NetBSD/sys/dev/pci/neo.c
2008-02-29 06:13:39 +00:00

1025 lines
24 KiB
C

/* $NetBSD: neo.c,v 1.38 2008/02/29 06:13:39 dyoung Exp $ */
/*
* Copyright (c) 1999 Cameron Grant <gandalf@vilnya.demon.co.uk>
* All rights reserved.
*
* Derived from the public domain Linux driver
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHERIN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THEPOSSIBILITY OF
* SUCH DAMAGE.
*
* FreeBSD: src/sys/dev/sound/pci/neomagic.c,v 1.8 2000/03/20 15:30:50 cg Exp
* OpenBSD: neo.c,v 1.4 2000/07/19 09:04:37 csapuntz Exp
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: neo.c,v 1.38 2008/02/29 06:13:39 dyoung Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/device.h>
#include <sys/bus.h>
#include <dev/pci/pcidevs.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/neoreg.h>
#include <dev/pci/neo-coeff.h>
#include <sys/audioio.h>
#include <dev/audio_if.h>
#include <dev/mulaw.h>
#include <dev/auconv.h>
#include <dev/ic/ac97var.h>
/* -------------------------------------------------------------------- */
/*
* As of 04/13/00, public documentation on the Neomagic 256 is not available.
* These comments were gleaned by looking at the driver carefully.
*
* The Neomagic 256 AV/ZX chips provide both video and audio capabilities
* on one chip. About 2-6 megabytes of memory are associated with
* the chip. Most of this goes to video frame buffers, but some is used for
* audio buffering
*
* Unlike most PCI audio chips, the Neomagic chip does not rely on DMA.
* Instead, the chip allows you to carve out two ring buffers out of its
* memory. However you carve this and how much you can carve seems to be
* voodoo. The algorithm is in nm_init.
*
* Most Neomagic audio chips use the AC-97 codec interface. However, there
* seem to be a select few chips 256AV chips that do not support AC-97.
* This driver does not support them but there are rumors that it
* might work with wss isa drivers. This might require some playing around
* with your BIOS.
*
* The Neomagic 256 AV/ZX have 2 PCI I/O region descriptors. Both of
* them describe a memory region. The frame buffer is the first region
* and the register set is the secodn region.
*
* The register manipulation logic is taken from the Linux driver,
* which is in the public domain.
*
* The Neomagic is even nice enough to map the AC-97 codec registers into
* the register space to allow direct manipulation. Watch out, accessing
* AC-97 registers on the Neomagic requires great delicateness, otherwise
* the thing will hang the PCI bus, rendering your system frozen.
*
* For one, it seems the Neomagic status register that reports AC-97
* readiness should NOT be polled more often than once each 1ms.
*
* Also, writes to the AC-97 register space may take order 40us to
* complete.
*
* Unlike many sound engines, the Neomagic does not support (as far as
* we know :) the notion of interrupting every n bytes transferred,
* unlike many DMA engines. Instead, it allows you to specify one
* location in each ring buffer (called the watermark). When the chip
* passes that location while playing, it signals an interrupt.
*
* The ring buffer size is currently 16k. That is about 100ms of audio
* at 44.1kHz/stero/16 bit. However, to keep the buffer full, interrupts
* are generated more often than that, so 20-40 interrupts per second
* should not be unexpected. Increasing BUFFSIZE should help minimize
* of glitches due to drivers that spend to much time looping at high
* privelege levels as well as the impact of badly written audio
* interface clients.
*
* TO-DO list:
* Figure out interaction with video stuff (look at Xfree86 driver?)
