NetBSD/sys/dev/pci/sv.c
chs fd34ea77eb remove checks for failure after memory allocation calls that cannot fail:
kmem_alloc() with KM_SLEEP
  kmem_zalloc() with KM_SLEEP
  percpu_alloc()
  pserialize_create()
  psref_class_create()

all of these paths include an assertion that the allocation has not failed,
so callers should not assert that again.
2017-06-01 02:45:05 +00:00

1484 lines
37 KiB
C

/* $NetBSD: sv.c,v 1.52 2017/06/01 02:45:11 chs Exp $ */
/* $OpenBSD: sv.c,v 1.2 1998/07/13 01:50:15 csapuntz Exp $ */
/*
* Copyright (c) 1999, 2008 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Charles M. Hannum.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1998 Constantine Paul Sapuntzakis
* All rights reserved
*
* Author: Constantine Paul Sapuntzakis (csapuntz@cvs.openbsd.org)
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The author's name or those of the contributors may be used to
* endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* S3 SonicVibes driver
* Heavily based on the eap driver by Lennart Augustsson
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: sv.c,v 1.52 2017/06/01 02:45:11 chs Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/device.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <sys/audioio.h>
#include <dev/audio_if.h>
#include <dev/mulaw.h>
#include <dev/auconv.h>
#include <dev/ic/i8237reg.h>
#include <dev/pci/svreg.h>
#include <dev/pci/svvar.h>
#include <sys/bus.h>
/* XXX
* The SonicVibes DMA is broken and only works on 24-bit addresses.
* As long as bus_dmamem_alloc_range() is missing we use the ISA
* DMA tag on i386.
*/
#if defined(amd64) || defined(i386)
#include <dev/isa/isavar.h>
#endif
#ifdef AUDIO_DEBUG
#define DPRINTF(x) if (svdebug) printf x
#define DPRINTFN(n,x) if (svdebug>(n)) printf x
int svdebug = 0;
#else
#define DPRINTF(x)
#define DPRINTFN(n,x)
#endif
static int sv_match(device_t, cfdata_t, void *);
static void sv_attach(device_t, device_t, void *);
static int sv_intr(void *);
struct sv_dma {
bus_dmamap_t map;
void *addr;
bus_dma_segment_t segs[1];
int nsegs;
size_t size;
struct sv_dma *next;
};
#define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr)
#define KERNADDR(p) ((void *)((p)->addr))
CFATTACH_DECL_NEW(sv, sizeof(struct sv_softc),
sv_match, sv_attach, NULL, NULL);
static struct audio_device sv_device = {
"S3 SonicVibes",
"",
"sv"
};
#define ARRAY_SIZE(foo) ((sizeof(foo)) / sizeof(foo[0]))
static int sv_allocmem(struct sv_softc *, size_t, size_t, int,
struct sv_dma *);
static int sv_freemem(struct sv_softc *, struct sv_dma *);
static void sv_init_mixer(struct sv_softc *);
static int sv_open(void *, int);
static int sv_query_encoding(void *, struct audio_encoding *);
static int sv_set_params(void *, int, int, audio_params_t *,
audio_params_t *, stream_filter_list_t *,
stream_filter_list_t *);
static int sv_round_blocksize(void *, int, int, const audio_params_t *);
static int sv_trigger_output(void *, void *, void *, int, void (*)(void *),
void *, const audio_params_t *);
static int sv_trigger_input(void *, void *, void *, int, void (*)(void *),
void *, const audio_params_t *);
static int sv_halt_output(void *);
static int sv_halt_input(void *);
static int sv_getdev(void *, struct audio_device *);
static int sv_mixer_set_port(void *, mixer_ctrl_t *);
static int sv_mixer_get_port(void *, mixer_ctrl_t *);
static int sv_query_devinfo(void *, mixer_devinfo_t *);
static void * sv_malloc(void *, int, size_t);
static void sv_free(void *, void *, size_t);
static size_t sv_round_buffersize(void *, int, size_t);
static paddr_t sv_mappage(void *, void *, off_t, int);
static int sv_get_props(void *);
static void sv_get_locks(void *, kmutex_t **, kmutex_t **);
#ifdef AUDIO_DEBUG
void sv_dumpregs(struct sv_softc *sc);
#endif
static const struct audio_hw_if sv_hw_if = {
sv_open,
NULL, /* close */
NULL,
sv_query_encoding,
sv_set_params,
sv_round_blocksize,
NULL,
NULL,
NULL,
NULL,
NULL,
sv_halt_output,
sv_halt_input,
NULL,
sv_getdev,
NULL,
sv_mixer_set_port,
sv_mixer_get_port,
sv_query_devinfo,
sv_malloc,
sv_free,
sv_round_buffersize,
sv_mappage,
sv_get_props,
sv_trigger_output,
sv_trigger_input,
NULL,
sv_get_locks,
};
#define SV_NFORMATS 4
static const struct audio_format sv_formats[SV_NFORMATS] = {
{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
2, AUFMT_STEREO, 0, {2000, 48000}},
{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
