NetBSD/sys/dev/marvell/if_gfe.c
2006-03-29 06:51:47 +00:00

1931 lines
52 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* $NetBSD: if_gfe.c,v 1.20 2006/03/29 06:55:32 thorpej Exp $ */
/*
* Copyright (c) 2002 Allegro Networks, Inc., Wasabi Systems, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project by
* Allegro Networks, Inc., and Wasabi Systems, Inc.
* 4. The name of Allegro Networks, Inc. may not be used to endorse
* or promote products derived from this software without specific prior
* written permission.
* 5. The name of Wasabi Systems, Inc. may not be used to endorse
* or promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY ALLEGRO NETWORKS, INC. AND
* WASABI SYSTEMS, INC. ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL EITHER ALLEGRO NETWORKS, INC. OR WASABI SYSTEMS, INC.
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* if_gfe.c -- GT ethernet MAC driver
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_gfe.c,v 1.20 2006/03/29 06:55:32 thorpej Exp $");
#include "opt_inet.h"
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/types.h>
#include <sys/inttypes.h>
#include <sys/queue.h>
#include <uvm/uvm_extern.h>
#include <sys/callout.h>
#include <sys/device.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <machine/bus.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_ether.h>
#include <net/if_media.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/if_inarp.h>
#endif
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <dev/mii/miivar.h>
#include <dev/marvell/gtintrreg.h>
#include <dev/marvell/gtethreg.h>
#include <dev/marvell/gtvar.h>
#include <dev/marvell/if_gfevar.h>
#define GE_READ(sc, reg) \
bus_space_read_4((sc)->sc_gt_memt, (sc)->sc_memh, ETH__ ## reg)
#define GE_WRITE(sc, reg, v) \
bus_space_write_4((sc)->sc_gt_memt, (sc)->sc_memh, ETH__ ## reg, (v))
#define GE_DEBUG
#if 0
#define GE_NOHASH
#define GE_NORX
#endif
#ifdef GE_DEBUG
#define GE_DPRINTF(sc, a) do \
if ((sc)->sc_ec.ec_if.if_flags & IFF_DEBUG) \
printf a; \
while (0)
#define GE_FUNC_ENTER(sc, func) GE_DPRINTF(sc, ("[" func))
#define GE_FUNC_EXIT(sc, str) GE_DPRINTF(sc, (str "]"))
#else
#define GE_DPRINTF(sc, a) do { } while (0)
#define GE_FUNC_ENTER(sc, func) do { } while (0)
#define GE_FUNC_EXIT(sc, str) do { } while (0)
#endif
enum gfe_whack_op {
GE_WHACK_START, GE_WHACK_RESTART,
GE_WHACK_CHANGE, GE_WHACK_STOP
};
enum gfe_hash_op {
GE_HASH_ADD, GE_HASH_REMOVE,
};
#if 1
#define htogt32(a) htobe32(a)
#define gt32toh(a) be32toh(a)
#else
#define htogt32(a) htole32(a)
#define gt32toh(a) le32toh(a)
#endif
#define GE_RXDSYNC(sc, rxq, n, ops) \
bus_dmamap_sync((sc)->sc_dmat, (rxq)->rxq_desc_mem.gdm_map, \
(n) * sizeof((rxq)->rxq_descs[0]), sizeof((rxq)->rxq_descs[0]), \
(ops))
#define GE_RXDPRESYNC(sc, rxq, n) \
GE_RXDSYNC(sc, rxq, n, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE)
#define GE_RXDPOSTSYNC(sc, rxq, n) \
GE_RXDSYNC(sc, rxq, n, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE)
#define GE_TXDSYNC(sc, txq, n, ops) \
bus_dmamap_sync((sc)->sc_dmat, (txq)->txq_desc_mem.gdm_map, \
(n) * sizeof((txq)->txq_descs[0]), sizeof((txq)->txq_descs[0]), \
(ops))
#define GE_TXDPRESYNC(sc, txq, n) \
GE_TXDSYNC(sc, txq, n, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE)
#define GE_TXDPOSTSYNC(sc, txq, n) \
