NetBSD/sys/dev/pci/cmpci.c
chs fd34ea77eb remove checks for failure after memory allocation calls that cannot fail:
kmem_alloc() with KM_SLEEP
  kmem_zalloc() with KM_SLEEP
  percpu_alloc()
  pserialize_create()
  psref_class_create()

all of these paths include an assertion that the allocation has not failed,
so callers should not assert that again.
2017-06-01 02:45:05 +00:00

1752 lines
46 KiB
C

/* $NetBSD: cmpci.c,v 1.50 2017/06/01 02:45:11 chs Exp $ */
/*
* Copyright (c) 2000, 2001, 2008 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Takuya SHIOZAKI <tshiozak@NetBSD.org> .
*
* This code is derived from software contributed to The NetBSD Foundation
* by ITOH Yasufumi.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
/*
* C-Media CMI8x38 Audio Chip Support.
*
* TODO:
* - 4ch / 6ch support.
* - Joystick support.
*
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: cmpci.c,v 1.50 2017/06/01 02:45:11 chs Exp $");
#if defined(AUDIO_DEBUG) || defined(DEBUG)
#define DPRINTF(x) if (cmpcidebug) printf x
int cmpcidebug = 0;
#else
#define DPRINTF(x)
#endif
#include "mpu.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/device.h>
#include <sys/proc.h>
#include <dev/pci/pcidevs.h>
#include <dev/pci/pcivar.h>
#include <sys/audioio.h>
#include <dev/audio_if.h>
#include <dev/midi_if.h>
#include <dev/mulaw.h>
#include <dev/auconv.h>
#include <dev/pci/cmpcireg.h>
#include <dev/pci/cmpcivar.h>
#include <dev/ic/mpuvar.h>
#include <sys/bus.h>
#include <sys/intr.h>
/*
* Low-level HW interface
*/
static inline uint8_t cmpci_mixerreg_read(struct cmpci_softc *, uint8_t);
static inline void cmpci_mixerreg_write(struct cmpci_softc *,
uint8_t, uint8_t);
static inline void cmpci_reg_partial_write_1(struct cmpci_softc *, int, int,
unsigned, unsigned);
static inline void cmpci_reg_partial_write_4(struct cmpci_softc *, int, int,
uint32_t, uint32_t);
static inline void cmpci_reg_set_1(struct cmpci_softc *, int, uint8_t);
static inline void cmpci_reg_clear_1(struct cmpci_softc *, int, uint8_t);
static inline void cmpci_reg_set_4(struct cmpci_softc *, int, uint32_t);
static inline void cmpci_reg_clear_4(struct cmpci_softc *, int, uint32_t);
static inline void cmpci_reg_set_reg_misc(struct cmpci_softc *, uint32_t);
static inline void cmpci_reg_clear_reg_misc(struct cmpci_softc *, uint32_t);
static int cmpci_rate_to_index(int);
static inline int cmpci_index_to_rate(int);
static inline int cmpci_index_to_divider(int);
static int cmpci_adjust(int, int);
static void cmpci_set_mixer_gain(struct cmpci_softc *, int);
static void cmpci_set_out_ports(struct cmpci_softc *);
static int cmpci_set_in_ports(struct cmpci_softc *);
/*
* autoconf interface
*/
static int cmpci_match(device_t, cfdata_t, void *);
static void cmpci_attach(device_t, device_t, void *);
CFATTACH_DECL_NEW(cmpci, sizeof (struct cmpci_softc),
cmpci_match, cmpci_attach, NULL, NULL);
/* interrupt */
static int cmpci_intr(void *);
/*
* DMA stuffs
*/
static int cmpci_alloc_dmamem(struct cmpci_softc *, size_t, void **);
static int cmpci_free_dmamem(struct cmpci_softc *, void *, size_t);
static struct cmpci_dmanode * cmpci_find_dmamem(struct cmpci_softc *,
void *);
/*
* interface to machine independent layer
*/
static int cmpci_query_encoding(void *, struct audio_encoding *);
static int cmpci_set_params(void *, int, int, audio_params_t *,
audio_params_t *, stream_filter_list_t *, stream_filter_list_t *);
static int cmpci_round_blocksize(void *, int, int, const audio_params_t *);
static int cmpci_halt_output(void *);
static int cmpci_halt_input(void *);
static int cmpci_getdev(void *, struct audio_device *);
static int cmpci_set_port(void *, mixer_ctrl_t *);
static int cmpci_get_port(void *, mixer_ctrl_t *);
static int cmpci_query_devinfo(void *, mixer_devinfo_t *);
static void *cmpci_allocm(void *, int, size_t);
static void cmpci_freem(void *, void *, size_t);
static size_t cmpci_round_buffersize(void *, int, size_t);
static paddr_t cmpci_mappage(void *, void *, off_t, int);
static int cmpci_get_props(void *);
static int cmpci_trigger_output(void *, void *, void *, int,
void (*)(void *), void *, const audio_params_t *);
static int cmpci_trigger_input(void *, void *, void *, int,
void (*)(void *), void *, const audio_params_t *);
static void cmpci_get_locks(void *, kmutex_t **, kmutex_t **);
static const struct audio_hw_if cmpci_hw_if = {
NULL, /* open */
NULL, /* close */
NULL, /* drain */
cmpci_query_encoding, /* query_encoding */
cmpci_set_params, /* set_params */
cmpci_round_blocksize, /* round_blocksize */
NULL, /* commit_settings */
NULL, /* init_output */
NULL, /* init_input */
NULL, /* start_output */
NULL, /* start_input */
cmpci_halt_output, /* halt_output */
cmpci_halt_input, /* halt_input */
NULL, /* speaker_ctl */
cmpci_getdev, /* getdev */
NULL, /* setfd */
cmpci_set_port, /* set_port */
cmpci_get_port, /* get_port */
cmpci_query_devinfo, /* query_devinfo */
cmpci_allocm, /* allocm */
cmpci_freem, /* freem */
cmpci_round_buffersize,/* round_buffersize */
cmpci_mappage, /* mappage */
cmpci_get_props, /* get_props */
cmpci_trigger_output, /* trigger_output */
cmpci_trigger_input, /* trigger_input */
NULL, /* dev_ioctl */
cmpci_get_locks, /* get_locks */
};
#define CMPCI_NFORMATS 4
static const struct audio_format cmpci_formats[CMPCI_NFORMATS] = {
{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
2, AUFMT_STEREO, 0, {5512, 48000}},
{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
1, AUFMT_MONAURAL, 0, {5512, 48000}},
{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
2, AUFMT_STEREO, 0, {5512, 48000}},
{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
1, AUFMT_MONAURAL, 0, {5512, 48000}},
};
/*
* Low-level HW interface
*/
/* mixer register read/write */
static inline uint8_t
cmpci_mixerreg_read(struct cmpci_softc *sc, uint8_t no)
{
uint8_t ret;
bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBADDR, no);
delay(10);
ret = bus_space_read_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBDATA);
delay(10);
return ret;
}
static inline void
cmpci_mixerreg_write(struct cmpci_softc *sc, uint8_t no, uint8_t val)
{
bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBADDR, no);
delay(10);
bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBDATA, val);
delay(10);
}
/* register partial write */
static inline void
cmpci_reg_partial_write_1(struct cmpci_softc *sc, int no, int shift,
unsigned mask, unsigned val)
{
bus_space_write_1(sc->sc_iot, sc->sc_ioh, no,
(val<<shift) |
(bus_space_read_1(sc->sc_iot, sc->sc_ioh, no) & ~(mask<<shift)));
delay(10);
}
static inline void
cmpci_reg_partial_write_4(struct cmpci_softc *sc, int no, int shift,
uint32_t mask, uint32_t val)
{
bus_space_write_4(sc->sc_iot, sc->sc_ioh, no,
(val<<shift) |
(bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) & ~(mask<<shift)));
delay(10);
}
/* register set/clear bit */
static inline void
cmpci_reg_set_1(struct cmpci_softc *sc, int no, uint8_t mask)
{
bus_space_write_1(sc->sc_iot, sc->sc_ioh, no,
(bus_space_read_1(sc->sc_iot, sc->sc_ioh, no) | mask));
delay(10);
}
static inline void
cmpci_reg_clear_1(struct cmpci_softc *sc, int no, uint8_t mask)
{
bus_space_write_1(sc->sc_iot, sc->sc_ioh, no,
(bus_space_read_1(sc->sc_iot, sc->sc_ioh, no) & ~mask));
delay(10);
}
static inline void
cmpci_reg_set_4(struct cmpci_softc *sc, int no, uint32_t mask)
{
/* use cmpci_reg_set_reg_misc() for CMPCI_REG_MISC */
KDASSERT(no != CMPCI_REG_MISC);
bus_space_write_4(sc->sc_iot, sc->sc_ioh, no,
(bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) | mask));
delay(10);
}
static inline void
cmpci_reg_clear_4(struct cmpci_softc *sc, int no, uint32_t mask)
{
/* use cmpci_reg_clear_reg_misc() for CMPCI_REG_MISC */
KDASSERT(no != CMPCI_REG_MISC);
bus_space_write_4(sc->sc_iot, sc->sc_ioh, no,
(bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) & ~mask));
delay(10);
}
/*
* The CMPCI_REG_MISC register needs special handling, since one of
* its bits has different read/write values.