*
* Figure out how to shrink that huge table neo-coeff.h
*/
#define NM_BUFFSIZE 16384
/* device private data */
struct neo_softc {
struct device dev;
bus_space_tag_t bufiot;
bus_space_handle_t bufioh;
bus_space_tag_t regiot;
bus_space_handle_t regioh;
uint32_t type;
void *ih;
void (*pintr)(void *); /* DMA completion intr handler */
void *parg; /* arg for intr() */
void (*rintr)(void *); /* DMA completion intr handler */
void *rarg; /* arg for intr() */
vaddr_t buf_vaddr;
vaddr_t rbuf_vaddr;
vaddr_t pbuf_vaddr;
int pbuf_allocated;
int rbuf_allocated;
bus_addr_t buf_pciaddr;
bus_addr_t rbuf_pciaddr;
bus_addr_t pbuf_pciaddr;
uint32_t ac97_base, ac97_status, ac97_busy;
uint32_t buftop, pbuf, rbuf, cbuf, acbuf;
uint32_t playint, recint, misc1int, misc2int;
uint32_t irsz, badintr;
uint32_t pbufsize;
uint32_t rbufsize;
uint32_t pblksize;
uint32_t rblksize;
uint32_t pwmark;
uint32_t rwmark;
struct ac97_codec_if *codec_if;
struct ac97_host_if host_if;
};
/* -------------------------------------------------------------------- */
/*
* prototypes
*/
static int nm_waitcd(struct neo_softc *);
static int nm_loadcoeff(struct neo_softc *, int, int);
static int nm_init(struct neo_softc *);
static int neo_match(struct device *, struct cfdata *, void *);
static void neo_attach(struct device *, struct device *, void *);
static int neo_intr(void *);
static int neo_query_encoding(void *, struct audio_encoding *);
static int neo_set_params(void *, int, int, audio_params_t *,
audio_params_t *, stream_filter_list_t *,
stream_filter_list_t *);
static int neo_round_blocksize(void *, int, int, const audio_params_t *);
static int neo_trigger_output(void *, void *, void *, int,
void (*)(void *), void *,
const audio_params_t *);
static int neo_trigger_input(void *, void *, void *, int,
void (*)(void *), void *,
const audio_params_t *);
static int neo_halt_output(void *);
static int neo_halt_input(void *);
static int neo_getdev(void *, struct audio_device *);
static int neo_mixer_set_port(void *, mixer_ctrl_t *);
static int neo_mixer_get_port(void *, mixer_ctrl_t *);
static int neo_attach_codec(void *, struct ac97_codec_if *);
static int neo_read_codec(void *, uint8_t, uint16_t *);
static int neo_write_codec(void *, uint8_t, uint16_t);
static int neo_reset_codec(void *);
static enum ac97_host_flags neo_flags_codec(void *);
static int neo_query_devinfo(void *, mixer_devinfo_t *);
static void * neo_malloc(void *, int, size_t, struct malloc_type *, int);
static void neo_free(void *, void *, struct malloc_type *);
static size_t neo_round_buffersize(void *, int, size_t);
static paddr_t neo_mappage(void *, void *, off_t, int);
static int neo_get_props(void *);
CFATTACH_DECL(neo, sizeof(struct neo_softc),
neo_match, neo_attach, NULL, NULL);
static struct audio_device neo_device = {
"NeoMagic 256",
"",
"neo"
};
/* The actual rates supported by the card. */
static const int samplerates[9] = {
8000,
11025,
16000,
22050,
24000,
32000,
44100,
48000,
99999999
};
#define NEO_NFORMATS 4
static const struct audio_format neo_formats[NEO_NFORMATS] = {
{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