GE_TXDSYNC(sc, txq, n, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE)
#define STATIC
STATIC int gfe_match (struct device *, struct cfdata *, void *);
STATIC void gfe_attach (struct device *, struct device *, void *);
STATIC int gfe_dmamem_alloc(struct gfe_softc *, struct gfe_dmamem *, int,
size_t, int);
STATIC void gfe_dmamem_free(struct gfe_softc *, struct gfe_dmamem *);
STATIC int gfe_ifioctl (struct ifnet *, u_long, caddr_t);
STATIC void gfe_ifstart (struct ifnet *);
STATIC void gfe_ifwatchdog (struct ifnet *);
STATIC int gfe_mii_mediachange (struct ifnet *);
STATIC void gfe_mii_mediastatus (struct ifnet *, struct ifmediareq *);
STATIC int gfe_mii_read (struct device *, int, int);
STATIC void gfe_mii_write (struct device *, int, int, int);
STATIC void gfe_mii_statchg (struct device *);
STATIC void gfe_tick(void *arg);
STATIC void gfe_tx_restart(void *);
STATIC int gfe_tx_enqueue(struct gfe_softc *, enum gfe_txprio);
STATIC uint32_t gfe_tx_done(struct gfe_softc *, enum gfe_txprio, uint32_t);
STATIC void gfe_tx_cleanup(struct gfe_softc *, enum gfe_txprio, int);
STATIC int gfe_tx_txqalloc(struct gfe_softc *, enum gfe_txprio);
STATIC int gfe_tx_start(struct gfe_softc *, enum gfe_txprio);
STATIC void gfe_tx_stop(struct gfe_softc *, enum gfe_whack_op);
STATIC void gfe_rx_cleanup(struct gfe_softc *, enum gfe_rxprio);
STATIC void gfe_rx_get(struct gfe_softc *, enum gfe_rxprio);
STATIC int gfe_rx_prime(struct gfe_softc *);
STATIC uint32_t gfe_rx_process(struct gfe_softc *, uint32_t, uint32_t);
STATIC int gfe_rx_rxqalloc(struct gfe_softc *, enum gfe_rxprio);
STATIC int gfe_rx_rxqinit(struct gfe_softc *, enum gfe_rxprio);
STATIC void gfe_rx_stop(struct gfe_softc *, enum gfe_whack_op);
STATIC int gfe_intr(void *);
STATIC int gfe_whack(struct gfe_softc *, enum gfe_whack_op);
STATIC int gfe_hash_compute(struct gfe_softc *, const uint8_t [ETHER_ADDR_LEN]);
STATIC int gfe_hash_entry_op(struct gfe_softc *, enum gfe_hash_op,
enum gfe_rxprio, const uint8_t [ETHER_ADDR_LEN]);
STATIC int gfe_hash_multichg(struct ethercom *, const struct ether_multi *,
u_long);
STATIC int gfe_hash_fill(struct gfe_softc *);
STATIC int gfe_hash_alloc(struct gfe_softc *);
/* Linkup to the rest of the kernel */
CFATTACH_DECL(gfe, sizeof(struct gfe_softc),
gfe_match, gfe_attach, NULL, NULL);
extern struct cfdriver gfe_cd;
int
gfe_match(struct device *parent, struct cfdata *cf, void *aux)
{
struct gt_softc *gt = (struct gt_softc *) parent;
struct gt_attach_args *ga = aux;
uint8_t enaddr[6];
if (!GT_ETHEROK(gt, ga, &gfe_cd))
return 0;
if (gtget_macaddr(gt, ga->ga_unit, enaddr) < 0)
return 0;
if (enaddr[0] == 0 && enaddr[1] == 0 && enaddr[2] == 0 &&
enaddr[3] == 0 && enaddr[4] == 0 && enaddr[5] == 0)
return 0;
return 1;
}
/*
* Attach this instance, and then all the sub-devices
*/
void
gfe_attach(struct device *parent, struct device *self, void *aux)
{
struct gt_attach_args * const ga = aux;
struct gt_softc * const gt = device_private(parent);
struct gfe_softc * const sc = device_private(self);
struct ifnet * const ifp = &sc->sc_ec.ec_if;
uint32_t data;
uint8_t enaddr[6];
int phyaddr;
uint32_t sdcr;
int error;
GT_ETHERFOUND(gt, ga);
sc->sc_gt_memt = ga->ga_memt;
sc->sc_gt_memh = ga->ga_memh;
sc->sc_dmat = ga->ga_dmat;
sc->sc_macno = ga->ga_unit;
if (bus_space_subregion(sc->sc_gt_memt, sc->sc_gt_memh,