*/
static inline void
cmpci_reg_set_reg_misc(struct cmpci_softc *sc, uint32_t mask)
{
sc->sc_reg_misc |= mask;
bus_space_write_4(sc->sc_iot, sc->sc_ioh, CMPCI_REG_MISC,
sc->sc_reg_misc);
delay(10);
}
static inline void
cmpci_reg_clear_reg_misc(struct cmpci_softc *sc, uint32_t mask)
{
sc->sc_reg_misc &= ~mask;
bus_space_write_4(sc->sc_iot, sc->sc_ioh, CMPCI_REG_MISC,
sc->sc_reg_misc);
delay(10);
}
/* rate */
static const struct {
int rate;
int divider;
} cmpci_rate_table[CMPCI_REG_NUMRATE] = {
#define _RATE(n) { n, CMPCI_REG_RATE_ ## n }
_RATE(5512),
_RATE(8000),
_RATE(11025),
_RATE(16000),
_RATE(22050),
_RATE(32000),
_RATE(44100),
_RATE(48000)
#undef _RATE
};
static int
cmpci_rate_to_index(int rate)
{
int i;
for (i = 0; i < CMPCI_REG_NUMRATE - 1; i++)
if (rate <=
(cmpci_rate_table[i].rate+cmpci_rate_table[i+1].rate) / 2)
return i;
return i; /* 48000 */
}
static inline int
cmpci_index_to_rate(int index)
{
return cmpci_rate_table[index].rate;
}
static inline int
cmpci_index_to_divider(int index)
{
return cmpci_rate_table[index].divider;
}
/*
* interface to configure the device.
*/
static int
cmpci_match(device_t parent, cfdata_t match, void *aux)
{
struct pci_attach_args *pa;
pa = (struct pci_attach_args *)aux;
if ( PCI_VENDOR(pa->pa_id) == PCI_VENDOR_CMEDIA &&
(PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8338A ||
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8338B ||
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8738 ||
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8738B) )
return 1;
return 0;
}
static void
cmpci_attach(device_t parent, device_t self, void *aux)
{
struct cmpci_softc *sc;
struct pci_attach_args *pa;
struct audio_attach_args aa;
pci_intr_handle_t ih;
char const *strintr;
int i, v;
char intrbuf[PCI_INTRSTR_LEN];
sc = device_private(self);
sc->sc_dev = self;
pa = (struct pci_attach_args *)aux;
sc->sc_id = pa->pa_id;
sc->sc_class = pa->pa_class;
pci_aprint_devinfo(pa, "Audio controller");
switch (PCI_PRODUCT(sc->sc_id)) {
case PCI_PRODUCT_CMEDIA_CMI8338A:
/*FALLTHROUGH*/
case PCI_PRODUCT_CMEDIA_CMI8338B:
sc->sc_capable = CMPCI_CAP_CMI8338;
break;
case PCI_PRODUCT_CMEDIA_CMI8738:
/*FALLTHROUGH*/
case PCI_PRODUCT_CMEDIA_CMI8738B:
sc->sc_capable = CMPCI_CAP_CMI8738;
break;
}
/* map I/O space */
if (pci_mapreg_map(pa, CMPCI_PCI_IOBASEREG, PCI_MAPREG_TYPE_IO, 0,
&sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
aprint_error_dev(sc->sc_dev, "failed to map I/O space\n");
return;
}
mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE);
mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_AUDIO);
/* interrupt */
if (pci_intr_map(pa, &ih)) {
aprint_error_dev(sc->sc_dev, "failed to map interrupt\n");
return;
}
strintr = pci_intr_string(pa->pa_pc, ih, intrbuf, sizeof(intrbuf));
sc->sc_ih = pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, cmpci_intr,
sc);
if (sc->sc_ih == NULL) {
aprint_error_dev(sc->sc_dev, "failed to establish interrupt");
if (strintr != NULL)
aprint_error(" at %s", strintr);
aprint_error("\n");
mutex_destroy(&sc->sc_lock);
mutex_destroy(&sc->sc_intr_lock);
return;
}
aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", strintr);
sc->sc_dmat = pa->pa_dmat;
audio_attach_mi(&cmpci_hw_if, sc, sc->sc_dev);
/* attach OPL device */
aa.type = AUDIODEV_TYPE_OPL;
aa.hwif = NULL;
aa.hdl = NULL;
(void)config_found(sc->sc_dev, &aa, audioprint);
/* attach MPU-401 device */
aa.type = AUDIODEV_TYPE_MPU;
aa.hwif = NULL;
aa.hdl = NULL;
if (bus_space_subregion(sc->sc_iot, sc->sc_ioh,
CMPCI_REG_MPU_BASE, CMPCI_REG_MPU_SIZE, &sc->sc_mpu_ioh) == 0)
sc->sc_mpudev = config_found(sc->sc_dev, &aa, audioprint);
/* get initial value (this is 0 and may be omitted but just in case) */
sc->sc_reg_misc = bus_space_read_4(sc->sc_iot, sc->sc_ioh,
CMPCI_REG_MISC) & ~CMPCI_REG_SPDIF48K;
cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_RESET, 0);
cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_L, 0);
cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_R, 0);
cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_OUTMIX,
CMPCI_SB16_SW_CD|CMPCI_SB16_SW_MIC | CMPCI_SB16_SW_LINE);
for (i = 0; i < CMPCI_NDEVS; i++) {
switch (i) {
/*
* CMI8738 defaults are
* master: 0xe0 (0x00 - 0xf8)
* FM, DAC: 0xc0 (0x00 - 0xf8)
* PC speaker: 0x80 (0x00 - 0xc0)
* others: 0
*/
/* volume */
case CMPCI_MASTER_VOL:
v = 128; /* 224 */
break;
case CMPCI_FM_VOL:
case CMPCI_DAC_VOL:
v = 192;
break;
case CMPCI_PCSPEAKER:
v = 128;
break;
/* booleans, set to true */
case CMPCI_CD_MUTE:
case CMPCI_MIC_MUTE:
case CMPCI_LINE_IN_MUTE:
case CMPCI_AUX_IN_MUTE:
v = 1;
break;
/* volume with inital value 0 */
case CMPCI_CD_VOL:
case CMPCI_LINE_IN_VOL:
case CMPCI_AUX_IN_VOL:
case CMPCI_MIC_VOL:
case CMPCI_MIC_RECVOL:
/* FALLTHROUGH */
/* others are cleared */
case CMPCI_MIC_PREAMP:
case CMPCI_RECORD_SOURCE:
case CMPCI_PLAYBACK_MODE:
case CMPCI_SPDIF_IN_SELECT:
case CMPCI_SPDIF_IN_PHASE:
case CMPCI_SPDIF_LOOP:
case CMPCI_SPDIF_OUT_PLAYBACK:
case CMPCI_SPDIF_OUT_VOLTAGE:
case CMPCI_MONITOR_DAC:
case CMPCI_REAR:
case CMPCI_INDIVIDUAL:
case CMPCI_REVERSE:
case CMPCI_SURROUND:
default:
v = 0;
break;
}
sc->sc_gain[i][CMPCI_LEFT] = sc->sc_gain[i][CMPCI_RIGHT] = v;