2, AUFMT_STEREO, 8, {8000, 11025, 16000, 22050, 24000, 32000, 44100, 48000}},
{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
1, AUFMT_MONAURAL, 8, {8000, 11025, 16000, 22050, 24000, 32000, 44100, 48000}},
{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
2, AUFMT_STEREO, 8, {8000, 11025, 16000, 22050, 24000, 32000, 44100, 48000}},
{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
1, AUFMT_MONAURAL, 8, {8000, 11025, 16000, 22050, 24000, 32000, 44100, 48000}},
};
/* -------------------------------------------------------------------- */
static const struct audio_hw_if neo_hw_if = {
NULL, /* open */
NULL, /* close */
NULL, /* drain */
neo_query_encoding,
neo_set_params,
neo_round_blocksize,
NULL, /* commit_setting */
NULL, /* init_output */
NULL, /* init_input */
NULL, /* start_output */
NULL, /* start_input */
neo_halt_output,
neo_halt_input,
NULL, /* speaker_ctl */
neo_getdev,
NULL, /* getfd */
neo_mixer_set_port,
neo_mixer_get_port,
neo_query_devinfo,
neo_malloc,
neo_free,
neo_round_buffersize,
neo_mappage,
neo_get_props,
neo_trigger_output,
neo_trigger_input,
NULL,
NULL,
};
/* -------------------------------------------------------------------- */
#define nm_rd_1(sc, regno) \
bus_space_read_1((sc)->regiot, (sc)->regioh, (regno))
#define nm_rd_2(sc, regno) \
bus_space_read_2((sc)->regiot, (sc)->regioh, (regno))
#define nm_rd_4(sc, regno) \
bus_space_read_4((sc)->regiot, (sc)->regioh, (regno))
#define nm_wr_1(sc, regno, val) \
bus_space_write_1((sc)->regiot, (sc)->regioh, (regno), (val))
#define nm_wr_2(sc, regno, val) \
bus_space_write_2((sc)->regiot, (sc)->regioh, (regno), (val))
#define nm_wr_4(sc, regno, val) \
bus_space_write_4((sc)->regiot, (sc)->regioh, (regno), (val))
#define nm_rdbuf_4(sc, regno) \
bus_space_read_4((sc)->bufiot, (sc)->bufioh, (regno))
#define nm_wrbuf_1(sc, regno, val) \
bus_space_write_1((sc)->bufiot, (sc)->bufioh, (regno), (val))
/* ac97 codec */
static int
nm_waitcd(struct neo_softc *sc)
{
int cnt;
int fail;
cnt = 10;
fail = 1;
while (cnt-- > 0) {
if (nm_rd_2(sc, sc->ac97_status) & sc->ac97_busy)
DELAY(100);
else {
fail = 0;
break;
}
}
return fail;
}
static void
nm_ackint(struct neo_softc *sc, uint32_t num)
{
switch (sc->type) {
case PCI_PRODUCT_NEOMAGIC_NMMM256AV_AU:
nm_wr_2(sc, NM_INT_REG, num << 1);
break;
case PCI_PRODUCT_NEOMAGIC_NMMM256ZX_AU:
nm_wr_4(sc, NM_INT_REG, num);
break;
}
}
static int
nm_loadcoeff(struct neo_softc *sc, int dir, int num)
{
int ofs, sz, i;
uint32_t addr;
addr = (dir == AUMODE_PLAY)? 0x01c : 0x21c;
if (dir == AUMODE_RECORD)
num += 8;
sz = coefficientSizes[num];
ofs = 0;
while (num-- > 0)
ofs+= coefficientSizes[num];
for (i = 0; i < sz; i++)
nm_wrbuf_1(sc, sc->cbuf + i, coefficients[ofs + i]);
nm_wr_4(sc, addr, sc->cbuf);
if (dir == AUMODE_PLAY)
sz--;
nm_wr_4(sc, addr + 4, sc->cbuf + sz);
return 0;
}
/* The interrupt handler */
static int
neo_intr(void *p)
{
struct neo_softc *sc;
int status, x;
int rv;
sc = (struct neo_softc *)p;
rv = 0;
status = (sc->irsz == 2) ?
nm_rd_2(sc, NM_INT_REG) :
nm_rd_4(sc, NM_INT_REG);
if (status & sc->playint) {
status &= ~sc->playint;
