the tail of `rlist'; `rlist'
|
|
* is assumed to be properly initialized by the caller. The
|
|
* number of memory segments that the allocated memory may
|
|
* occupy is specified in the `nsegs' arguement.
|
|
*
|
|
* Returns 0 on success or an errno value to indicate mode
|
|
* of failure.
|
|
*
|
|
* XXX This implementation could be improved. It only
|
|
* XXX allocates a single segment.
|
|
*/
|
|
int
|
|
vm_page_alloc_memory(size, low, high, alignment, boundary,
|
|
rlist, nsegs, waitok)
|
|
vsize_t size;
|
|
vaddr_t low, high, alignment, boundary;
|
|
struct pglist *rlist;
|
|
int nsegs, waitok;
|
|
{
|
|
paddr_t try, idxpa, lastidxpa;
|
|
#if defined(MACHINE_NEW_NONCONTIG)
|
|
int psi;
|
|
struct vm_page *vm_page_array;
|
|
#endif
|
|
int s, tryidx, idx, end, error;
|
|
vm_page_t m;
|
|
u_long pagemask;
|
|
#ifdef DEBUG
|
|
vm_page_t tp;
|
|
#endif
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if ((alignment & (alignment - 1)) != 0)
|
|
panic("vm_page_alloc_memory: alignment must be power of 2");
|
|
|
|
if ((boundary & (boundary - 1)) != 0)
|
|
panic("vm_page_alloc_memory: boundary must be power of 2");
|
|
#endif
|
|
|
|
/*
|
|
* Our allocations are always page granularity, so our alignment
|
|
* must be, too.
|
|
*/
|
|
if (alignment < PAGE_SIZE)
|
|
alignment = PAGE_SIZE;
|
|
|
|
size = round_page(size);
|
|
try = roundup(low, alignment);
|
|
|
|
if (boundary != 0 && boundary < size)
|
|
return (EINVAL);
|
|
|
|
pagemask = ~(boundary - 1);
|
|
|
|
/* Default to "lose". */
|
|
error = ENOMEM;
|
|
|
|
/*
|
|
* Block all memory allocation and lock the free list.
|
|
*/
|
|
s = splimp();
|
|
simple_lock(&vm_page_queue_free_lock);
|
|
|
|
/* Are there even any free pages? */
|
|
if (vm_page_queue_free.tqh_first == NULL)
|
|
goto out;
|
|
|
|
for (;; try += alignment) {
|
|
if (try + size > high) {
|
|
/*
|
|
* We've run past the allowable range.
|
|
*/
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Make sure this is a managed physical page.
|
|
*/
|
|
#if defined(MACHINE_NEW_NONCONTIG)
|
|
|
|
if ((psi = vm_physseg_find(atop(try), &idx)) == -1)
|
|
continue; /* managed? */
|
|
if (vm_physseg_find(atop(try + size), NULL) != psi)
|
|
continue; /* end must be in this segment */
|
|
|
|
tryidx = idx;
|
|
end = idx + (size / PAGE_SIZE);
|
|
vm_page_array = vm_physmem[psi].pgs;
|
|
/* XXX: emulates old global vm_page_array */
|
|
|
|
#else
|
|
if (IS_VM_PHYSADDR(try) == 0)
|
|
continue;
|
|
|
|
tryidx = idx = VM_PAGE_INDEX(try);
|
|
end = idx + (size / PAGE_SIZE);
|
|
if (end > vm_page_count) {
|
|
/*
|
|
* No more physical memory.
|
|
*/
|
|
goto out;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Found a suitable starting page. See of the range
|
|
* is free.
|
|
*/
|
|
for (; idx < end; idx++) {
|
|
if (VM_PAGE_IS_FREE(&vm_page_array[idx]) == 0) {
|
|
/*
|
|
* Page not available.
|
|
*/
|
|
break;
|
|
}
|
|
|
|
idxpa = VM_PAGE_TO_PHYS(&vm_page_array[idx]);
|
|
|
|
#if !defined(MACHINE_NEW_NONCONTIG)
|
|
/*
|
|
* Make sure this is a managed physical page.
|
|
* XXX Necessary? I guess only if there
|
|
* XXX are holes in the vm_page_array[].
|
|
*/
|
|
if (IS_VM_PHYSADDR(idxpa) == 0)
|
|
break;
|
|
#endif
|
|
|
|
if (idx > tryidx) {
|
|
lastidxpa =
|
|
VM_PAGE_TO_PHYS(&vm_page_array[idx - 1]);
|
|
|
|
if ((lastidxpa + PAGE_SIZE) != idxpa) {
|
|
/*
|
|
* Region not contiguous.
|
|
*/
|
|
break;
|
|
}
|
|
if (boundary != 0 &&
|
|
((lastidxpa ^ idxpa) & pagemask) != 0) {
|
|
/*
|
|
* Region crosses boundary.
|
|
*/
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (idx == end) {
|
|
/*
|
|
* Woo hoo! Found one.
|
|
*/
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Okay, we have a chunk of memory that conforms to
|
|
* the requested constraints.
|
|
*/
|
|
idx = tryidx;
|
|
while (idx < end) {
|
|
m = &vm_page_array[idx];
|
|
#ifdef DEBUG
|
|
for (tp = vm_page_queue_free.tqh_first; tp != NULL;
|
|
tp = tp->pageq.tqe_next) {
|
|
if (tp == m)
|
|
break;
|
|
}
|
|
if (tp == NULL)
|
|
panic("vm_page_alloc_memory: page not on freelist");
|
|
#endif
|
|
TAILQ_REMOVE(&vm_page_queue_free, m, pageq);
|
|
cnt.v_free_count--;
|
|
m->flags = PG_CLEAN;
|
|
m->object = NULL;
|
|
m->wire_count = 0;
|
|
TAILQ_INSERT_TAIL(rlist, m, pageq);
|
|
idx++;
|
|
STAT_INCR(vm_page_alloc_memory_npages);
|
|
}
|
|
error = 0;
|
|
|
|
out:
|
|
simple_unlock(&vm_page_queue_free_lock);
|
|
splx(s);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* vm_page_free_memory:
|
|
*
|
|
* Free a list of pages previously allocated by vm_page_alloc_memory().
|
|
* The pages are assumed to have no mappings.
|
|
*/
|
|
void
|
|
vm_page_free_memory(list)
|
|
struct pglist *list;
|
|
{
|
|
vm_page_t m;
|
|
int s;
|
|
|
|
/*
|
|
* Block all memory allocation and lock the free list.
|
|
*/
|
|
s = splimp();
|
|
simple_lock(&vm_page_queue_free_lock);
|
|
|
|
while ((m = list->tqh_first) != NULL) {
|
|
TAILQ_REMOVE(list, m, pageq);
|
|
m->flags = PG_FREE;
|
|
TAILQ_INSERT_TAIL(&vm_page_queue_free, m, pageq);
|
|
cnt.v_free_count++;
|
|
STAT_DECR(vm_page_alloc_memory_npages);
|
|
}
|
|
|
|
simple_unlock(&vm_page_queue_free_lock);
|
|
splx(s);
|
|
}
|