ETH_BASE(sc->sc_macno), ETH_SIZE, &sc->sc_memh)) {
aprint_error(": failed to map registers\n");
}
callout_init(&sc->sc_co);
data = bus_space_read_4(sc->sc_gt_memt, sc->sc_gt_memh, ETH_EPAR);
phyaddr = ETH_EPAR_PhyAD_GET(data, sc->sc_macno);
gtget_macaddr(gt, sc->sc_macno, enaddr);
sc->sc_pcr = GE_READ(sc, EPCR);
sc->sc_pcxr = GE_READ(sc, EPCXR);
sc->sc_intrmask = GE_READ(sc, EIMR) | ETH_IR_MIIPhySTC;
aprint_normal(": address %s", ether_sprintf(enaddr));
#if defined(DEBUG)
aprint_normal(", pcr %#x, pcxr %#x", sc->sc_pcr, sc->sc_pcxr);
#endif
sc->sc_pcxr &= ~ETH_EPCXR_PRIOrx_Override;
if (device_cfdata(&sc->sc_dev)->cf_flags & 1) {
aprint_normal(", phy %d (rmii)", phyaddr);
sc->sc_pcxr |= ETH_EPCXR_RMIIEn;
} else {
aprint_normal(", phy %d (mii)", phyaddr);
sc->sc_pcxr &= ~ETH_EPCXR_RMIIEn;
}
if (device_cfdata(&sc->sc_dev)->cf_flags & 2)
sc->sc_flags |= GE_NOFREE;
sc->sc_pcxr &= ~(3 << 14);
sc->sc_pcxr |= (ETH_EPCXR_MFL_1536 << 14);
if (sc->sc_pcr & ETH_EPCR_EN) {
int tries = 1000;
/*
* Abort transmitter and receiver and wait for them to quiese
*/
GE_WRITE(sc, ESDCMR, ETH_ESDCMR_AR|ETH_ESDCMR_AT);
do {
delay(100);
} while (tries-- > 0 && (GE_READ(sc, ESDCMR) & (ETH_ESDCMR_AR|ETH_ESDCMR_AT)));
}
sc->sc_pcr &= ~(ETH_EPCR_EN | ETH_EPCR_RBM | ETH_EPCR_PM | ETH_EPCR_PBF);
#if defined(DEBUG)
aprint_normal(", pcr %#x, pcxr %#x", sc->sc_pcr, sc->sc_pcxr);
#endif
/*
* Now turn off the GT. If it didn't quiese, too ***ing bad.
*/
GE_WRITE(sc, EPCR, sc->sc_pcr);
GE_WRITE(sc, EIMR, sc->sc_intrmask);
sdcr = GE_READ(sc, ESDCR);
ETH_ESDCR_BSZ_SET(sdcr, ETH_ESDCR_BSZ_4);
sdcr |= ETH_ESDCR_RIFB;
GE_WRITE(sc, ESDCR, sdcr);
sc->sc_max_frame_length = 1536;
aprint_normal("\n");
sc->sc_mii.mii_ifp = ifp;
sc->sc_mii.mii_readreg = gfe_mii_read;
sc->sc_mii.mii_writereg = gfe_mii_write;
sc->sc_mii.mii_statchg = gfe_mii_statchg;
ifmedia_init(&sc->sc_mii.mii_media, 0, gfe_mii_mediachange,
gfe_mii_mediastatus);
mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, phyaddr,
MII_OFFSET_ANY, MIIF_NOISOLATE);
if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
} else {
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
}
strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
ifp->if_softc = sc;
/* ifp->if_mowner = &sc->sc_mowner; */
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
#if 0
ifp->if_flags |= IFF_DEBUG;
#endif
ifp->if_ioctl = gfe_ifioctl;
ifp->if_start = gfe_ifstart;
ifp->if_watchdog = gfe_ifwatchdog;
if (sc->sc_flags & GE_NOFREE) {
error = gfe_rx_rxqalloc(sc, GE_RXPRIO_HI);
if (!error)
error = gfe_rx_rxqalloc(sc, GE_RXPRIO_MEDHI);
if (!error)
error = gfe_rx_rxqalloc(sc, GE_RXPRIO_MEDLO);
if (!error)
error = gfe_rx_rxqalloc(sc, GE_RXPRIO_LO);
if (!error)
error = gfe_tx_txqalloc(sc, GE_TXPRIO_HI);
if (!error)
error = gfe_hash_alloc(sc);
if (error)
aprint_error(
"%s: failed to allocate resources: %d\n",
ifp->if_xname, error);
}
if_attach(ifp);
ether_ifattach(ifp, enaddr);
#if NBPFILTER > 0
bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
#endif
#if NRND > 0
rnd_attach_source(&sc->sc_rnd_source, self->dv_xname, RND_TYPE_NET, 0);
#endif
intr_establish(IRQ_ETH0 + sc->sc_macno, IST_LEVEL, IPL_NET,
gfe_intr, sc);
}
int
gfe_dmamem_alloc(struct gfe_softc *sc, struct gfe_dmamem *gdm, int maxsegs,
size_t size, int flags)
{
int error = 0;
GE_FUNC_ENTER(sc, "gfe_dmamem_alloc");