cmpci_set_mixer_gain(sc, i);
}
}
static int
cmpci_intr(void *handle)
{
struct cmpci_softc *sc = handle;
#if NMPU > 0
struct mpu_softc *sc_mpu = device_private(sc->sc_mpudev);
#endif
uint32_t intrstat;
mutex_spin_enter(&sc->sc_intr_lock);
intrstat = bus_space_read_4(sc->sc_iot, sc->sc_ioh,
CMPCI_REG_INTR_STATUS);
if (!(intrstat & CMPCI_REG_ANY_INTR)) {
mutex_spin_exit(&sc->sc_intr_lock);
return 0;
}
delay(10);
/* disable and reset intr */
if (intrstat & CMPCI_REG_CH0_INTR)
cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL,
CMPCI_REG_CH0_INTR_ENABLE);
if (intrstat & CMPCI_REG_CH1_INTR)
cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL,
CMPCI_REG_CH1_INTR_ENABLE);
if (intrstat & CMPCI_REG_CH0_INTR) {
if (sc->sc_play.intr != NULL)
(*sc->sc_play.intr)(sc->sc_play.intr_arg);
}
if (intrstat & CMPCI_REG_CH1_INTR) {
if (sc->sc_rec.intr != NULL)
(*sc->sc_rec.intr)(sc->sc_rec.intr_arg);
}
/* enable intr */
if (intrstat & CMPCI_REG_CH0_INTR)
cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL,
CMPCI_REG_CH0_INTR_ENABLE);
if (intrstat & CMPCI_REG_CH1_INTR)
cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL,
CMPCI_REG_CH1_INTR_ENABLE);
#if NMPU > 0
if (intrstat & CMPCI_REG_UART_INTR && sc_mpu != NULL)
mpu_intr(sc_mpu);
#endif
mutex_spin_exit(&sc->sc_intr_lock);
return 1;
}
static int
cmpci_query_encoding(void *handle, struct audio_encoding *fp)
{
switch (fp->index) {
case 0:
strcpy(fp->name, AudioEulinear);
fp->encoding = AUDIO_ENCODING_ULINEAR;
fp->precision = 8;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
break;
case 1:
strcpy(fp->name, AudioEmulaw);
fp->encoding = AUDIO_ENCODING_ULAW;
fp->precision = 8;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
break;
case 2:
strcpy(fp->name, AudioEalaw);
fp->encoding = AUDIO_ENCODING_ALAW;
fp->precision = 8;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
break;
case 3:
strcpy(fp->name, AudioEslinear);
fp->encoding = AUDIO_ENCODING_SLINEAR;
fp->precision = 8;
fp->flags = 0;
break;
case 4:
strcpy(fp->name, AudioEslinear_le);
fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
fp->precision = 16;
fp->flags = 0;
break;
case 5:
strcpy(fp->name, AudioEulinear_le);
fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
fp->precision = 16;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
break;
case 6:
strcpy(fp->name, AudioEslinear_be);
fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
fp->precision = 16;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
break;
case 7:
strcpy(fp->name, AudioEulinear_be);
fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
fp->precision = 16;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
break;
default:
return EINVAL;
}
return 0;
}
static int
cmpci_set_params(void *handle, int setmode, int usemode,
audio_params_t *play, audio_params_t *rec, stream_filter_list_t *pfil,
stream_filter_list_t *rfil)
{
int i;
struct cmpci_softc *sc;
sc = handle;
for (i = 0; i < 2; i++) {
int md_format;
int md_divide;
int md_index;
int mode;
audio_params_t *p;
stream_filter_list_t *fil;
int ind;
switch (i) {
case 0:
mode = AUMODE_PLAY;
p = play;
fil = pfil;
break;
case 1:
mode = AUMODE_RECORD;
p = rec;
fil = rfil;
break;
default:
return EINVAL;
}
if (!(setmode & mode))
continue;
md_index = cmpci_rate_to_index(p->sample_rate);
md_divide = cmpci_index_to_divider(md_index);
p->sample_rate = cmpci_index_to_rate(md_index);
DPRINTF(("%s: sample:%u, divider=%d\n",
device_xname(sc->sc_dev), p->sample_rate, md_divide));
ind = auconv_set_converter(cmpci_formats, CMPCI_NFORMATS,
mode, p, FALSE, fil);
if (ind < 0)
return EINVAL;
if (fil->req_size > 0)
p = &fil->filters[0].param;
/* format */
md_format = p->channels == 1
? CMPCI_REG_FORMAT_MONO : CMPCI_REG_FORMAT_STEREO;
md_format |= p->precision == 16
? CMPCI_REG_FORMAT_16BIT : CMPCI_REG_FORMAT_8BIT;
if (mode & AUMODE_PLAY) {
cmpci_reg_partial_write_4(sc,
CMPCI_REG_CHANNEL_FORMAT,
CMPCI_REG_CH0_FORMAT_SHIFT,
CMPCI_REG_CH0_FORMAT_MASK, md_format);
cmpci_reg_partial_write_4(sc,
CMPCI_REG_FUNC_1, CMPCI_REG_DAC_FS_SHIFT,
CMPCI_REG_DAC_FS_MASK, md_divide);
sc->sc_play.md_divide = md_divide;
} else {
cmpci_reg_partial_write_4(sc,
CMPCI_REG_CHANNEL_FORMAT,
CMPCI_REG_CH1_FORMAT_SHIFT,
CMPCI_REG_CH1_FORMAT_MASK, md_format);
cmpci_reg_partial_write_4(sc,
CMPCI_REG_FUNC_1, CMPCI_REG_ADC_FS_SHIFT,
CMPCI_REG_ADC_FS_MASK, md_divide);
sc->sc_rec.md_divide = md_divide;
}
cmpci_set_out_ports(sc);
cmpci_set_in_ports(sc);
}
return 0;
}
/* ARGSUSED */
static int
cmpci_round_blocksize(void *handle, int block,
int mode, const audio_params_t *param)
{
return block & -4;
}
static int
cmpci_halt_output(void *handle)
{
struct cmpci_softc *sc;
sc = handle;
sc->sc_play.intr = NULL;
cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH0_INTR_ENABLE);
cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_ENABLE);
/* wait for reset DMA */
cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_RESET);
delay(10);
cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_RESET);
return 0;
}
static int
cmpci_halt_input(void *handle)
{
struct cmpci_softc *sc;
sc = handle;
sc->sc_rec.intr = NULL;
cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH1_INTR_ENABLE);
cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_ENABLE);
/* wait for reset DMA */
cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_RESET);
delay(10);
cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_RESET);
return 0;
}
/* get audio device information */
static int
cmpci_getdev(void *handle, struct audio_device *ad)
{
struct cmpci_softc *sc;
sc = handle;
strncpy(ad->name, "CMI PCI Audio", sizeof(ad->name));
snprintf(ad->version, sizeof(ad->version), "0x%02x",
PCI_REVISION(sc->sc_class));
switch (PCI_PRODUCT(sc->sc_id)) {
case PCI_PRODUCT_CMEDIA_CMI8338A:
strncpy(ad->config, "CMI8338A", sizeof(ad->config));
break;
case PCI_PRODUCT_CMEDIA_CMI8338B:
strncpy(ad->config, "CMI8338B", sizeof(ad->config));
break;
case PCI_PRODUCT_CMEDIA_CMI8738:
strncpy(ad->config, "CMI8738", sizeof(ad->config));
break;
case PCI_PRODUCT_CMEDIA_CMI8738B:
strncpy(ad->config, "CMI8738B", sizeof(ad->config));
break;
default:
strncpy(ad->config, "unknown", sizeof(ad->config));
}
return 0;
}
/* mixer device information */
int
cmpci_query_devinfo(void *handle, mixer_devinfo_t *dip)
{
static const char *const mixer_port_names[] = {
AudioNdac, AudioNfmsynth, AudioNcd, AudioNline, AudioNaux,
AudioNmicrophone
};
static const char *const mixer_classes[] = {
AudioCinputs, AudioCoutputs, AudioCrecord, CmpciCplayback,
CmpciCspdif
};
struct cmpci_softc *sc;
int i;
sc = handle;
dip->prev = dip->next = AUDIO_MIXER_LAST;
switch (dip->index) {
case CMPCI_INPUT_CLASS:
case CMPCI_OUTPUT_CLASS:
case CMPCI_RECORD_CLASS:
case CMPCI_PLAYBACK_CLASS:
case CMPCI_SPDIF_CLASS:
dip->type = AUDIO_MIXER_CLASS;
dip->mixer_class = dip->index;
strcpy(dip->label.name,
mixer_classes[dip->index - CMPCI_INPUT_CLASS]);
return 0;
case CMPCI_AUX_IN_VOL:
dip->un.v.delta = 1 << (8 - CMPCI_REG_AUX_VALBITS);
goto vol1;
case CMPCI_DAC_VOL:
case CMPCI_FM_VOL:
case CMPCI_CD_VOL:
case CMPCI_LINE_IN_VOL:
case CMPCI_MIC_VOL:
dip->un.v.delta = 1 << (8 - CMPCI_SB16_MIXER_VALBITS);
vol1: dip->mixer_class = CMPCI_INPUT_CLASS;
dip->next = dip->index + 6; /* CMPCI_xxx_MUTE */
strcpy(dip->label.name, mixer_port_names[dip->index]);
dip->un.v.num_channels = (dip->index == CMPCI_MIC_VOL ? 1 : 2);
vol:
dip->type = AUDIO_MIXER_VALUE;
strcpy(dip->un.v.units.name, AudioNvolume);
return 0;
case CMPCI_MIC_MUTE:
dip->next = CMPCI_MIC_PREAMP;
/* FALLTHROUGH */
case CMPCI_DAC_MUTE:
case CMPCI_FM_MUTE:
case CMPCI_CD_MUTE:
case CMPCI_LINE_IN_MUTE:
case CMPCI_AUX_IN_MUTE:
dip->prev = dip->index - 6; /* CMPCI_xxx_VOL */
dip->mixer_class = CMPCI_INPUT_CLASS;
strcpy(dip->label.name, AudioNmute);
goto on_off;
on_off:
dip->type = AUDIO_MIXER_ENUM;
dip->un.e.num_mem = 2;
strcpy(dip->un.e.member[0].label.name, AudioNoff);
dip->un.e.member[0].ord = 0;
strcpy(dip->un.e.member[1].label.name, AudioNon);
dip->un.e.member[1].ord = 1;
return 0;
case CMPCI_MIC_PREAMP:
dip->mixer_class = CMPCI_INPUT_CLASS;
dip->prev = CMPCI_MIC_MUTE;
strcpy(dip->label.name, AudioNpreamp);
goto on_off;
case CMPCI_PCSPEAKER:
dip->mixer_class = CMPCI_INPUT_CLASS;
strcpy(dip->label.name, AudioNspeaker);
dip->un.v.num_channels = 1;
dip->un.v.delta = 1 << (8 - CMPCI_SB16_MIXER_SPEAKER_VALBITS);
goto vol;
case CMPCI_RECORD_SOURCE:
dip->mixer_class = CMPCI_RECORD_CLASS;
strcpy(dip->label.name, AudioNsource);
dip->type = AUDIO_MIXER_SET;
dip->un.s.num_mem = 7;
strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
dip->un.s.member[0].mask = CMPCI_RECORD_SOURCE_MIC;
strcpy(dip->un.s.member[1].label.name, AudioNcd);
dip->un.s.member[1].mask = CMPCI_RECORD_SOURCE_CD;
strcpy(dip->un.s.member[2].label.name, AudioNline);
dip->un.s.member[2].mask = CMPCI_RECORD_SOURCE_LINE_IN;
strcpy(dip->un.s.member[3].label.name, AudioNaux);
dip->un.s.member[3].mask = CMPCI_RECORD_SOURCE_AUX_IN;
strcpy(dip->un.s.member[4].label.name, AudioNwave);
dip->un.s.member[4].mask = CMPCI_RECORD_SOURCE_WAVE;
strcpy(dip->un.s.member[5].label.name, AudioNfmsynth);
dip->un.s.member[5].mask = CMPCI_RECORD_SOURCE_FM;
strcpy(dip->un.s.member[6].label.name, CmpciNspdif);
dip->un.s.member[6].mask = CMPCI_RECORD_SOURCE_SPDIF;
return 0;
case CMPCI_MIC_RECVOL:
dip->mixer_class = CMPCI_RECORD_CLASS;
strcpy(dip->label.name, AudioNmicrophone);
dip->un.v.num_channels = 1;
dip->un.v.delta = 1 << (8 - CMPCI_REG_ADMIC_VALBITS);
goto vol;
case CMPCI_PLAYBACK_MODE:
dip->mixer_class = CMPCI_PLAYBACK_CLASS;
dip->type = AUDIO_MIXER_ENUM;
strcpy(dip->label.name, AudioNmode);
dip->un.e.num_mem = 2;
strcpy(dip->un.e.member[0].label.name, AudioNdac);
dip->un.e.member[0].ord = CMPCI_PLAYBACK_MODE_WAVE;
strcpy(dip->un.e.member[1].label.name, CmpciNspdif);
dip->un.e.member[1].ord = CMPCI_PLAYBACK_MODE_SPDIF;
return 0;
case CMPCI_SPDIF_IN_SELECT:
dip->mixer_class = CMPCI_SPDIF_CLASS;
dip->type = AUDIO_MIXER_ENUM;
dip->next = CMPCI_SPDIF_IN_PHASE;
strcpy(dip->label.name, AudioNinput);
i = 0;
strcpy(dip->un.e.member[i].label.name, CmpciNspdin1);
dip->un.e.member[i++].ord = CMPCI_SPDIF_IN_SPDIN1;
if (CMPCI_ISCAP(sc, 2ND_SPDIN)) {
strcpy(dip->un.e.member[i].label.name, CmpciNspdin2);
dip->un.e.member[i++].ord = CMPCI_SPDIF_IN_SPDIN2;
}
strcpy(dip->un.e.member[i].label.name, CmpciNspdout);