sc->pwmark += sc->pblksize;
sc->pwmark %= sc->pbufsize;
nm_wr_4(sc, NM_PBUFFER_WMARK, sc->pbuf + sc->pwmark);
nm_ackint(sc, sc->playint);
if (sc->pintr)
(*sc->pintr)(sc->parg);
rv = 1;
}
if (status & sc->recint) {
status &= ~sc->recint;
sc->rwmark += sc->rblksize;
sc->rwmark %= sc->rbufsize;
nm_wr_4(sc, NM_RBUFFER_WMARK, sc->rbuf + sc->rwmark);
nm_ackint(sc, sc->recint);
if (sc->rintr)
(*sc->rintr)(sc->rarg);
rv = 1;
}
if (status & sc->misc1int) {
status &= ~sc->misc1int;
nm_ackint(sc, sc->misc1int);
x = nm_rd_1(sc, 0x400);
nm_wr_1(sc, 0x400, x | 2);
printf("%s: misc int 1\n", sc->dev.dv_xname);
rv = 1;
}
if (status & sc->misc2int) {
status &= ~sc->misc2int;
nm_ackint(sc, sc->misc2int);
x = nm_rd_1(sc, 0x400);
nm_wr_1(sc, 0x400, x & ~2);
printf("%s: misc int 2\n", sc->dev.dv_xname);
rv = 1;
}
if (status) {
status &= ~sc->misc2int;
nm_ackint(sc, sc->misc2int);
printf("%s: unknown int\n", sc->dev.dv_xname);
rv = 1;
}
return rv;
}
/* -------------------------------------------------------------------- */
/*
* Probe and attach the card
*/
static int
nm_init(struct neo_softc *sc)
{
uint32_t ofs, i;
switch (sc->type) {
case PCI_PRODUCT_NEOMAGIC_NMMM256AV_AU:
sc->ac97_base = NM_MIXER_OFFSET;
sc->ac97_status = NM_MIXER_STATUS_OFFSET;
sc->ac97_busy = NM_MIXER_READY_MASK;
sc->buftop = 2560 * 1024;
sc->irsz = 2;
sc->playint = NM_PLAYBACK_INT;
sc->recint = NM_RECORD_INT;
sc->misc1int = NM_MISC_INT_1;
sc->misc2int = NM_MISC_INT_2;
break;
case PCI_PRODUCT_NEOMAGIC_NMMM256ZX_AU:
sc->ac97_base = NM_MIXER_OFFSET;
sc->ac97_status = NM2_MIXER_STATUS_OFFSET;
sc->ac97_busy = NM2_MIXER_READY_MASK;
sc->buftop = (nm_rd_2(sc, 0xa0b) ? 6144 : 4096) * 1024;
sc->irsz = 4;
sc->playint = NM2_PLAYBACK_INT;
sc->recint = NM2_RECORD_INT;
sc->misc1int = NM2_MISC_INT_1;
sc->misc2int = NM2_MISC_INT_2;
break;
#ifdef DIAGNOSTIC
default:
panic("nm_init: impossible");
#endif
}
sc->badintr = 0;
ofs = sc->buftop - 0x0400;
sc->buftop -= 0x1400;
if ((nm_rdbuf_4(sc, ofs) & NM_SIG_MASK) == NM_SIGNATURE) {
i = nm_rdbuf_4(sc, ofs + 4);
if (i != 0 && i != 0xffffffff)
sc->buftop = i;
}
sc->cbuf = sc->buftop - NM_MAX_COEFFICIENT;
sc->rbuf = sc->cbuf - NM_BUFFSIZE;
sc->pbuf = sc->rbuf - NM_BUFFSIZE;
sc->acbuf = sc->pbuf - (NM_TOTAL_COEFF_COUNT * 4);
sc->buf_vaddr = (vaddr_t) bus_space_vaddr(sc->bufiot, sc->bufioh);
sc->rbuf_vaddr = sc->buf_vaddr + sc->rbuf;
sc->pbuf_vaddr = sc->buf_vaddr + sc->pbuf;
sc->rbuf_pciaddr = sc->buf_pciaddr + sc->rbuf;
sc->pbuf_pciaddr = sc->buf_pciaddr + sc->pbuf;
nm_wr_1(sc, 0, 0x11);
nm_wr_1(sc, NM_RECORD_ENABLE_REG, 0);
nm_wr_2(sc, 0x214, 0);
return 0;
}
static int
neo_match(struct device *parent, struct cfdata *match,
void *aux)
{
struct pci_attach_args *pa;
pcireg_t subdev;
pa = aux;
if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_NEOMAGIC)
return 0;
subdev = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
switch (PCI_PRODUCT(pa->pa_id)) {
case PCI_PRODUCT_NEOMAGIC_NMMM256AV_AU:
/*
* We have to weed-out the non-AC'97 versions of
* the chip (i.e. the ones that are known to work
* in WSS emulation mode), as they won't work with
* this driver.