1, AUFMT_MONAURAL, 0, {2000, 48000}},
{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
2, AUFMT_STEREO, 0, {2000, 48000}},
{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
1, AUFMT_MONAURAL, 0, {2000, 48000}},
};
static void
sv_write(struct sv_softc *sc, uint8_t reg, uint8_t val)
{
DPRINTFN(8,("sv_write(0x%x, 0x%x)\n", reg, val));
bus_space_write_1(sc->sc_iot, sc->sc_ioh, reg, val);
}
static uint8_t
sv_read(struct sv_softc *sc, uint8_t reg)
{
uint8_t val;
val = bus_space_read_1(sc->sc_iot, sc->sc_ioh, reg);
DPRINTFN(8,("sv_read(0x%x) = 0x%x\n", reg, val));
return val;
}
static uint8_t
sv_read_indirect(struct sv_softc *sc, uint8_t reg)
{
uint8_t val;
sv_write(sc, SV_CODEC_IADDR, reg & SV_IADDR_MASK);
val = sv_read(sc, SV_CODEC_IDATA);
return val;
}
static void
sv_write_indirect(struct sv_softc *sc, uint8_t reg, uint8_t val)
{
uint8_t iaddr;
iaddr = reg & SV_IADDR_MASK;
if (reg == SV_DMA_DATA_FORMAT)
iaddr |= SV_IADDR_MCE;
sv_write(sc, SV_CODEC_IADDR, iaddr);
sv_write(sc, SV_CODEC_IDATA, val);
}
static int
sv_match(device_t parent, cfdata_t match, void *aux)
{
struct pci_attach_args *pa;
pa = aux;
if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_S3 &&
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_S3_SONICVIBES)
return 1;
return 0;
}
static pcireg_t pci_io_alloc_low, pci_io_alloc_high;
static int
pci_alloc_io(pci_chipset_tag_t pc, pcitag_t pt, int pcioffs,
bus_space_tag_t iot, bus_size_t size, bus_size_t align,
bus_size_t bound, int flags, bus_space_handle_t *ioh)
{
bus_addr_t addr;
int error;
error = bus_space_alloc(iot, pci_io_alloc_low, pci_io_alloc_high,
size, align, bound, flags, &addr, ioh);
if (error)
return error;
pci_conf_write(pc, pt, pcioffs, addr);
return 0;
}
/*
* Allocate IO addresses when all other configuration is done.
*/
static void
sv_defer(device_t self)
{
struct sv_softc *sc;
pci_chipset_tag_t pc;
pcitag_t pt;
pcireg_t dmaio;
sc = device_private(self);
pc = sc->sc_pa.pa_pc;
pt = sc->sc_pa.pa_tag;
DPRINTF(("sv_defer: %p\n", sc));
/* XXX
* Get a reasonable default for the I/O range.
* Assume the range around SB_PORTBASE is valid on this PCI bus.
*/
pci_io_alloc_low = pci_conf_read(pc, pt, SV_SB_PORTBASE_SLOT);
pci_io_alloc_high = pci_io_alloc_low + 0x1000;
if (pci_alloc_io(pc, pt, SV_DMAA_CONFIG_OFF,
sc->sc_iot, SV_DMAA_SIZE, SV_DMAA_ALIGN, 0,
0, &sc->sc_dmaa_ioh)) {
printf("sv_attach: cannot allocate DMA A range\n");
return;
}
dmaio = pci_conf_read(pc, pt, SV_DMAA_CONFIG_OFF);
DPRINTF(("sv_attach: addr a dmaio=0x%lx\n", (u_long)dmaio));
pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF,
dmaio | SV_DMA_CHANNEL_ENABLE | SV_DMAA_EXTENDED_ADDR);
if (pci_alloc_io(pc, pt, SV_DMAC_CONFIG_OFF,
sc->sc_iot, SV_DMAC_SIZE, SV_DMAC_ALIGN, 0,
0, &sc->sc_dmac_ioh)) {
printf("sv_attach: cannot allocate DMA C range\n");
return;
}
dmaio = pci_conf_read(pc, pt, SV_DMAC_CONFIG_OFF);
DPRINTF(("sv_attach: addr c dmaio=0x%lx\n", (u_long)dmaio));
pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF,
dmaio | SV_DMA_CHANNEL_ENABLE);
sc->sc_dmaset = 1;
}
static void
sv_attach(device_t parent, device_t self, void *aux)
{
struct sv_softc *sc;
struct pci_attach_args *pa;
pci_chipset_tag_t pc;
pcitag_t pt;
pci_intr_handle_t ih;
pcireg_t csr;
char const *intrstr;
uint8_t reg;
struct audio_attach_args arg;
char intrbuf[PCI_INTRSTR_LEN];
sc = device_private(self);
pa = aux;
pc = pa->pa_pc;
pt = pa->pa_tag;
aprint_naive("\n");
aprint_normal("\n");
/* Map I/O registers */
if (pci_mapreg_map(pa, SV_ENHANCED_PORTBASE_SLOT,
PCI_MAPREG_TYPE_IO, 0,
&sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
aprint_error_dev(self, "can't map enhanced i/o space\n");
return;
}
if (pci_mapreg_map(pa, SV_FM_PORTBASE_SLOT,
PCI_MAPREG_TYPE_IO, 0,
&sc->sc_opliot, &sc->sc_oplioh, NULL, NULL)) {
aprint_error_dev(self, "can't map FM i/o space\n");
return;
}
if (pci_mapreg_map(pa, SV_MIDI_PORTBASE_SLOT,
PCI_MAPREG_TYPE_IO, 0,
&sc->sc_midiiot, &sc->sc_midiioh, NULL, NULL)) {
aprint_error_dev(self, "can't map MIDI i/o space\n");
return;
}
DPRINTF(("sv: IO ports: enhanced=0x%x, OPL=0x%x, MIDI=0x%x\n",
(int)sc->sc_ioh, (int)sc->sc_oplioh, (int)sc->sc_midiioh));
#if defined(alpha)
/* XXX Force allocation through the SGMAP. */
sc->sc_dmatag = alphabus_dma_get_tag(pa->pa_dmat, ALPHA_BUS_ISA);
#elif defined(amd64) || defined(i386)
/* XXX
* The SonicVibes DMA is broken and only works on 24-bit addresses.