dip->un.e.member[i++].ord = CMPCI_SPDIF_IN_SPDOUT;
dip->un.e.num_mem = i;
return 0;
case CMPCI_SPDIF_IN_PHASE:
dip->mixer_class = CMPCI_SPDIF_CLASS;
dip->prev = CMPCI_SPDIF_IN_SELECT;
strcpy(dip->label.name, CmpciNphase);
dip->type = AUDIO_MIXER_ENUM;
dip->un.e.num_mem = 2;
strcpy(dip->un.e.member[0].label.name, CmpciNpositive);
dip->un.e.member[0].ord = CMPCI_SPDIF_IN_PHASE_POSITIVE;
strcpy(dip->un.e.member[1].label.name, CmpciNnegative);
dip->un.e.member[1].ord = CMPCI_SPDIF_IN_PHASE_NEGATIVE;
return 0;
case CMPCI_SPDIF_LOOP:
dip->mixer_class = CMPCI_SPDIF_CLASS;
dip->next = CMPCI_SPDIF_OUT_PLAYBACK;
strcpy(dip->label.name, AudioNoutput);
dip->type = AUDIO_MIXER_ENUM;
dip->un.e.num_mem = 2;
strcpy(dip->un.e.member[0].label.name, CmpciNplayback);
dip->un.e.member[0].ord = CMPCI_SPDIF_LOOP_OFF;
strcpy(dip->un.e.member[1].label.name, CmpciNspdin);
dip->un.e.member[1].ord = CMPCI_SPDIF_LOOP_ON;
return 0;
case CMPCI_SPDIF_OUT_PLAYBACK:
dip->mixer_class = CMPCI_SPDIF_CLASS;
dip->prev = CMPCI_SPDIF_LOOP;
dip->next = CMPCI_SPDIF_OUT_VOLTAGE;
strcpy(dip->label.name, CmpciNplayback);
dip->type = AUDIO_MIXER_ENUM;
dip->un.e.num_mem = 2;
strcpy(dip->un.e.member[0].label.name, AudioNwave);
dip->un.e.member[0].ord = CMPCI_SPDIF_OUT_PLAYBACK_WAVE;
strcpy(dip->un.e.member[1].label.name, CmpciNlegacy);
dip->un.e.member[1].ord = CMPCI_SPDIF_OUT_PLAYBACK_LEGACY;
return 0;
case CMPCI_SPDIF_OUT_VOLTAGE:
dip->mixer_class = CMPCI_SPDIF_CLASS;
dip->prev = CMPCI_SPDIF_OUT_PLAYBACK;
strcpy(dip->label.name, CmpciNvoltage);
dip->type = AUDIO_MIXER_ENUM;
dip->un.e.num_mem = 2;
strcpy(dip->un.e.member[0].label.name, CmpciNhigh_v);
dip->un.e.member[0].ord = CMPCI_SPDIF_OUT_VOLTAGE_HIGH;
strcpy(dip->un.e.member[1].label.name, CmpciNlow_v);
dip->un.e.member[1].ord = CMPCI_SPDIF_OUT_VOLTAGE_LOW;
return 0;
case CMPCI_MONITOR_DAC:
dip->mixer_class = CMPCI_SPDIF_CLASS;
strcpy(dip->label.name, AudioNmonitor);
dip->type = AUDIO_MIXER_ENUM;
dip->un.e.num_mem = 3;
strcpy(dip->un.e.member[0].label.name, AudioNoff);
dip->un.e.member[0].ord = CMPCI_MONITOR_DAC_OFF;
strcpy(dip->un.e.member[1].label.name, CmpciNspdin);
dip->un.e.member[1].ord = CMPCI_MONITOR_DAC_SPDIN;
strcpy(dip->un.e.member[2].label.name, CmpciNspdout);
dip->un.e.member[2].ord = CMPCI_MONITOR_DAC_SPDOUT;
return 0;
case CMPCI_MASTER_VOL:
dip->mixer_class = CMPCI_OUTPUT_CLASS;
strcpy(dip->label.name, AudioNmaster);
dip->un.v.num_channels = 2;
dip->un.v.delta = 1 << (8 - CMPCI_SB16_MIXER_VALBITS);
goto vol;
case CMPCI_REAR:
dip->mixer_class = CMPCI_OUTPUT_CLASS;
dip->next = CMPCI_INDIVIDUAL;
strcpy(dip->label.name, CmpciNrear);
goto on_off;
case CMPCI_INDIVIDUAL:
dip->mixer_class = CMPCI_OUTPUT_CLASS;
dip->prev = CMPCI_REAR;
dip->next = CMPCI_REVERSE;
strcpy(dip->label.name, CmpciNindividual);
goto on_off;
case CMPCI_REVERSE:
dip->mixer_class = CMPCI_OUTPUT_CLASS;
dip->prev = CMPCI_INDIVIDUAL;
strcpy(dip->label.name, CmpciNreverse);
goto on_off;
case CMPCI_SURROUND:
dip->mixer_class = CMPCI_OUTPUT_CLASS;
strcpy(dip->label.name, CmpciNsurround);
goto on_off;
}
return ENXIO;
}
static int
cmpci_alloc_dmamem(struct cmpci_softc *sc, size_t size, void **r_addr)
{
int error;
struct cmpci_dmanode *n;
error = 0;
n = kmem_alloc(sizeof(*n), KM_SLEEP);
#define CMPCI_DMABUF_ALIGN 0x4
#define CMPCI_DMABUF_BOUNDARY 0x0
n->cd_tag = sc->sc_dmat;
n->cd_size = size;
error = bus_dmamem_alloc(n->cd_tag, n->cd_size,
CMPCI_DMABUF_ALIGN, CMPCI_DMABUF_BOUNDARY, n->cd_segs,
sizeof(n->cd_segs)/sizeof(n->cd_segs[0]), &n->cd_nsegs,
BUS_DMA_WAITOK);
if (error)
goto mfree;
error = bus_dmamem_map(n->cd_tag, n->cd_segs, n->cd_nsegs, n->cd_size,
&n->cd_addr, BUS_DMA_WAITOK | BUS_DMA_COHERENT);
if (error)
goto dmafree;
error = bus_dmamap_create(n->cd_tag, n->cd_size, 1, n->cd_size, 0,
BUS_DMA_WAITOK, &n->cd_map);
if (error)
goto unmap;
error = bus_dmamap_load(n->cd_tag, n->cd_map, n->cd_addr, n->cd_size,
NULL, BUS_DMA_WAITOK);
if (error)
goto destroy;
n->cd_next = sc->sc_dmap;
sc->sc_dmap = n;
*r_addr = KVADDR(n);
return 0;
destroy:
bus_dmamap_destroy(n->cd_tag, n->cd_map);
unmap:
bus_dmamem_unmap(n->cd_tag, n->cd_addr, n->cd_size);
dmafree:
bus_dmamem_free(n->cd_tag,
n->cd_segs, sizeof(n->cd_segs)/sizeof(n->cd_segs[0]));
mfree:
kmem_free(n, sizeof(*n));
return error;
}
static int
cmpci_free_dmamem(struct cmpci_softc *sc, void *addr, size_t size)
{
struct cmpci_dmanode **nnp;
for (nnp = &sc->sc_dmap; *nnp; nnp= &(*nnp)->cd_next) {
if ((*nnp)->cd_addr == addr) {
struct cmpci_dmanode *n = *nnp;
bus_dmamap_unload(n->cd_tag, n->cd_map);
bus_dmamap_destroy(n->cd_tag, n->cd_map);
bus_dmamem_unmap(n->cd_tag, n->cd_addr, n->cd_size);
bus_dmamem_free(n->cd_tag, n->cd_segs,
sizeof(n->cd_segs)/sizeof(n->cd_segs[0]));
kmem_free(n, sizeof(*n));
return 0;
}
}
return -1;
}
static struct cmpci_dmanode *
cmpci_find_dmamem(struct cmpci_softc *sc, void *addr)
{
struct cmpci_dmanode *p;
for (p = sc->sc_dmap; p; p = p->cd_next)
if (KVADDR(p) == (void *)addr)
break;
return p;
}
#if 0
static void
cmpci_print_dmamem(struct cmpci_dmanode *);
static void
cmpci_print_dmamem(struct cmpci_dmanode *p)
{
DPRINTF(("DMA at virt:%p, dmaseg:%p, mapseg:%p, size:%p\n",