KASSERT(gdm->gdm_kva == NULL);
gdm->gdm_size = size;
gdm->gdm_maxsegs = maxsegs;
error = bus_dmamem_alloc(sc->sc_dmat, gdm->gdm_size, PAGE_SIZE,
gdm->gdm_size, gdm->gdm_segs, gdm->gdm_maxsegs, &gdm->gdm_nsegs,
BUS_DMA_NOWAIT);
if (error)
goto fail;
error = bus_dmamem_map(sc->sc_dmat, gdm->gdm_segs, gdm->gdm_nsegs,
gdm->gdm_size, &gdm->gdm_kva, flags | BUS_DMA_NOWAIT);
if (error)
goto fail;
error = bus_dmamap_create(sc->sc_dmat, gdm->gdm_size, gdm->gdm_nsegs,
gdm->gdm_size, 0, BUS_DMA_ALLOCNOW|BUS_DMA_NOWAIT, &gdm->gdm_map);
if (error)
goto fail;
error = bus_dmamap_load(sc->sc_dmat, gdm->gdm_map, gdm->gdm_kva,
gdm->gdm_size, NULL, BUS_DMA_NOWAIT);
if (error)
goto fail;
/* invalidate from cache */
bus_dmamap_sync(sc->sc_dmat, gdm->gdm_map, 0, gdm->gdm_size,
BUS_DMASYNC_PREREAD);
fail:
if (error) {
gfe_dmamem_free(sc, gdm);
GE_DPRINTF(sc, (":err=%d", error));
}
GE_DPRINTF(sc, (":kva=%p/%#x,map=%p,nsegs=%d,pa=%x/%x",
gdm->gdm_kva, gdm->gdm_size, gdm->gdm_map, gdm->gdm_map->dm_nsegs,
gdm->gdm_map->dm_segs->ds_addr, gdm->gdm_map->dm_segs->ds_len));
GE_FUNC_EXIT(sc, "");
return error;
}
void
gfe_dmamem_free(struct gfe_softc *sc, struct gfe_dmamem *gdm)
{
GE_FUNC_ENTER(sc, "gfe_dmamem_free");
if (gdm->gdm_map)
bus_dmamap_destroy(sc->sc_dmat, gdm->gdm_map);
if (gdm->gdm_kva)
bus_dmamem_unmap(sc->sc_dmat, gdm->gdm_kva, gdm->gdm_size);
if (gdm->gdm_nsegs > 0)
bus_dmamem_free(sc->sc_dmat, gdm->gdm_segs, gdm->gdm_nsegs);
gdm->gdm_map = NULL;
gdm->gdm_kva = NULL;
gdm->gdm_nsegs = 0;
GE_FUNC_EXIT(sc, "");
}
int
gfe_ifioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct gfe_softc * const sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
struct ifaddr *ifa = (struct ifaddr *) data;
int s, error = 0;
GE_FUNC_ENTER(sc, "gfe_ifioctl");
s = splnet();
switch (cmd) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
error = gfe_whack(sc, GE_WHACK_START);
if (error == 0)
arp_ifinit(ifp, ifa);
break;
#endif
default:
error = gfe_whack(sc, GE_WHACK_START);
break;
}
break;
case SIOCSIFFLAGS:
switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
case IFF_UP|IFF_RUNNING:/* active->active, update */
error = gfe_whack(sc, GE_WHACK_CHANGE);
break;
case IFF_RUNNING: /* not up, so we stop */
error = gfe_whack(sc, GE_WHACK_STOP);
break;
case IFF_UP: /* not running, so we start */
error = gfe_whack(sc, GE_WHACK_START);
break;
case 0: /* idle->idle: do nothing */
break;
}
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
error = (cmd == SIOCADDMULTI)
? ether_addmulti(ifr, &sc->sc_ec)
: ether_delmulti(ifr, &sc->sc_ec);
if (error == ENETRESET) {
if (ifp->if_flags & IFF_RUNNING)
error = gfe_whack(sc, GE_WHACK_CHANGE);
else
error = 0;
}
break;
case SIOCSIFMTU:
if (ifr->ifr_mtu > ETHERMTU || ifr->ifr_mtu < ETHERMIN) {
error = EINVAL;
break;
}
ifp->if_mtu = ifr->ifr_mtu;
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
break;
default:
error = EINVAL;
break;
}
splx(s);
GE_FUNC_EXIT(sc, "");
return error;
}
void
gfe_ifstart(struct ifnet *ifp)
{
struct gfe_softc * const sc = ifp->if_softc;
struct mbuf *m;
GE_FUNC_ENTER(sc, "gfe_ifstart");
if ((ifp->if_flags & IFF_RUNNING) == 0) {
GE_FUNC_EXIT(sc, "$");
return;
}
for (;;) {
IF_DEQUEUE(&ifp->if_snd, m);
if (m == NULL) {
ifp->if_flags &= ~IFF_OACTIVE;
GE_FUNC_EXIT(sc, "");
return;
}
/*
* No space in the pending queue? try later.