* As long as bus_dmamem_alloc_range() is missing we use the ISA
* DMA tag on i386.
*/
sc->sc_dmatag = &isa_bus_dma_tag;
#else
sc->sc_dmatag = pa->pa_dmat;
#endif
pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, SV_DMAA_EXTENDED_ADDR);
pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 0);
/* Enable the device. */
csr = pci_conf_read(pc, pt, PCI_COMMAND_STATUS_REG);
pci_conf_write(pc, pt, PCI_COMMAND_STATUS_REG,
csr | PCI_COMMAND_MASTER_ENABLE);
sv_write_indirect(sc, SV_ANALOG_POWER_DOWN_CONTROL, 0);
sv_write_indirect(sc, SV_DIGITAL_POWER_DOWN_CONTROL, 0);
/* initialize codec registers */
reg = sv_read(sc, SV_CODEC_CONTROL);
reg |= SV_CTL_RESET;
sv_write(sc, SV_CODEC_CONTROL, reg);
delay(50);
reg = sv_read(sc, SV_CODEC_CONTROL);
reg &= ~SV_CTL_RESET;
reg |= SV_CTL_INTA | SV_CTL_ENHANCED;
/* This write clears the reset */
sv_write(sc, SV_CODEC_CONTROL, reg);
delay(50);
/* This write actually shoves the new values in */
sv_write(sc, SV_CODEC_CONTROL, reg);
DPRINTF(("sv_attach: control=0x%x\n", sv_read(sc, SV_CODEC_CONTROL)));
/* Map and establish the interrupt. */
if (pci_intr_map(pa, &ih)) {
aprint_error_dev(self, "couldn't map interrupt\n");
return;
}
mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE);
mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_AUDIO);
intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, sv_intr, sc);
if (sc->sc_ih == NULL) {
aprint_error_dev(self, "couldn't establish interrupt");
if (intrstr != NULL)
aprint_error(" at %s", intrstr);
aprint_error("\n");
mutex_destroy(&sc->sc_lock);
mutex_destroy(&sc->sc_intr_lock);
return;
}
aprint_normal_dev(self, "interrupting at %s\n", intrstr);
aprint_normal_dev(self, "rev %d",
sv_read_indirect(sc, SV_REVISION_LEVEL));
if (sv_read(sc, SV_CODEC_CONTROL) & SV_CTL_MD1)
aprint_normal(", reverb SRAM present");
if (!(sv_read_indirect(sc, SV_WAVETABLE_SOURCE_SELECT) & SV_WSS_WT0))
aprint_normal(", wavetable ROM present");
aprint_normal("\n");
/* Enable DMA interrupts */
reg = sv_read(sc, SV_CODEC_INTMASK);
reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC);
reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI;
sv_write(sc, SV_CODEC_INTMASK, reg);
sv_read(sc, SV_CODEC_STATUS);
sv_init_mixer(sc);
audio_attach_mi(&sv_hw_if, sc, self);
arg.type = AUDIODEV_TYPE_OPL;
arg.hwif = 0;
arg.hdl = 0;
(void)config_found(self, &arg, audioprint);
sc->sc_pa = *pa; /* for deferred setup */
config_defer(self, sv_defer);
}
#ifdef AUDIO_DEBUG
void
sv_dumpregs(struct sv_softc *sc)
{
int idx;
#if 0
for (idx = 0; idx < 0x50; idx += 4)
printf ("%02x = %x\n", idx,
pci_conf_read(pa->pa_pc, pa->pa_tag, idx));
#endif
for (idx = 0; idx < 6; idx++)
printf ("REG %02x = %02x\n", idx, sv_read(sc, idx));
for (idx = 0; idx < 0x32; idx++)
printf ("IREG %02x = %02x\n", idx, sv_read_indirect(sc, idx));
for (idx = 0; idx < 0x10; idx++)
printf ("DMA %02x = %02x\n", idx,
bus_space_read_1(sc->sc_iot, sc->sc_dmaa_ioh, idx));
}
#endif
static int
sv_intr(void *p)
{
struct sv_softc *sc;
uint8_t intr;
sc = p;
mutex_spin_enter(&sc->sc_intr_lock);
intr = sv_read(sc, SV_CODEC_STATUS);
DPRINTFN(5,("sv_intr: intr=0x%x\n", intr));
if (intr & SV_INTSTATUS_DMAA) {
if (sc->sc_pintr)
sc->sc_pintr(sc->sc_parg);
}
if (intr & SV_INTSTATUS_DMAC) {
if (sc->sc_rintr)
sc->sc_rintr(sc->sc_rarg);
}
mutex_spin_exit(&sc->sc_intr_lock);
return (intr & (SV_INTSTATUS_DMAA | SV_INTSTATUS_DMAC)) != 0;
}
static int
sv_allocmem(struct sv_softc *sc, size_t size, size_t align,
int direction, struct sv_dma *p)
{
int error;
p->size = size;
error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
p->segs, ARRAY_SIZE(p->segs), &p->nsegs, BUS_DMA_WAITOK);
if (error)
return error;
error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
&p->addr, BUS_DMA_WAITOK|BUS_DMA_COHERENT);