(void *)p->cd_addr, (void *)p->cd_segs[0].ds_addr,
(void *)DMAADDR(p), (void *)p->cd_size));
}
#endif /* DEBUG */
static void *
cmpci_allocm(void *handle, int direction, size_t size)
{
void *addr;
addr = NULL; /* XXX gcc */
if (cmpci_alloc_dmamem(handle, size, &addr))
return NULL;
return addr;
}
static void
cmpci_freem(void *handle, void *addr, size_t size)
{
cmpci_free_dmamem(handle, addr, size);
}
#define MAXVAL 256
static int
cmpci_adjust(int val, int mask)
{
val += (MAXVAL - mask) >> 1;
if (val >= MAXVAL)
val = MAXVAL-1;
return val & mask;
}
static void
cmpci_set_mixer_gain(struct cmpci_softc *sc, int port)
{
int src;
int bits, mask;
switch (port) {
case CMPCI_MIC_VOL:
cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_MIC,
CMPCI_ADJUST_MIC_GAIN(sc, sc->sc_gain[port][CMPCI_LR]));
return;
case CMPCI_MASTER_VOL:
src = CMPCI_SB16_MIXER_MASTER_L;
break;
case CMPCI_LINE_IN_VOL:
src = CMPCI_SB16_MIXER_LINE_L;
break;
case CMPCI_AUX_IN_VOL:
bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_MIXER_AUX,
CMPCI_ADJUST_AUX_GAIN(sc, sc->sc_gain[port][CMPCI_LEFT],
sc->sc_gain[port][CMPCI_RIGHT]));
return;
case CMPCI_MIC_RECVOL:
cmpci_reg_partial_write_1(sc, CMPCI_REG_MIXER25,
CMPCI_REG_ADMIC_SHIFT, CMPCI_REG_ADMIC_MASK,
CMPCI_ADJUST_ADMIC_GAIN(sc, sc->sc_gain[port][CMPCI_LR]));
return;
case CMPCI_DAC_VOL:
src = CMPCI_SB16_MIXER_VOICE_L;
break;
case CMPCI_FM_VOL:
src = CMPCI_SB16_MIXER_FM_L;
break;
case CMPCI_CD_VOL:
src = CMPCI_SB16_MIXER_CDDA_L;
break;
case CMPCI_PCSPEAKER:
cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_SPEAKER,
CMPCI_ADJUST_2_GAIN(sc, sc->sc_gain[port][CMPCI_LR]));
return;
case CMPCI_MIC_PREAMP:
if (sc->sc_gain[port][CMPCI_LR])
cmpci_reg_clear_1(sc, CMPCI_REG_MIXER25,
CMPCI_REG_MICGAINZ);
else
cmpci_reg_set_1(sc, CMPCI_REG_MIXER25,
CMPCI_REG_MICGAINZ);
return;
case CMPCI_DAC_MUTE:
if (sc->sc_gain[port][CMPCI_LR])
cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
CMPCI_REG_WSMUTE);
else
cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
CMPCI_REG_WSMUTE);
return;
case CMPCI_FM_MUTE:
if (sc->sc_gain[port][CMPCI_LR])
cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
CMPCI_REG_FMMUTE);
else
cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
CMPCI_REG_FMMUTE);
return;
case CMPCI_AUX_IN_MUTE:
if (sc->sc_gain[port][CMPCI_LR])
cmpci_reg_clear_1(sc, CMPCI_REG_MIXER25,
CMPCI_REG_VAUXRM|CMPCI_REG_VAUXLM);
else
cmpci_reg_set_1(sc, CMPCI_REG_MIXER25,
CMPCI_REG_VAUXRM|CMPCI_REG_VAUXLM);
return;
case CMPCI_CD_MUTE:
mask = CMPCI_SB16_SW_CD;
goto sbmute;
case CMPCI_MIC_MUTE:
mask = CMPCI_SB16_SW_MIC;
goto sbmute;
case CMPCI_LINE_IN_MUTE:
mask = CMPCI_SB16_SW_LINE;
sbmute:
bits = cmpci_mixerreg_read(sc, CMPCI_SB16_MIXER_OUTMIX);
if (sc->sc_gain[port][CMPCI_LR])
bits = bits & ~mask;
else
bits = bits | mask;
cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_OUTMIX, bits);
return;
case CMPCI_SPDIF_IN_SELECT:
case CMPCI_MONITOR_DAC:
case CMPCI_PLAYBACK_MODE:
case CMPCI_SPDIF_LOOP:
case CMPCI_SPDIF_OUT_PLAYBACK:
cmpci_set_out_ports(sc);
return;
case CMPCI_SPDIF_OUT_VOLTAGE:
if (CMPCI_ISCAP(sc, SPDOUT_VOLTAGE)) {
if (sc->sc_gain[CMPCI_SPDIF_OUT_VOLTAGE][CMPCI_LR]
== CMPCI_SPDIF_OUT_VOLTAGE_HIGH)
cmpci_reg_clear_reg_misc(sc, CMPCI_REG_5V);
else
cmpci_reg_set_reg_misc(sc, CMPCI_REG_5V);
}
return;
case CMPCI_SURROUND:
if (CMPCI_ISCAP(sc, SURROUND)) {
if (sc->sc_gain[CMPCI_SURROUND][CMPCI_LR])
cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
CMPCI_REG_SURROUND);
else
cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
CMPCI_REG_SURROUND);
}
return;
case CMPCI_REAR:
if (CMPCI_ISCAP(sc, REAR)) {
if (sc->sc_gain[CMPCI_REAR][CMPCI_LR])
cmpci_reg_set_reg_misc(sc, CMPCI_REG_N4SPK3D);
else
cmpci_reg_clear_reg_misc(sc, CMPCI_REG_N4SPK3D);
}
return;
case CMPCI_INDIVIDUAL:
if (CMPCI_ISCAP(sc, INDIVIDUAL_REAR)) {
if (sc->sc_gain[CMPCI_REAR][CMPCI_LR])
cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
CMPCI_REG_INDIVIDUAL);
else
cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
CMPCI_REG_INDIVIDUAL);
}
return;
case CMPCI_REVERSE:
if (CMPCI_ISCAP(sc, REVERSE_FR)) {
if (sc->sc_gain[CMPCI_REVERSE][CMPCI_LR])
cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
CMPCI_REG_REVERSE_FR);
else
cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
CMPCI_REG_REVERSE_FR);
}
return;
case CMPCI_SPDIF_IN_PHASE:
if (CMPCI_ISCAP(sc, SPDIN_PHASE)) {
if (sc->sc_gain[CMPCI_SPDIF_IN_PHASE][CMPCI_LR]
== CMPCI_SPDIF_IN_PHASE_POSITIVE)
cmpci_reg_clear_1(sc, CMPCI_REG_CHANNEL_FORMAT,
CMPCI_REG_SPDIN_PHASE);
else
cmpci_reg_set_1(sc, CMPCI_REG_CHANNEL_FORMAT,
CMPCI_REG_SPDIN_PHASE);
}
return;
default:
return;
}
cmpci_mixerreg_write(sc, src,
CMPCI_ADJUST_GAIN(sc, sc->sc_gain[port][CMPCI_LEFT]));
cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_L_TO_R(src),
CMPCI_ADJUST_GAIN(sc, sc->sc_gain[port][CMPCI_RIGHT]));
}
static void
cmpci_set_out_ports(struct cmpci_softc *sc)
{
uint8_t v;
int enspdout;
if (!CMPCI_ISCAP(sc, SPDLOOP))
return;
/* SPDIF/out select */
if (sc->sc_gain[CMPCI_SPDIF_LOOP][CMPCI_LR] == CMPCI_SPDIF_LOOP_OFF) {
/* playback */
cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1, CMPCI_REG_SPDIF_LOOP);
} else {
/* monitor SPDIF/in */
cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1, CMPCI_REG_SPDIF_LOOP);
}
/* SPDIF in select */
v = sc->sc_gain[CMPCI_SPDIF_IN_SELECT][CMPCI_LR];
if (v & CMPCI_SPDIFIN_SPDIFIN2)
cmpci_reg_set_reg_misc(sc, CMPCI_REG_2ND_SPDIFIN);
else
cmpci_reg_clear_reg_misc(sc, CMPCI_REG_2ND_SPDIFIN);
if (v & CMPCI_SPDIFIN_SPDIFOUT)
cmpci_reg_set_reg_misc(sc, CMPCI_REG_SPDFLOOPI);
else
cmpci_reg_clear_reg_misc(sc, CMPCI_REG_SPDFLOOPI);
enspdout = 0;
/* playback to ... */
if (CMPCI_ISCAP(sc, SPDOUT) &&
sc->sc_gain[CMPCI_PLAYBACK_MODE][CMPCI_LR]
== CMPCI_PLAYBACK_MODE_SPDIF &&
(sc->sc_play.md_divide == CMPCI_REG_RATE_44100 ||
(CMPCI_ISCAP(sc, SPDOUT_48K) &&
sc->sc_play.md_divide==CMPCI_REG_RATE_48000))) {
/* playback to SPDIF */
cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1, CMPCI_REG_SPDIF0_ENABLE);
enspdout = 1;
if (sc->sc_play.md_divide==CMPCI_REG_RATE_48000)
cmpci_reg_set_reg_misc(sc,
CMPCI_REG_SPDIFOUT_48K | CMPCI_REG_SPDIF48K);
else
cmpci_reg_clear_reg_misc(sc,
CMPCI_REG_SPDIFOUT_48K | CMPCI_REG_SPDIF48K);
} else {
/* playback to DAC */
cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1,
CMPCI_REG_SPDIF0_ENABLE);
if (CMPCI_ISCAP(sc, SPDOUT_48K))
cmpci_reg_clear_reg_misc(sc,
CMPCI_REG_SPDIFOUT_48K | CMPCI_REG_SPDIF48K);
}
/* legacy to SPDIF/out or not */
if (CMPCI_ISCAP(sc, SPDLEGACY)) {
if (sc->sc_gain[CMPCI_SPDIF_OUT_PLAYBACK][CMPCI_LR]
== CMPCI_SPDIF_OUT_PLAYBACK_WAVE)
cmpci_reg_clear_4(sc, CMPCI_REG_LEGACY_CTRL,
CMPCI_REG_LEGACY_SPDIF_ENABLE);
else {
cmpci_reg_set_4(sc, CMPCI_REG_LEGACY_CTRL,
CMPCI_REG_LEGACY_SPDIF_ENABLE);
enspdout = 1;
}
}
/* enable/disable SPDIF/out */
if (CMPCI_ISCAP(sc, XSPDOUT) && enspdout)
cmpci_reg_set_4(sc, CMPCI_REG_LEGACY_CTRL,
CMPCI_REG_XSPDIF_ENABLE);
else
cmpci_reg_clear_4(sc, CMPCI_REG_LEGACY_CTRL,
CMPCI_REG_XSPDIF_ENABLE);
/* SPDIF monitor (digital to analog output) */
if (CMPCI_ISCAP(sc, SPDIN_MONITOR)) {
v = sc->sc_gain[CMPCI_MONITOR_DAC][CMPCI_LR];
if (!(v & CMPCI_MONDAC_ENABLE))
cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
CMPCI_REG_SPDIN_MONITOR);
if (v & CMPCI_MONDAC_SPDOUT)
cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1,
CMPCI_REG_SPDIFOUT_DAC);
else
cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1,
CMPCI_REG_SPDIFOUT_DAC);
if (v & CMPCI_MONDAC_ENABLE)
cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
CMPCI_REG_SPDIN_MONITOR);
}
}
static int
cmpci_set_in_ports(struct cmpci_softc *sc)
{
int mask;
int bitsl, bitsr;
mask = sc->sc_in_mask;
/*
* Note CMPCI_RECORD_SOURCE_CD, CMPCI_RECORD_SOURCE_LINE_IN and
* CMPCI_RECORD_SOURCE_FM are defined to the corresponding bit
* of the mixer register.
*/
bitsr = mask & (CMPCI_RECORD_SOURCE_CD | CMPCI_RECORD_SOURCE_LINE_IN |
CMPCI_RECORD_SOURCE_FM);
bitsl = CMPCI_SB16_MIXER_SRC_R_TO_L(bitsr);
if (mask & CMPCI_RECORD_SOURCE_MIC) {
bitsl |= CMPCI_SB16_MIXER_MIC_SRC;
bitsr |= CMPCI_SB16_MIXER_MIC_SRC;
}
cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_L, bitsl);
cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_R, bitsr);
if (mask & CMPCI_RECORD_SOURCE_AUX_IN)
cmpci_reg_set_1(sc, CMPCI_REG_MIXER25,
CMPCI_REG_RAUXREN | CMPCI_REG_RAUXLEN);
else
cmpci_reg_clear_1(sc, CMPCI_REG_MIXER25,
CMPCI_REG_RAUXREN | CMPCI_REG_RAUXLEN);
if (mask & CMPCI_RECORD_SOURCE_WAVE)
cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
CMPCI_REG_WAVEINL | CMPCI_REG_WAVEINR);
else
cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
CMPCI_REG_WAVEINL | CMPCI_REG_WAVEINR);
if (CMPCI_ISCAP(sc, SPDIN) &&
(sc->sc_rec.md_divide == CMPCI_REG_RATE_44100 ||
(CMPCI_ISCAP(sc, SPDOUT_48K) &&
sc->sc_rec.md_divide == CMPCI_REG_RATE_48000/* XXX? */))) {
if (mask & CMPCI_RECORD_SOURCE_SPDIF) {
/* enable SPDIF/in */
cmpci_reg_set_4(sc,
CMPCI_REG_FUNC_1,
CMPCI_REG_SPDIF1_ENABLE);
} else {
cmpci_reg_clear_4(sc,
CMPCI_REG_FUNC_1,
CMPCI_REG_SPDIF1_ENABLE);
}
}
return 0;
}
static int
cmpci_set_port(void *handle, mixer_ctrl_t *cp)
{
struct cmpci_softc *sc;
int lgain, rgain;
sc = handle;
switch (cp->dev) {
case CMPCI_MIC_VOL:
case CMPCI_PCSPEAKER:
case CMPCI_MIC_RECVOL:
if (cp->un.value.num_channels != 1)
return EINVAL;
/* FALLTHROUGH */
case CMPCI_DAC_VOL:
case CMPCI_FM_VOL:
case CMPCI_CD_VOL:
case CMPCI_LINE_IN_VOL:
case CMPCI_AUX_IN_VOL:
case CMPCI_MASTER_VOL:
if (cp->type != AUDIO_MIXER_VALUE)
return EINVAL;
switch (cp->un.value.num_channels) {
case 1:
lgain = rgain =
cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
break;
case 2:
lgain = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
rgain = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
break;
default:
return EINVAL;
}
sc->sc_gain[cp->dev][CMPCI_LEFT] = lgain;
sc->sc_gain[cp->dev][CMPCI_RIGHT] = rgain;
cmpci_set_mixer_gain(sc, cp->dev);
break;
case CMPCI_RECORD_SOURCE:
if (cp->type != AUDIO_MIXER_SET)
return EINVAL;
if (cp->un.mask & ~(CMPCI_RECORD_SOURCE_MIC |
CMPCI_RECORD_SOURCE_CD | CMPCI_RECORD_SOURCE_LINE_IN |
CMPCI_RECORD_SOURCE_AUX_IN | CMPCI_RECORD_SOURCE_WAVE |
CMPCI_RECORD_SOURCE_FM | CMPCI_RECORD_SOURCE_SPDIF))
return EINVAL;
if (cp->un.mask & CMPCI_RECORD_SOURCE_SPDIF)
cp->un.mask = CMPCI_RECORD_SOURCE_SPDIF;
sc->sc_in_mask = cp->un.mask;
return cmpci_set_in_ports(sc);
/* boolean */