*/
if (IF_QFULL(&sc->sc_txq[GE_TXPRIO_HI].txq_pendq))
break;
/*
* Try to enqueue a mbuf to the device. If that fails, we
* can always try to map the next mbuf.
*/
IF_ENQUEUE(&sc->sc_txq[GE_TXPRIO_HI].txq_pendq, m);
GE_DPRINTF(sc, (">"));
#ifndef GE_NOTX
(void) gfe_tx_enqueue(sc, GE_TXPRIO_HI);
#endif
}
/*
* Attempt to queue the mbuf for send failed.
*/
IF_PREPEND(&ifp->if_snd, m);
ifp->if_flags |= IFF_OACTIVE;
GE_FUNC_EXIT(sc, "%%");
}
void
gfe_ifwatchdog(struct ifnet *ifp)
{
struct gfe_softc * const sc = ifp->if_softc;
struct gfe_txqueue * const txq = &sc->sc_txq[GE_TXPRIO_HI];
GE_FUNC_ENTER(sc, "gfe_ifwatchdog");
printf("%s: device timeout", sc->sc_dev.dv_xname);
if (ifp->if_flags & IFF_RUNNING) {
uint32_t curtxdnum = (bus_space_read_4(sc->sc_gt_memt, sc->sc_gt_memh, txq->txq_ectdp) - txq->txq_desc_busaddr) / sizeof(txq->txq_descs[0]);
GE_TXDPOSTSYNC(sc, txq, txq->txq_fi);
GE_TXDPOSTSYNC(sc, txq, curtxdnum);
printf(" (fi=%d(%#x),lo=%d,cur=%d(%#x),icm=%#x) ",
txq->txq_fi, txq->txq_descs[txq->txq_fi].ed_cmdsts,
txq->txq_lo, curtxdnum, txq->txq_descs[curtxdnum].ed_cmdsts,
GE_READ(sc, EICR));
GE_TXDPRESYNC(sc, txq, txq->txq_fi);
GE_TXDPRESYNC(sc, txq, curtxdnum);
}
printf("\n");
ifp->if_oerrors++;
(void) gfe_whack(sc, GE_WHACK_RESTART);
GE_FUNC_EXIT(sc, "");
}
int
gfe_rx_rxqalloc(struct gfe_softc *sc, enum gfe_rxprio rxprio)
{
struct gfe_rxqueue * const rxq = &sc->sc_rxq[rxprio];
int error;
GE_FUNC_ENTER(sc, "gfe_rx_rxqalloc");
GE_DPRINTF(sc, ("(%d)", rxprio));
error = gfe_dmamem_alloc(sc, &rxq->rxq_desc_mem, 1,
GE_RXDESC_MEMSIZE, BUS_DMA_NOCACHE);
if (error) {
GE_FUNC_EXIT(sc, "!!");
return error;
}
error = gfe_dmamem_alloc(sc, &rxq->rxq_buf_mem, GE_RXBUF_NSEGS,
GE_RXBUF_MEMSIZE, 0);
if (error) {
GE_FUNC_EXIT(sc, "!!!");
return error;
}
GE_FUNC_EXIT(sc, "");
return error;
}
int
gfe_rx_rxqinit(struct gfe_softc *sc, enum gfe_rxprio rxprio)
{
struct gfe_rxqueue * const rxq = &sc->sc_rxq[rxprio];
volatile struct gt_eth_desc *rxd;
const bus_dma_segment_t *ds;
int idx;
bus_addr_t nxtaddr;
bus_size_t boff;
GE_FUNC_ENTER(sc, "gfe_rx_rxqinit");
GE_DPRINTF(sc, ("(%d)", rxprio));
if ((sc->sc_flags & GE_NOFREE) == 0) {
int error = gfe_rx_rxqalloc(sc, rxprio);
if (error) {
GE_FUNC_EXIT(sc, "!");
return error;
}
} else {
KASSERT(rxq->rxq_desc_mem.gdm_kva != NULL);
KASSERT(rxq->rxq_buf_mem.gdm_kva != NULL);
}
memset(rxq->rxq_desc_mem.gdm_kva, 0, GE_RXDESC_MEMSIZE);
rxq->rxq_descs =
(volatile struct gt_eth_desc *) rxq->rxq_desc_mem.gdm_kva;