if (error)
goto free;
error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
0, BUS_DMA_WAITOK, &p->map);
if (error)
goto unmap;
error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
BUS_DMA_WAITOK | (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
if (error)
goto destroy;
DPRINTF(("sv_allocmem: pa=%lx va=%lx pba=%lx\n",
(long)p->segs[0].ds_addr, (long)KERNADDR(p), (long)DMAADDR(p)));
return 0;
destroy:
bus_dmamap_destroy(sc->sc_dmatag, p->map);
unmap:
bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
free:
bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
return error;
}
static int
sv_freemem(struct sv_softc *sc, struct sv_dma *p)
{
bus_dmamap_unload(sc->sc_dmatag, p->map);
bus_dmamap_destroy(sc->sc_dmatag, p->map);
bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
return 0;
}
static int
sv_open(void *addr, int flags)
{
struct sv_softc *sc;
sc = addr;
DPRINTF(("sv_open\n"));
if (!sc->sc_dmaset)
return ENXIO;
return 0;
}
static int
sv_query_encoding(void *addr, struct audio_encoding *fp)
{
switch (fp->index) {
case 0:
strcpy(fp->name, AudioEulinear);
fp->encoding = AUDIO_ENCODING_ULINEAR;
fp->precision = 8;
fp->flags = 0;
return 0;
case 1:
strcpy(fp->name, AudioEmulaw);
fp->encoding = AUDIO_ENCODING_ULAW;
fp->precision = 8;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
return 0;
case 2:
strcpy(fp->name, AudioEalaw);
fp->encoding = AUDIO_ENCODING_ALAW;
fp->precision = 8;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
return 0;
case 3:
strcpy(fp->name, AudioEslinear);
fp->encoding = AUDIO_ENCODING_SLINEAR;
fp->precision = 8;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
return 0;
case 4:
strcpy(fp->name, AudioEslinear_le);
fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
fp->precision = 16;
fp->flags = 0;
return 0;
case 5:
strcpy(fp->name, AudioEulinear_le);
fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
fp->precision = 16;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
return 0;
case 6:
strcpy(fp->name, AudioEslinear_be);
fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
fp->precision = 16;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
return 0;
case 7:
strcpy(fp->name, AudioEulinear_be);
fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
fp->precision = 16;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
return 0;
default:
return EINVAL;
}
}
static int
sv_set_params(void *addr, int setmode, int usemode, audio_params_t *play,
audio_params_t *rec, stream_filter_list_t *pfil, stream_filter_list_t *rfil)
{
struct sv_softc *sc;
audio_params_t *p;
uint32_t val;
sc = addr;
p = NULL;
/*
* This device only has one clock, so make the sample rates match.
*/
if (play->sample_rate != rec->sample_rate &&
usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
if (setmode == AUMODE_PLAY) {
rec->sample_rate = play->sample_rate;
setmode |= AUMODE_RECORD;
} else if (setmode == AUMODE_RECORD) {
play->sample_rate = rec->sample_rate;
setmode |= AUMODE_PLAY;
} else
return EINVAL;
}
if (setmode & AUMODE_RECORD) {
p = rec;
if (auconv_set_converter(sv_formats, SV_NFORMATS,
AUMODE_RECORD, rec, FALSE, rfil) < 0)
return EINVAL;
}
if (setmode & AUMODE_PLAY) {
p = play;
if (auconv_set_converter(sv_formats, SV_NFORMATS,
AUMODE_PLAY, play, FALSE, pfil) < 0)
return EINVAL;
}
if (p == NULL)
return 0;
val = p->sample_rate * 65536 / 48000;
/*
* If the sample rate is exactly 48 kHz, the fraction would overflow the
* register, so we have to bias it. This causes a little clock drift.
* The drift is below normal crystal tolerance (.0001%), so although
* this seems a little silly, we can pretty much ignore it.
* (I tested the output speed with values of 1-20, just to be sure this
* register isn't *supposed* to have a bias. It isn't.)