*/
switch (PCI_VENDOR(subdev)) {
case PCI_VENDOR_DELL:
switch (PCI_PRODUCT(subdev)) {
case 0x008f:
return 0;
}
break;
case PCI_VENDOR_HP:
switch (PCI_PRODUCT(subdev)) {
case 0x0007:
return 0;
}
break;
case PCI_VENDOR_IBM:
switch (PCI_PRODUCT(subdev)) {
case 0x00dd:
return 0;
}
break;
}
return 1;
case PCI_PRODUCT_NEOMAGIC_NMMM256ZX_AU:
return 1;
}
return 0;
}
static bool
neo_resume(device_t dv PMF_FN_ARGS)
{
struct neo_softc *sc = device_private(dv);
nm_init(sc);
sc->codec_if->vtbl->restore_ports(sc->codec_if);
return true;
}
static void
neo_attach(struct device *parent, struct device *self, void *aux)
{
struct neo_softc *sc;
struct pci_attach_args *pa;
pci_chipset_tag_t pc;
char const *intrstr;
pci_intr_handle_t ih;
pcireg_t csr;
sc = (struct neo_softc *)self;
pa = (struct pci_attach_args *)aux;
pc = pa->pa_pc;
sc->type = PCI_PRODUCT(pa->pa_id);
printf(": NeoMagic 256%s audio\n",
sc->type == PCI_PRODUCT_NEOMAGIC_NMMM256AV_AU ? "AV" : "ZX");
/* Map I/O register */
if (pci_mapreg_map(pa, PCI_MAPREG_START, PCI_MAPREG_TYPE_MEM, 0,
&sc->bufiot, &sc->bufioh, &sc->buf_pciaddr, NULL)) {
printf("%s: can't map buffer\n", sc->dev.dv_xname);
return;
}
if (pci_mapreg_map(pa, PCI_MAPREG_START + 4, PCI_MAPREG_TYPE_MEM,
BUS_SPACE_MAP_LINEAR, &sc->regiot, &sc->regioh, NULL, NULL)) {
printf("%s: can't map registers\n", sc->dev.dv_xname);
return;
}
/* Map and establish the interrupt. */
if (pci_intr_map(pa, &ih)) {
printf("%s: couldn't map interrupt\n", sc->dev.dv_xname);
return;
}
intrstr = pci_intr_string(pc, ih);
sc->ih = pci_intr_establish(pc, ih, IPL_AUDIO, neo_intr, sc);
if (sc->ih == NULL) {
printf("%s: couldn't establish interrupt",
sc->dev.dv_xname);
if (intrstr != NULL)
printf(" at %s", intrstr);
printf("\n");
return;
}
printf("%s: interrupting at %s\n", sc->dev.dv_xname, intrstr);
if (nm_init(sc) != 0)
return;
/* Enable the device. */
csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
csr | PCI_COMMAND_MASTER_ENABLE);
sc->host_if.arg = sc;
sc->host_if.attach = neo_attach_codec;
sc->host_if.read = neo_read_codec;
sc->host_if.write = neo_write_codec;
sc->host_if.reset = neo_reset_codec;
sc->host_if.flags = neo_flags_codec;
if (ac97_attach(&sc->host_if, self) != 0)
return;
if (!pmf_device_register(self, NULL, neo_resume))
aprint_error_dev(self, "couldn't establish power handler\n");
audio_attach_mi(&neo_hw_if, sc, &sc->dev);
}
static int
neo_read_codec(void *v, uint8_t a, uint16_t *d)
{
struct neo_softc *sc;
sc = v;
if (!nm_waitcd(sc)) {
*d = nm_rd_2(sc, sc->ac97_base + a);
DELAY(1000);
return 0;
}
return ENXIO;
}
static int
neo_write_codec(void *v, u_int8_t a, u_int16_t d)
{
struct neo_softc *sc;
int cnt;
sc = v;
cnt = 3;
if (!nm_waitcd(sc)) {
while (cnt-- > 0) {
nm_wr_2(sc, sc->ac97_base + a, d);
if (!nm_waitcd(sc)) {
DELAY(1000);
return 0;
}
}
}
return ENXIO;
}
static int
neo_attach_codec(void *v, struct ac97_codec_if *codec_if)
{
struct neo_softc *sc;
sc = v;
sc->codec_if = codec_if;
return 0;
}
static int
neo_reset_codec(void *v)
{
struct neo_softc *sc;
sc = v;
nm_wr_1(sc, 0x6c0, 0x01);
nm_wr_1(sc, 0x6cc, 0x87);
nm_wr_1(sc, 0x6cc, 0x80);
nm_wr_1(sc, 0x6cc, 0x00);
return 0;
}
static enum ac97_host_flags