rxq->rxq_desc_busaddr = rxq->rxq_desc_mem.gdm_map->dm_segs[0].ds_addr;
rxq->rxq_bufs = (struct gfe_rxbuf *) rxq->rxq_buf_mem.gdm_kva;
rxq->rxq_fi = 0;
rxq->rxq_active = GE_RXDESC_MAX;
for (idx = 0, rxd = rxq->rxq_descs,
boff = 0, ds = rxq->rxq_buf_mem.gdm_map->dm_segs,
nxtaddr = rxq->rxq_desc_busaddr + sizeof(*rxd);
idx < GE_RXDESC_MAX;
idx++, rxd++, nxtaddr += sizeof(*rxd)) {
rxd->ed_lencnt = htogt32(GE_RXBUF_SIZE << 16);
rxd->ed_cmdsts = htogt32(RX_CMD_F|RX_CMD_L|RX_CMD_O|RX_CMD_EI);
rxd->ed_bufptr = htogt32(ds->ds_addr + boff);
/*
* update the nxtptr to point to the next txd.
*/
if (idx == GE_RXDESC_MAX - 1)
nxtaddr = rxq->rxq_desc_busaddr;
rxd->ed_nxtptr = htogt32(nxtaddr);
boff += GE_RXBUF_SIZE;
if (boff == ds->ds_len) {
ds++;
boff = 0;
}
}
bus_dmamap_sync(sc->sc_dmat, rxq->rxq_desc_mem.gdm_map, 0,
rxq->rxq_desc_mem.gdm_map->dm_mapsize,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sc_dmat, rxq->rxq_buf_mem.gdm_map, 0,
rxq->rxq_buf_mem.gdm_map->dm_mapsize,
BUS_DMASYNC_PREREAD);
rxq->rxq_intrbits = ETH_IR_RxBuffer|ETH_IR_RxError;
switch (rxprio) {
case GE_RXPRIO_HI:
rxq->rxq_intrbits |= ETH_IR_RxBuffer_3|ETH_IR_RxError_3;
rxq->rxq_efrdp = ETH_EFRDP3(sc->sc_macno);
rxq->rxq_ecrdp = ETH_ECRDP3(sc->sc_macno);
break;
case GE_RXPRIO_MEDHI:
rxq->rxq_intrbits |= ETH_IR_RxBuffer_2|ETH_IR_RxError_2;
rxq->rxq_efrdp = ETH_EFRDP2(sc->sc_macno);
rxq->rxq_ecrdp = ETH_ECRDP2(sc->sc_macno);
break;
case GE_RXPRIO_MEDLO:
rxq->rxq_intrbits |= ETH_IR_RxBuffer_1|ETH_IR_RxError_1;
rxq->rxq_efrdp = ETH_EFRDP1(sc->sc_macno);
rxq->rxq_ecrdp = ETH_ECRDP1(sc->sc_macno);
break;
case GE_RXPRIO_LO:
rxq->rxq_intrbits |= ETH_IR_RxBuffer_0|ETH_IR_RxError_0;
rxq->rxq_efrdp = ETH_EFRDP0(sc->sc_macno);
rxq->rxq_ecrdp = ETH_ECRDP0(sc->sc_macno);
break;
}
GE_FUNC_EXIT(sc, "");
return 0;
}
void
gfe_rx_get(struct gfe_softc *sc, enum gfe_rxprio rxprio)
{
struct ifnet * const ifp = &sc->sc_ec.ec_if;
struct gfe_rxqueue * const rxq = &sc->sc_rxq[rxprio];
struct mbuf *m = rxq->rxq_curpkt;
GE_FUNC_ENTER(sc, "gfe_rx_get");
GE_DPRINTF(sc, ("(%d)", rxprio));
while (rxq->rxq_active > 0) {
volatile struct gt_eth_desc *rxd = &rxq->rxq_descs[rxq->rxq_fi];
struct gfe_rxbuf *rxb = &rxq->rxq_bufs[rxq->rxq_fi];
const struct ether_header *eh;
unsigned int cmdsts;
size_t buflen;
GE_RXDPOSTSYNC(sc, rxq, rxq->rxq_fi);
cmdsts = gt32toh(rxd->ed_cmdsts);
GE_DPRINTF(sc, (":%d=%#x", rxq->rxq_fi, cmdsts));
rxq->rxq_cmdsts = cmdsts;
/*
* Sometimes the GE "forgets" to reset the ownership bit.