* - mycroft
*/
if (val > 65535)
val = 65535;
mutex_spin_enter(&sc->sc_intr_lock);
sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_0, val & 0xff);
sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_1, val >> 8);
mutex_spin_exit(&sc->sc_intr_lock);
#define F_REF 24576000
#define ABS(x) (((x) < 0) ? (-x) : (x))
if (setmode & AUMODE_RECORD) {
/* The ADC reference frequency (f_out) is 512 * sample rate */
/* f_out is dervied from the 24.576MHz crystal by three values:
M & N & R. The equation is as follows:
f_out = (m + 2) * f_ref / ((n + 2) * (2 ^ a))
with the constraint that:
80 MHz < (m + 2) / (n + 2) * f_ref <= 150MHz
and n, m >= 1
*/
int goal_f_out;
int a, n, m, best_n, best_m, best_error;
int pll_sample;
int error;
goal_f_out = 512 * rec->sample_rate;
best_n = 0;
best_m = 0;
best_error = 10000000;
for (a = 0; a < 8; a++) {
if ((goal_f_out * (1 << a)) >= 80000000)
break;
}
/* a != 8 because sample_rate >= 2000 */
for (n = 33; n > 2; n--) {
m = (goal_f_out * n * (1 << a)) / F_REF;
if ((m > 257) || (m < 3))
continue;
pll_sample = (m * F_REF) / (n * (1 << a));
pll_sample /= 512;
/* Threshold might be good here */
error = pll_sample - rec->sample_rate;
error = ABS(error);
if (error < best_error) {
best_error = error;
best_n = n;
best_m = m;
if (error == 0) break;
}
}
best_n -= 2;
best_m -= 2;
mutex_spin_enter(&sc->sc_intr_lock);
sv_write_indirect(sc, SV_ADC_PLL_M, best_m);
sv_write_indirect(sc, SV_ADC_PLL_N,
best_n | (a << SV_PLL_R_SHIFT));
mutex_spin_exit(&sc->sc_intr_lock);
}
return 0;
}
static int
sv_round_blocksize(void *addr, int blk, int mode,
const audio_params_t *param)
{
return blk & -32; /* keep good alignment */
}
static int
sv_trigger_output(void *addr, void *start, void *end, int blksize,
void (*intr)(void *), void *arg, const audio_params_t *param)
{
struct sv_softc *sc;
struct sv_dma *p;
uint8_t mode;
int dma_count;
DPRINTFN(1, ("sv_trigger_output: sc=%p start=%p end=%p blksize=%d "
"intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
sc = addr;
sc->sc_pintr = intr;
sc->sc_parg = arg;
mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
mode &= ~(SV_DMAA_FORMAT16 | SV_DMAA_STEREO);
if (param->precision == 16)
mode |= SV_DMAA_FORMAT16;
if (param->channels == 2)
mode |= SV_DMAA_STEREO;
sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
continue;
if (p == NULL) {
printf("sv_trigger_output: bad addr %p\n", start);
return EINVAL;
}
dma_count = ((char *)end - (char *)start) - 1;
DPRINTF(("sv_trigger_output: DMA start loop input addr=%x cc=%d\n",
(int)DMAADDR(p), dma_count));
bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0,
DMAADDR(p));
bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_COUNT0,
dma_count);
bus_space_write_1(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_MODE,
DMA37MD_READ | DMA37MD_LOOP);
DPRINTF(("sv_trigger_output: current addr=%x\n",
bus_space_read_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0)));
dma_count = blksize - 1;
sv_write_indirect(sc, SV_DMAA_COUNT1, dma_count >> 8);
sv_write_indirect(sc, SV_DMAA_COUNT0, dma_count & 0xFF);
mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_PLAY_ENABLE);
return 0;
}
static int
sv_trigger_input(void *addr, void *start, void *end, int blksize,
void (*intr)(void *), void *arg, const audio_params_t *param)
{
struct sv_softc *sc;
struct sv_dma *p;
uint8_t mode;
int dma_count;
DPRINTFN(1, ("sv_trigger_input: sc=%p start=%p end=%p blksize=%d "
"intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
sc = addr;
sc->sc_rintr = intr;
sc->sc_rarg = arg;
mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
mode &= ~(SV_DMAC_FORMAT16 | SV_DMAC_STEREO);
if (param->precision == 16)
mode |= SV_DMAC_FORMAT16;
if (param->channels == 2)
mode |= SV_DMAC_STEREO;
sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
continue;
if (!p) {
printf("sv_trigger_input: bad addr %p\n", start);
return EINVAL;
}
dma_count = (((char *)end - (char *)start) >> 1) - 1;
DPRINTF(("sv_trigger_input: DMA start loop input addr=%x cc=%d\n",
(int)DMAADDR(p), dma_count));
bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0,
DMAADDR(p));
bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_COUNT0,
dma_count);
bus_space_write_1(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_MODE,