neo_flags_codec(void *v)
{
return AC97_HOST_DONT_READ;
}
static int
neo_query_encoding(void *addr, struct audio_encoding *fp)
{
switch (fp->index) {
case 0:
strcpy(fp->name, AudioEulinear);
fp->encoding = AUDIO_ENCODING_ULINEAR;
fp->precision = 8;
fp->flags = 0;
return 0;
case 1:
strcpy(fp->name, AudioEmulaw);
fp->encoding = AUDIO_ENCODING_ULAW;
fp->precision = 8;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
return 0;
case 2:
strcpy(fp->name, AudioEalaw);
fp->encoding = AUDIO_ENCODING_ALAW;
fp->precision = 8;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
return 0;
case 3:
strcpy(fp->name, AudioEslinear);
fp->encoding = AUDIO_ENCODING_SLINEAR;
fp->precision = 8;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
return (0);
case 4:
strcpy(fp->name, AudioEslinear_le);
fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
fp->precision = 16;
fp->flags = 0;
return 0;
case 5:
strcpy(fp->name, AudioEulinear_le);
fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
fp->precision = 16;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
return 0;
case 6:
strcpy(fp->name, AudioEslinear_be);
fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
fp->precision = 16;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
return 0;
case 7:
strcpy(fp->name, AudioEulinear_be);
fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
fp->precision = 16;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
return 0;
default:
return EINVAL;
}
}
/* Todo: don't commit settings to card until we've verified all parameters */
static int
neo_set_params(void *addr, int setmode, int usemode,
audio_params_t *play, audio_params_t *rec, stream_filter_list_t *pfil,
stream_filter_list_t *rfil)
{
struct neo_softc *sc;
audio_params_t *p;
stream_filter_list_t *fil;
uint32_t base;
uint8_t x;
int mode, i;
sc = addr;
for (mode = AUMODE_RECORD; mode != -1;
mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
if ((setmode & mode) == 0)
continue;
p = mode == AUMODE_PLAY ? play : rec;
if (p == NULL) continue;
for (x = 0; x < 8; x++) {
if (p->sample_rate <
(samplerates[x] + samplerates[x + 1]) / 2)
break;
}
if (x == 8)
return EINVAL;
p->sample_rate = samplerates[x];
nm_loadcoeff(sc, mode, x);
x <<= 4;
x &= NM_RATE_MASK;
if (p->precision == 16)
x |= NM_RATE_BITS_16;
if (p->channels == 2)
x |= NM_RATE_STEREO;
base = (mode == AUMODE_PLAY)?
NM_PLAYBACK_REG_OFFSET : NM_RECORD_REG_OFFSET;
nm_wr_1(sc, base + NM_RATE_REG_OFFSET, x);
fil = mode == AUMODE_PLAY ? pfil : rfil;
i = auconv_set_converter(neo_formats, NEO_NFORMATS,
mode, p, FALSE, fil);
if (i < 0)
return EINVAL;
}
return 0;
}
static int
neo_round_blocksize(void *addr, int blk, int mode,
const audio_params_t *param)
{
return NM_BUFFSIZE / 2;
}
static int
neo_trigger_output(void *addr, void *start, void *end, int blksize,
void (*intr)(void *), void *arg, const audio_params_t *param)
{
struct neo_softc *sc;
int ssz;
sc = addr;
sc->pintr = intr;
sc->parg = arg;
ssz = (param->precision == 16) ? 2 : 1;
if (param->channels == 2)
ssz <<= 1;
sc->pbufsize = ((char*)end - (char *)start);
sc->pblksize = blksize;
sc->pwmark = blksize;
nm_wr_4(sc, NM_PBUFFER_START, sc->pbuf);