* But if the length has been rewritten, the packet is ours
* so pretend the O bit is set.
*/
buflen = gt32toh(rxd->ed_lencnt) & 0xffff;
if ((cmdsts & RX_CMD_O) && buflen == 0) {
GE_RXDPRESYNC(sc, rxq, rxq->rxq_fi);
break;
}
/*
* If this is not a single buffer packet with no errors
* or for some reason it's bigger than our frame size,
* ignore it and go to the next packet.
*/
if ((cmdsts & (RX_CMD_F|RX_CMD_L|RX_STS_ES)) !=
(RX_CMD_F|RX_CMD_L) ||
buflen > sc->sc_max_frame_length) {
GE_DPRINTF(sc, ("!"));
--rxq->rxq_active;
ifp->if_ipackets++;
ifp->if_ierrors++;
goto give_it_back;
}
/* CRC is included with the packet; trim it off. */
buflen -= ETHER_CRC_LEN;
if (m == NULL) {
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
GE_DPRINTF(sc, ("?"));
break;
}
}
if ((m->m_flags & M_EXT) == 0 && buflen > MHLEN - 2) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
GE_DPRINTF(sc, ("?"));
break;
}
}
m->m_data += 2;
m->m_len = 0;
m->m_pkthdr.len = 0;
m->m_pkthdr.rcvif = ifp;
rxq->rxq_cmdsts = cmdsts;
--rxq->rxq_active;
bus_dmamap_sync(sc->sc_dmat, rxq->rxq_buf_mem.gdm_map,
rxq->rxq_fi * sizeof(*rxb), buflen, BUS_DMASYNC_POSTREAD);
KASSERT(m->m_len == 0 && m->m_pkthdr.len == 0);
memcpy(m->m_data + m->m_len, rxb->rb_data, buflen);
m->m_len = buflen;
m->m_pkthdr.len = buflen;
ifp->if_ipackets++;
#if NBPFILTER > 0
if (ifp->if_bpf != NULL)
bpf_mtap(ifp->if_bpf, m);
#endif
eh = (const struct ether_header *) m->m_data;
if ((ifp->if_flags & IFF_PROMISC) ||
(rxq->rxq_cmdsts & RX_STS_M) == 0 ||
(rxq->rxq_cmdsts & RX_STS_HE) ||
(eh->ether_dhost[0] & 1) != 0 ||
memcmp(eh->ether_dhost, LLADDR(ifp->if_sadl),
ETHER_ADDR_LEN) == 0) {
(*ifp->if_input)(ifp, m);
m = NULL;
GE_DPRINTF(sc, (">"));
} else {
m->m_len = 0;
m->m_pkthdr.len = 0;
GE_DPRINTF(sc, ("+"));
}
rxq->rxq_cmdsts = 0;
give_it_back:
rxd->ed_lencnt &= ~0xffff; /* zero out length */
rxd->ed_cmdsts = htogt32(RX_CMD_F|RX_CMD_L|RX_CMD_O|RX_CMD_EI);
#if 0
GE_DPRINTF(sc, ("([%d]->%08lx.%08lx.%08lx.%08lx)",
rxq->rxq_fi,
((unsigned long *)rxd)[0], ((unsigned long *)rxd)[1],
((unsigned long *)rxd)[2], ((unsigned long *)rxd)[3]));
#endif
GE_RXDPRESYNC(sc, rxq, rxq->rxq_fi);
if (++rxq->rxq_fi == GE_RXDESC_MAX)
rxq->rxq_fi = 0;
rxq->rxq_active++;
}
rxq->rxq_curpkt = m;
GE_FUNC_EXIT(sc, "");
}
uint32_t
gfe_rx_process(struct gfe_softc *sc, uint32_t cause, uint32_t intrmask)
{
struct ifnet * const ifp = &sc->sc_ec.ec_if;
struct gfe_rxqueue *rxq;
uint32_t rxbits;
#define RXPRIO_DECODER 0xffffaa50