DMA37MD_WRITE | DMA37MD_LOOP);
DPRINTF(("sv_trigger_input: current addr=%x\n",
bus_space_read_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0)));
dma_count = (blksize >> 1) - 1;
sv_write_indirect(sc, SV_DMAC_COUNT1, dma_count >> 8);
sv_write_indirect(sc, SV_DMAC_COUNT0, dma_count & 0xFF);
mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_RECORD_ENABLE);
return 0;
}
static int
sv_halt_output(void *addr)
{
struct sv_softc *sc;
uint8_t mode;
DPRINTF(("sv: sv_halt_output\n"));
sc = addr;
mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_PLAY_ENABLE);
sc->sc_pintr = 0;
return 0;
}
static int
sv_halt_input(void *addr)
{
struct sv_softc *sc;
uint8_t mode;
DPRINTF(("sv: sv_halt_input\n"));
sc = addr;
mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_RECORD_ENABLE);
sc->sc_rintr = 0;
return 0;
}
static int
sv_getdev(void *addr, struct audio_device *retp)
{
*retp = sv_device;
return 0;
}
/*
* Mixer related code is here
*
*/
#define SV_INPUT_CLASS 0
#define SV_OUTPUT_CLASS 1
#define SV_RECORD_CLASS 2
#define SV_LAST_CLASS 2
static const char *mixer_classes[] =
{ AudioCinputs, AudioCoutputs, AudioCrecord };
static const struct {
uint8_t l_port;
uint8_t r_port;
uint8_t mask;
uint8_t class;
const char *audio;
} ports[] = {
{ SV_LEFT_AUX1_INPUT_CONTROL, SV_RIGHT_AUX1_INPUT_CONTROL, SV_AUX1_MASK,
SV_INPUT_CLASS, "aux1" },
{ SV_LEFT_CD_INPUT_CONTROL, SV_RIGHT_CD_INPUT_CONTROL, SV_CD_MASK,
SV_INPUT_CLASS, AudioNcd },
{ SV_LEFT_LINE_IN_INPUT_CONTROL, SV_RIGHT_LINE_IN_INPUT_CONTROL, SV_LINE_IN_MASK,
SV_INPUT_CLASS, AudioNline },
{ SV_MIC_INPUT_CONTROL, 0, SV_MIC_MASK, SV_INPUT_CLASS, AudioNmicrophone },
{ SV_LEFT_SYNTH_INPUT_CONTROL, SV_RIGHT_SYNTH_INPUT_CONTROL,
SV_SYNTH_MASK, SV_INPUT_CLASS, AudioNfmsynth },
{ SV_LEFT_AUX2_INPUT_CONTROL, SV_RIGHT_AUX2_INPUT_CONTROL, SV_AUX2_MASK,
SV_INPUT_CLASS, "aux2" },
{ SV_LEFT_PCM_INPUT_CONTROL, SV_RIGHT_PCM_INPUT_CONTROL, SV_PCM_MASK,
SV_INPUT_CLASS, AudioNdac },
{ SV_LEFT_MIXER_OUTPUT_CONTROL, SV_RIGHT_MIXER_OUTPUT_CONTROL,
SV_MIXER_OUT_MASK, SV_OUTPUT_CLASS, AudioNmaster }
};
static const struct {
int idx;
const char *name;
} record_sources[] = {
{ SV_REC_CD, AudioNcd },
{ SV_REC_DAC, AudioNdac },
{ SV_REC_AUX2, "aux2" },
{ SV_REC_LINE, AudioNline },
{ SV_REC_AUX1, "aux1" },
{ SV_REC_MIC, AudioNmicrophone },
{ SV_REC_MIXER, AudioNmixerout }
};
#define SV_DEVICES_PER_PORT 2
#define SV_FIRST_MIXER (SV_LAST_CLASS + 1)
#define SV_LAST_MIXER (SV_DEVICES_PER_PORT * (ARRAY_SIZE(ports)) + SV_LAST_CLASS)
#define SV_RECORD_SOURCE (SV_LAST_MIXER + 1)
#define SV_MIC_BOOST (SV_LAST_MIXER + 2)
#define SV_RECORD_GAIN (SV_LAST_MIXER + 3)
#define SV_SRS_MODE (SV_LAST_MIXER + 4)
static int
sv_query_devinfo(void *addr, mixer_devinfo_t *dip)
{
int i;
/* It's a class */
if (dip->index <= SV_LAST_CLASS) {
dip->type = AUDIO_MIXER_CLASS;
dip->mixer_class = dip->index;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, mixer_classes[dip->index]);
return 0;
}
if (dip->index >= SV_FIRST_MIXER &&
dip->index <= SV_LAST_MIXER) {
int off, mute ,idx;
off = dip->index - SV_FIRST_MIXER;
mute = (off % SV_DEVICES_PER_PORT);
idx = off / SV_DEVICES_PER_PORT;
dip->mixer_class = ports[idx].class;
strcpy(dip->label.name, ports[idx].audio);
if (!mute) {
dip->type = AUDIO_MIXER_VALUE;
dip->prev = AUDIO_MIXER_LAST;
dip->next = dip->index + 1;
if (ports[idx].r_port != 0)
dip->un.v.num_channels = 2;
else
dip->un.v.num_channels = 1;
strcpy(dip->un.v.units.name, AudioNvolume);
} else {
dip->type = AUDIO_MIXER_ENUM;
dip->prev = dip->index - 1;
dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNmute);
dip->un.e.num_mem = 2;
strcpy(dip->un.e.member[0].label.name, AudioNoff);
dip->un.e.member[0].ord = 0;
strcpy(dip->un.e.member[1].label.name, AudioNon);
dip->un.e.member[1].ord = 1;
}
return 0;
}
switch (dip->index) {
case SV_RECORD_SOURCE:
dip->mixer_class = SV_RECORD_CLASS;
dip->prev = AUDIO_MIXER_LAST;
dip->next = SV_RECORD_GAIN;
strcpy(dip->label.name, AudioNsource);
dip->type = AUDIO_MIXER_ENUM;
dip->un.e.num_mem = ARRAY_SIZE(record_sources);
for (i = 0; i < ARRAY_SIZE(record_sources); i++) {
strcpy(dip->un.e.member[i].label.name,
record_sources[i].name);
dip->un.e.member[i].ord = record_sources[i].idx;
