NetBSD/gnu/lib/libg++/include/gen/PHPQ.ccP
1996-03-09 00:00:51 +00:00

340 lines
7.3 KiB
COBOL

// This may look like C code, but it is really -*- C++ -*-
/*
Copyright (C) 1988 Free Software Foundation
written by Dirk Grunwald (grunwald@cs.uiuc.edu)
adapted for libg++ by Doug Lea (dl@rocky.oswego.edu)
This file is part of the GNU C++ Library. This library is free
software; you can redistribute it and/or modify it under the terms of
the GNU Library General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your
option) any later version. This library is distributed in the hope
that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with this library; if not, write to the Free Software
Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#ifdef __GNUG__
#pragma implementation
#endif
#include <limits.h>
#include "<T>.PHPQ.h"
//
// This defines a Pairing Heap structure
//
// See ``The Pairing Heap: A New Form of Self-Adjusting Heap''
// Fredman, Segdewick et al,
// Algorithmica (1986) 1:111-129
//
// In particular, this implements the pairing heap using the circular
// list.
//
//
<T>PHPQ::<T>PHPQ(int sz)
{
storage = 0;
root = 0;
count = 0;
size = 0;
prealloc(sz);
}
<T>PHPQ::<T>PHPQ(<T>PHPQ& a)
{
storage = 0;
root = 0;
count = 0;
size = 0;
prealloc(a.size);
for (Pix i = a.first(); i != 0; a.next(i)) enq(a(i));
}
void <T>PHPQ::prealloc(int newsize)
{
++newsize; // leave a spot for freelist
if (size != 0)
{
int news = size;
while (news <= newsize) news = (news * 3) / 2;
newsize = news;
}
// see if indices are OK
<T>PHPQNode test;
test.sibling = 0;
test.sibling = ~test.sibling;
if ((unsigned long)newsize > (unsigned long)(test.sibling))
error("storage size exceeds index range");
if (storage == 0)
{
storage = new <T>PHPQNode[size = newsize];
for (int i = 0; i < size; ++i)
{
storage[i].sibling = i + 1;
storage[i].valid = 0;
}
storage[size-1].sibling = 0;
}
else
{
<T>PHPQNode* newstor = new <T>PHPQNode[newsize];
for (int i = 1; i < size; ++i)
newstor[i] = storage[i];
delete [] storage;
storage = newstor;
for (int i = size; i < newsize; ++i)
{
storage[i].sibling = i + 1;
storage[i].valid = 0;
}
storage[newsize-1].sibling = 0;
storage[0].sibling = size;
size = newsize;
}
}
void <T>PHPQ::clear()
{
for (int i = 0; i < size; ++i)
{
storage[i].sibling = i + 1;
storage[i].valid = 0;
}
storage[size-1].sibling = 0;
root = 0;
count = 0;
}
Pix <T>PHPQ::enq(<T&> item)
{
++count;
if (storage[0].sibling == 0)
prealloc(count);
int cell = storage[0].sibling;
storage[0].sibling = storage[cell].sibling;
storage[cell].sibling = 0;
storage[cell].children = 0;
storage[cell].item = item;
storage[cell].valid = 1;
if (root == 0)
{
root = cell;
return Pix(root);
}
else
{
int parent;
int child;
if (<T>LE(storage[root].item, storage[cell].item))
{
parent = root; child = cell;
}
else
{
parent = cell; child = root;
}
int popsKid = storage[parent].children;
if (popsKid == 0)
{
storage[parent].children = child;
storage[child].sibling = child;
}
else
{
int temp = storage[popsKid].sibling;
storage[popsKid].sibling = child;
storage[child].sibling = temp;
storage[parent].children = child;
}
root = parent;
return Pix(cell);
}
}
//
// Item removal is the most complicated routine.
//
// We remove the root (should there be one) and then select a new
// root. The siblings of the root are in a circular list. We continue
// to pair elements in this list until there is a single element.
// This element will be the new root.
void <T>PHPQ::del_front()
{
int valid = 0;
do
{
if (root == 0) return;
if ((valid = storage[root].valid))
--count;
storage[root].valid = 0;
int child = storage[root].children;
storage[root].sibling = storage[0].sibling;
storage[0].sibling = root;
if (child == 0)
{
root = 0;
return;
}
else
{
while(storage[child].sibling != child)
{
// We have at least two kids, but we may only have
// two kids. So, oneChild != child, but it is possible
// that twoChild == child.
int oneChild = storage[child].sibling;
int twoChild = storage[oneChild].sibling;
// Remove the two from the sibling list
storage[child].sibling = storage[twoChild].sibling;
storage[oneChild].sibling = 0;
storage[twoChild].sibling = 0;
int bestChild;
int worstChild;
if (<T>LE(storage[oneChild].item, storage[twoChild].item))
{
bestChild = oneChild; worstChild = twoChild;
}
else
{
bestChild = twoChild; worstChild = oneChild;
}
int popsKid = storage[bestChild].children;
if (popsKid == 0)
{
storage[bestChild].children = worstChild;
storage[worstChild].sibling = worstChild;
}
else
{
int temp = storage[popsKid].sibling;
storage[popsKid].sibling = worstChild;
storage[worstChild].sibling = temp;
storage[bestChild].children = worstChild;
}
if (twoChild == child)
{
// We have reduced the two to one, so we'll be exiting.
child = bestChild;
storage[child].sibling = child;
}
else
{
// We've removed two siblings, now we need to insert
// the better of the two
storage[bestChild].sibling = storage[child].sibling;
storage[child].sibling = bestChild;
child = storage[bestChild].sibling;
}
}
root = child;
}
} while ( !valid );
}
void <T>PHPQ::del(Pix p)
{
if (p == 0) error("null Pix");
int i = int(p);
if (storage[i].valid)
{
if (i == root)
del_front();
else
{
storage[i].valid = 0;
--count;
}
}
}
Pix <T>PHPQ::seek(<T&> key)
{
for (int i = 1; i < size; ++i)
if (storage[i].valid && <T>EQ(storage[i].item, key))
return Pix(i);
return 0;
}
Pix <T>PHPQ::first()
{
for (int i = 1; i < size; ++i)
if (storage[i].valid)
return Pix(i);
return 0;
}
void <T>PHPQ::next(Pix& p)
{
if (p == 0) return;
for (int i = int(p)+1; i < size; ++i)
if (storage[i].valid)
{
p = Pix(i);
return;
}
p = 0;
}
int <T>PHPQ::OK()
{
int v = storage != 0;
int n = 0;
for (int i = 0; i < size; ++i) if (storage[i].valid) ++n;
v &= n == count;
v &= check_sibling_list(root);
int ct = INT_MAX;
n = 0;
int f = storage[0].sibling;
while (f != 0 && ct-- > 0)
{
f = storage[f].sibling;
++n;
}
v &= ct > 0;
v &= n <= size - count;
if (!v) error("invariant failure");
return v;
}
int <T>PHPQ::check_sibling_list(int t)
{
if (t != 0)
{
int s = t;
long ct = LONG_MAX; // Lots of chances to find self!
do
{
if (storage[s].valid && !check_sibling_list(storage[s].children))
return 0;
s = storage[s].sibling;
} while (ct-- > 0 && s != t && s != 0);
if (ct <= 0) return 0;
}
return 1;
}