nm_wr_4(sc, NM_PBUFFER_END, sc->pbuf + sc->pbufsize - ssz);
nm_wr_4(sc, NM_PBUFFER_CURRP, sc->pbuf);
nm_wr_4(sc, NM_PBUFFER_WMARK, sc->pbuf + sc->pwmark);
nm_wr_1(sc, NM_PLAYBACK_ENABLE_REG, NM_PLAYBACK_FREERUN |
NM_PLAYBACK_ENABLE_FLAG);
nm_wr_2(sc, NM_AUDIO_MUTE_REG, 0);
return 0;
}
static int
neo_trigger_input(void *addr, void *start, void *end, int blksize,
void (*intr)(void *), void *arg, const audio_params_t *param)
{
struct neo_softc *sc;
int ssz;
sc = addr;
sc->rintr = intr;
sc->rarg = arg;
ssz = (param->precision == 16) ? 2 : 1;
if (param->channels == 2)
ssz <<= 1;
sc->rbufsize = ((char*)end - (char *)start);
sc->rblksize = blksize;
sc->rwmark = blksize;
nm_wr_4(sc, NM_RBUFFER_START, sc->rbuf);
nm_wr_4(sc, NM_RBUFFER_END, sc->rbuf + sc->rbufsize);
nm_wr_4(sc, NM_RBUFFER_CURRP, sc->rbuf);
nm_wr_4(sc, NM_RBUFFER_WMARK, sc->rbuf + sc->rwmark);
nm_wr_1(sc, NM_RECORD_ENABLE_REG, NM_RECORD_FREERUN |
NM_RECORD_ENABLE_FLAG);
return 0;
}
static int
neo_halt_output(void *addr)
{
struct neo_softc *sc;
sc = (struct neo_softc *)addr;
nm_wr_1(sc, NM_PLAYBACK_ENABLE_REG, 0);
nm_wr_2(sc, NM_AUDIO_MUTE_REG, NM_AUDIO_MUTE_BOTH);
sc->pintr = 0;
return 0;
}
static int
neo_halt_input(void *addr)
{
struct neo_softc *sc;
sc = (struct neo_softc *)addr;
nm_wr_1(sc, NM_RECORD_ENABLE_REG, 0);
sc->rintr = 0;
return 0;
}
static int
neo_getdev(void *addr, struct audio_device *retp)
{
*retp = neo_device;
return 0;
}
static int
neo_mixer_set_port(void *addr, mixer_ctrl_t *cp)
{
struct neo_softc *sc;
sc = addr;
return sc->codec_if->vtbl->mixer_set_port(sc->codec_if, cp);
}
static int
neo_mixer_get_port(void *addr, mixer_ctrl_t *cp)
{
struct neo_softc *sc;
sc = addr;
return sc->codec_if->vtbl->mixer_get_port(sc->codec_if, cp);
}
static int
neo_query_devinfo(void *addr, mixer_devinfo_t *dip)
{
struct neo_softc *sc;
sc = addr;
return sc->codec_if->vtbl->query_devinfo(sc->codec_if, dip);
}
static void *
neo_malloc(void *addr, int direction, size_t size,
struct malloc_type *pool, int flags)
{
struct neo_softc *sc;
void *rv;
sc = addr;
rv = NULL;
switch (direction) {
case AUMODE_PLAY:
if (sc->pbuf_allocated == 0) {
rv = (void *) sc->pbuf_vaddr;
sc->pbuf_allocated = 1;
}
break;
case AUMODE_RECORD:
if (sc->rbuf_allocated == 0) {
rv = (void *) sc->rbuf_vaddr;
sc->rbuf_allocated = 1;
}
break;
}
return rv;
}
static void
neo_free(void *addr, void *ptr, struct malloc_type *pool)
{
struct neo_softc *sc;
vaddr_t v;
sc = addr;
v = (vaddr_t)ptr;
if (v == sc->pbuf_vaddr)
sc->pbuf_allocated = 0;
else if (v == sc->rbuf_vaddr)
sc->rbuf_allocated = 0;
else
printf("neo_free: bad address %p\n", ptr);
}
static size_t
neo_round_buffersize(void *addr, int direction,
size_t size)
{
return NM_BUFFSIZE;
}
static paddr_t
neo_mappage(void *addr, void *mem, off_t off, int prot)
{
struct neo_softc *sc;
vaddr_t v;
bus_addr_t pciaddr;
sc = addr;
v = (vaddr_t)mem;
if (v == sc->pbuf_vaddr)
pciaddr = sc->pbuf_pciaddr;
else if (v == sc->rbuf_vaddr)
pciaddr = sc->rbuf_pciaddr;
else
return -1;
return bus_space_mmap(sc->bufiot, pciaddr, off, prot,
BUS_SPACE_MAP_LINEAR);
}
static int
neo_get_props(void *addr)
{
return AUDIO_PROP_INDEPENDENT | AUDIO_PROP_MMAP |
AUDIO_PROP_FULLDUPLEX;
}