}
return 0;
case SV_RECORD_GAIN:
dip->mixer_class = SV_RECORD_CLASS;
dip->prev = SV_RECORD_SOURCE;
dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, "gain");
dip->type = AUDIO_MIXER_VALUE;
dip->un.v.num_channels = 1;
strcpy(dip->un.v.units.name, AudioNvolume);
return 0;
case SV_MIC_BOOST:
dip->mixer_class = SV_RECORD_CLASS;
dip->prev = AUDIO_MIXER_LAST;
dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, "micboost");
goto on_off;
case SV_SRS_MODE:
dip->mixer_class = SV_OUTPUT_CLASS;
dip->prev = dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNspatial);
on_off:
dip->type = AUDIO_MIXER_ENUM;
dip->un.e.num_mem = 2;
strcpy(dip->un.e.member[0].label.name, AudioNoff);
dip->un.e.member[0].ord = 0;
strcpy(dip->un.e.member[1].label.name, AudioNon);
dip->un.e.member[1].ord = 1;
return 0;
}
return ENXIO;
}
static int
sv_mixer_set_port(void *addr, mixer_ctrl_t *cp)
{
struct sv_softc *sc;
uint8_t reg;
int idx;
sc = addr;
if (cp->dev >= SV_FIRST_MIXER &&
cp->dev <= SV_LAST_MIXER) {
int off, mute;
off = cp->dev - SV_FIRST_MIXER;
mute = (off % SV_DEVICES_PER_PORT);
idx = off / SV_DEVICES_PER_PORT;
if (mute) {
if (cp->type != AUDIO_MIXER_ENUM)
return EINVAL;
mutex_spin_enter(&sc->sc_intr_lock);
reg = sv_read_indirect(sc, ports[idx].l_port);
if (cp->un.ord)
reg |= SV_MUTE_BIT;
else
reg &= ~SV_MUTE_BIT;
sv_write_indirect(sc, ports[idx].l_port, reg);
if (ports[idx].r_port) {
reg = sv_read_indirect(sc, ports[idx].r_port);
if (cp->un.ord)
reg |= SV_MUTE_BIT;
else
reg &= ~SV_MUTE_BIT;
sv_write_indirect(sc, ports[idx].r_port, reg);
}
mutex_spin_exit(&sc->sc_intr_lock);
} else {
int lval, rval;
if (cp->type != AUDIO_MIXER_VALUE)
return EINVAL;
if (cp->un.value.num_channels != 1 &&
cp->un.value.num_channels != 2)
return (EINVAL);
if (ports[idx].r_port == 0) {
if (cp->un.value.num_channels != 1)
return (EINVAL);
lval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
rval = 0; /* shut up GCC */
} else {
if (cp->un.value.num_channels != 2)
return (EINVAL);
lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
}
mutex_spin_enter(&sc->sc_intr_lock);
reg = sv_read_indirect(sc, ports[idx].l_port);
reg &= ~(ports[idx].mask);
lval = (AUDIO_MAX_GAIN - lval) * ports[idx].mask /
AUDIO_MAX_GAIN;
reg |= lval;
sv_write_indirect(sc, ports[idx].l_port, reg);
if (ports[idx].r_port != 0) {
reg = sv_read_indirect(sc, ports[idx].r_port);
reg &= ~(ports[idx].mask);
rval = (AUDIO_MAX_GAIN - rval) * ports[idx].mask /
AUDIO_MAX_GAIN;
reg |= rval;
sv_write_indirect(sc, ports[idx].r_port, reg);
}
sv_read_indirect(sc, ports[idx].l_port);
mutex_spin_exit(&sc->sc_intr_lock);
}
return 0;
}
switch (cp->dev) {
case SV_RECORD_SOURCE:
if (cp->type != AUDIO_MIXER_ENUM)
return EINVAL;
for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) {
if (record_sources[idx].idx == cp->un.ord)
goto found;
}
return EINVAL;
found:
mutex_spin_enter(&sc->sc_intr_lock);
reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
reg &= ~SV_REC_SOURCE_MASK;
reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
reg &= ~SV_REC_SOURCE_MASK;
reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
mutex_spin_exit(&sc->sc_intr_lock);
return 0;
case SV_RECORD_GAIN:
{
int val;
if (cp->type != AUDIO_MIXER_VALUE)
return EINVAL;
if (cp->un.value.num_channels != 1)
return EINVAL;
val = (cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]
* SV_REC_GAIN_MASK) / AUDIO_MAX_GAIN;
mutex_spin_enter(&sc->sc_intr_lock);
reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
reg &= ~SV_REC_GAIN_MASK;
reg |= val;
sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
reg &= ~SV_REC_GAIN_MASK;
reg |= val;
sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
mutex_spin_exit(&sc->sc_intr_lock);
}
return (0);
case SV_MIC_BOOST:
if (cp->type != AUDIO_MIXER_ENUM)
return EINVAL;
mutex_spin_enter(&sc->sc_intr_lock);
reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
if (cp->un.ord) {
reg |= SV_MIC_BOOST_BIT;
} else {
reg &= ~SV_MIC_BOOST_BIT;
}
sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
mutex_spin_exit(&sc->sc_intr_lock);
return 0;
case SV_SRS_MODE:
if (cp->type != AUDIO_MIXER_ENUM)
return EINVAL;
mutex_spin_enter(&sc->sc_intr_lock);
reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