case CMPCI_DAC_MUTE:
case CMPCI_FM_MUTE:
case CMPCI_CD_MUTE:
case CMPCI_LINE_IN_MUTE:
case CMPCI_AUX_IN_MUTE:
case CMPCI_MIC_MUTE:
case CMPCI_MIC_PREAMP:
case CMPCI_PLAYBACK_MODE:
case CMPCI_SPDIF_IN_PHASE:
case CMPCI_SPDIF_LOOP:
case CMPCI_SPDIF_OUT_PLAYBACK:
case CMPCI_SPDIF_OUT_VOLTAGE:
case CMPCI_REAR:
case CMPCI_INDIVIDUAL:
case CMPCI_REVERSE:
case CMPCI_SURROUND:
if (cp->type != AUDIO_MIXER_ENUM)
return EINVAL;
sc->sc_gain[cp->dev][CMPCI_LR] = cp->un.ord != 0;
cmpci_set_mixer_gain(sc, cp->dev);
break;
case CMPCI_SPDIF_IN_SELECT:
switch (cp->un.ord) {
case CMPCI_SPDIF_IN_SPDIN1:
case CMPCI_SPDIF_IN_SPDIN2:
case CMPCI_SPDIF_IN_SPDOUT:
break;
default:
return EINVAL;
}
goto xenum;
case CMPCI_MONITOR_DAC:
switch (cp->un.ord) {
case CMPCI_MONITOR_DAC_OFF:
case CMPCI_MONITOR_DAC_SPDIN:
case CMPCI_MONITOR_DAC_SPDOUT:
break;
default:
return EINVAL;
}
xenum:
if (cp->type != AUDIO_MIXER_ENUM)
return EINVAL;
sc->sc_gain[cp->dev][CMPCI_LR] = cp->un.ord;
cmpci_set_mixer_gain(sc, cp->dev);
break;
default:
return EINVAL;
}
return 0;
}
static int
cmpci_get_port(void *handle, mixer_ctrl_t *cp)
{
struct cmpci_softc *sc;
sc = handle;
switch (cp->dev) {
case CMPCI_MIC_VOL:
case CMPCI_PCSPEAKER:
case CMPCI_MIC_RECVOL:
if (cp->un.value.num_channels != 1)
return EINVAL;
/*FALLTHROUGH*/
case CMPCI_DAC_VOL:
case CMPCI_FM_VOL:
case CMPCI_CD_VOL:
case CMPCI_LINE_IN_VOL:
case CMPCI_AUX_IN_VOL:
case CMPCI_MASTER_VOL:
switch (cp->un.value.num_channels) {
case 1:
cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
sc->sc_gain[cp->dev][CMPCI_LEFT];
break;
case 2:
cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
sc->sc_gain[cp->dev][CMPCI_LEFT];
cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
sc->sc_gain[cp->dev][CMPCI_RIGHT];
break;
default:
return EINVAL;
}
break;
case CMPCI_RECORD_SOURCE:
cp->un.mask = sc->sc_in_mask;
break;
case CMPCI_DAC_MUTE:
case CMPCI_FM_MUTE:
case CMPCI_CD_MUTE:
case CMPCI_LINE_IN_MUTE:
case CMPCI_AUX_IN_MUTE:
case CMPCI_MIC_MUTE:
case CMPCI_MIC_PREAMP:
case CMPCI_PLAYBACK_MODE:
case CMPCI_SPDIF_IN_SELECT:
case CMPCI_SPDIF_IN_PHASE:
case CMPCI_SPDIF_LOOP:
case CMPCI_SPDIF_OUT_PLAYBACK:
case CMPCI_SPDIF_OUT_VOLTAGE:
case CMPCI_MONITOR_DAC:
case CMPCI_REAR:
case CMPCI_INDIVIDUAL:
case CMPCI_REVERSE:
case CMPCI_SURROUND:
cp->un.ord = sc->sc_gain[cp->dev][CMPCI_LR];
break;
default:
return EINVAL;
}
return 0;
}
/* ARGSUSED */
static size_t
cmpci_round_buffersize(void *handle, int direction,
size_t bufsize)
{
if (bufsize > 0x10000)
bufsize = 0x10000;
return bufsize;
}
static paddr_t
cmpci_mappage(void *handle, void *addr, off_t offset, int prot)
{
struct cmpci_dmanode *p;
if (offset < 0 || NULL == (p = cmpci_find_dmamem(handle, addr)))
return -1;
return bus_dmamem_mmap(p->cd_tag, p->cd_segs,
sizeof(p->cd_segs)/sizeof(p->cd_segs[0]),
offset, prot, BUS_DMA_WAITOK);
}
/* ARGSUSED */
static int
cmpci_get_props(void *handle)
{
return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX;
}
static int
cmpci_trigger_output(void *handle, void *start, void *end, int blksize,
void (*intr)(void *), void *arg,
const audio_params_t *param)
{
struct cmpci_softc *sc;
struct cmpci_dmanode *p;
int bps;
sc = handle;
sc->sc_play.intr = intr;
sc->sc_play.intr_arg = arg;
bps = param->channels * param->precision / 8;
if (!bps)
return EINVAL;
/* set DMA frame */
if (!(p = cmpci_find_dmamem(sc, start)))
return EINVAL;
bus_space_write_4(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA0_BASE,
DMAADDR(p));
delay(10);
bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA0_BYTES,
((char *)end - (char *)start + 1) / bps - 1);
delay(10);
/* set interrupt count */
bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA0_SAMPLES,
(blksize + bps - 1) / bps - 1);
delay(10);
/* start DMA */
cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_DIR); /* PLAY */
cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH0_INTR_ENABLE);
cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_ENABLE);
return 0;
}
static int
cmpci_trigger_input(void *handle, void *start, void *end, int blksize,
void (*intr)(void *), void *arg,
const audio_params_t *param)
{
struct cmpci_softc *sc;
struct cmpci_dmanode *p;
int bps;
sc = handle;
sc->sc_rec.intr = intr;
sc->sc_rec.intr_arg = arg;
bps = param->channels * param->precision / 8;
if (!bps)
return EINVAL;
/* set DMA frame */
if (!(p=cmpci_find_dmamem(sc, start)))
return EINVAL;
bus_space_write_4(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_BASE,
DMAADDR(p));
delay(10);
bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_BYTES,
((char *)end - (char *)start + 1) / bps - 1);
delay(10);
/* set interrupt count */
bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_SAMPLES,
(blksize + bps - 1) / bps - 1);
delay(10);
/* start DMA */
cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_DIR); /* REC */
cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH1_INTR_ENABLE);
cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_ENABLE);
return 0;
}
static void
cmpci_get_locks(void *addr, kmutex_t **intr, kmutex_t **thread)
{
struct cmpci_softc *sc;
sc = addr;
*intr = &sc->sc_intr_lock;
*thread = &sc->sc_lock;
}
/* end of file */