if (cp->un.ord) {
reg &= ~SV_SRS_SPACE_ONOFF;
} else {
reg |= SV_SRS_SPACE_ONOFF;
}
sv_write_indirect(sc, SV_SRS_SPACE_CONTROL, reg);
mutex_spin_exit(&sc->sc_intr_lock);
return 0;
}
return EINVAL;
}
static int
sv_mixer_get_port(void *addr, mixer_ctrl_t *cp)
{
struct sv_softc *sc;
int val, error;
uint8_t reg;
sc = addr;
error = 0;
mutex_spin_enter(&sc->sc_intr_lock);
if (cp->dev >= SV_FIRST_MIXER &&
cp->dev <= SV_LAST_MIXER) {
int off = cp->dev - SV_FIRST_MIXER;
int mute = (off % 2);
int idx = off / 2;
off = cp->dev - SV_FIRST_MIXER;
mute = (off % 2);
idx = off / 2;
if (mute) {
if (cp->type != AUDIO_MIXER_ENUM)
error = EINVAL;
else {
reg = sv_read_indirect(sc, ports[idx].l_port);
cp->un.ord = ((reg & SV_MUTE_BIT) ? 1 : 0);
}
} else {
if (cp->type != AUDIO_MIXER_VALUE ||
(cp->un.value.num_channels != 1 &&
cp->un.value.num_channels != 2) ||
((ports[idx].r_port == 0 &&
cp->un.value.num_channels != 1) ||
(ports[idx].r_port != 0 &&
cp->un.value.num_channels != 2)))
error = EINVAL;
else {
reg = sv_read_indirect(sc, ports[idx].l_port);
reg &= ports[idx].mask;
val = AUDIO_MAX_GAIN -
((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
if (ports[idx].r_port != 0) {
cp->un.value.level
[AUDIO_MIXER_LEVEL_LEFT] = val;
reg = sv_read_indirect(sc,
ports[idx].r_port);
reg &= ports[idx].mask;
val = AUDIO_MAX_GAIN -
((reg * AUDIO_MAX_GAIN)
/ ports[idx].mask);
cp->un.value.level
[AUDIO_MIXER_LEVEL_RIGHT] = val;
} else
cp->un.value.level
[AUDIO_MIXER_LEVEL_MONO] = val;
}
}
return error;
}
switch (cp->dev) {
case SV_RECORD_SOURCE:
if (cp->type != AUDIO_MIXER_ENUM) {
error = EINVAL;
break;
}
reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
cp->un.ord = ((reg & SV_REC_SOURCE_MASK) >> SV_REC_SOURCE_SHIFT);
break;
case SV_RECORD_GAIN:
if (cp->type != AUDIO_MIXER_VALUE) {
error = EINVAL;
break;
}
if (cp->un.value.num_channels != 1) {
error = EINVAL;
break;
}
reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL) & SV_REC_GAIN_MASK;
cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
(((unsigned int)reg) * AUDIO_MAX_GAIN) / SV_REC_GAIN_MASK;
break;
case SV_MIC_BOOST:
if (cp->type != AUDIO_MIXER_ENUM) {
error = EINVAL;
break;
}
reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
cp->un.ord = ((reg & SV_MIC_BOOST_BIT) ? 1 : 0);
break;
case SV_SRS_MODE:
if (cp->type != AUDIO_MIXER_ENUM) {
error = EINVAL;
break;
}
reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
cp->un.ord = ((reg & SV_SRS_SPACE_ONOFF) ? 0 : 1);
break;
default:
error = EINVAL;
break;
}
mutex_spin_exit(&sc->sc_intr_lock);
return error;
}
static void
sv_init_mixer(struct sv_softc *sc)
{
mixer_ctrl_t cp;
int i;
cp.type = AUDIO_MIXER_ENUM;
cp.dev = SV_SRS_MODE;
cp.un.ord = 0;
sv_mixer_set_port(sc, &cp);
for (i = 0; i < ARRAY_SIZE(ports); i++) {
if (!strcmp(ports[i].audio, AudioNdac)) {
cp.type = AUDIO_MIXER_ENUM;
cp.dev = SV_FIRST_MIXER + i * SV_DEVICES_PER_PORT + 1;
cp.un.ord = 0;
sv_mixer_set_port(sc, &cp);
break;
}
}
}
static void *
sv_malloc(void *addr, int direction, size_t size)
{
struct sv_softc *sc;
struct sv_dma *p;
int error;
sc = addr;
p = kmem_alloc(sizeof(*p), KM_SLEEP);
error = sv_allocmem(sc, size, 16, direction, p);
if (error) {
kmem_free(p, sizeof(*p));
return 0;
}
p->next = sc->sc_dmas;
sc->sc_dmas = p;
return KERNADDR(p);
}
static void
sv_free(void *addr, void *ptr, size_t size)
{
struct sv_softc *sc;
struct sv_dma **pp, *p;
sc = addr;
for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) {
if (KERNADDR(p) == ptr) {
sv_freemem(sc, p);
*pp = p->next;
kmem_free(p, sizeof(*p));
return;
}
}
}
static size_t
sv_round_buffersize(void *addr, int direction, size_t size)
{
return size;
}
static paddr_t
sv_mappage(void *addr, void *mem, off_t off, int prot)
{
struct sv_softc *sc;
struct sv_dma *p;
sc = addr;
if (off < 0)
return -1;
for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
continue;
if (p == NULL)
return -1;
return bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
off, prot, BUS_DMA_WAITOK);
}
static int
sv_get_props(void *addr)
{
return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX;
}
static void
sv_get_locks(void *addr, kmutex_t **intr, kmutex_t **thread)
{
struct sv_softc *sc;
sc = addr;
*intr = &sc->sc_intr_lock;
*thread = &sc->sc_lock;
}