GE_FUNC_ENTER(sc, "gfe_rx_process");
rxbits = ETH_IR_RxBuffer_GET(cause);
while (rxbits) {
enum gfe_rxprio rxprio = (RXPRIO_DECODER >> (rxbits * 2)) & 3;
GE_DPRINTF(sc, ("%1x", rxbits));
rxbits &= ~(1 << rxprio);
gfe_rx_get(sc, rxprio);
}
rxbits = ETH_IR_RxError_GET(cause);
while (rxbits) {
enum gfe_rxprio rxprio = (RXPRIO_DECODER >> (rxbits * 2)) & 3;
uint32_t masks[(GE_RXDESC_MAX + 31) / 32];
int idx;
rxbits &= ~(1 << rxprio);
rxq = &sc->sc_rxq[rxprio];
sc->sc_idlemask |= (rxq->rxq_intrbits & ETH_IR_RxBits);
intrmask &= ~(rxq->rxq_intrbits & ETH_IR_RxBits);
if ((sc->sc_tickflags & GE_TICK_RX_RESTART) == 0) {
sc->sc_tickflags |= GE_TICK_RX_RESTART;
callout_reset(&sc->sc_co, 1, gfe_tick, sc);
}
ifp->if_ierrors++;
GE_DPRINTF(sc, ("%s: rx queue %d filled at %u\n",
sc->sc_dev.dv_xname, rxprio, rxq->rxq_fi));
memset(masks, 0, sizeof(masks));
bus_dmamap_sync(sc->sc_dmat, rxq->rxq_desc_mem.gdm_map,
0, rxq->rxq_desc_mem.gdm_size,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
for (idx = 0; idx < GE_RXDESC_MAX; idx++) {
volatile struct gt_eth_desc *rxd = &rxq->rxq_descs[idx];
if (RX_CMD_O & gt32toh(rxd->ed_cmdsts))
masks[idx/32] |= 1 << (idx & 31);
}
bus_dmamap_sync(sc->sc_dmat, rxq->rxq_desc_mem.gdm_map,
0, rxq->rxq_desc_mem.gdm_size,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
#if defined(DEBUG)
printf("%s: rx queue %d filled at %u=%#x(%#x/%#x)\n",
sc->sc_dev.dv_xname, rxprio, rxq->rxq_fi,
rxq->rxq_cmdsts, masks[0], masks[1]);
#endif
}
if ((intrmask & ETH_IR_RxBits) == 0)
intrmask &= ~(ETH_IR_RxBuffer|ETH_IR_RxError);
GE_FUNC_EXIT(sc, "");
return intrmask;
}
int
gfe_rx_prime(struct gfe_softc *sc)
{
struct gfe_rxqueue *rxq;
int error;
GE_FUNC_ENTER(sc, "gfe_rx_prime");
error = gfe_rx_rxqinit(sc, GE_RXPRIO_HI);
if (error)
goto bail;
rxq = &sc->sc_rxq[GE_RXPRIO_HI];
if ((sc->sc_flags & GE_RXACTIVE) == 0) {
GE_WRITE(sc, EFRDP3, rxq->rxq_desc_busaddr);
GE_WRITE(sc, ECRDP3, rxq->rxq_desc_busaddr);
}
sc->sc_intrmask |= rxq->rxq_intrbits;
error = gfe_rx_rxqinit(sc, GE_RXPRIO_MEDHI);
if (error)
goto bail;
if ((sc->sc_flags & GE_RXACTIVE) == 0) {
rxq = &sc->sc_rxq[GE_RXPRIO_MEDHI];
GE_WRITE(sc, EFRDP2, rxq->rxq_desc_busaddr);
GE_WRITE(sc, ECRDP2, rxq->rxq_desc_busaddr);
sc->sc_intrmask |= rxq->rxq_intrbits;
}
error = gfe_rx_rxqinit(sc, GE_RXPRIO_MEDLO);
if (error)
goto bail;
if ((sc->sc_flags & GE_RXACTIVE) == 0) {
rxq = &sc->sc_rxq[GE_RXPRIO_MEDLO];
GE_WRITE(sc, EFRDP1, rxq->rxq_desc_busaddr);
GE_WRITE(sc, ECRDP1, rxq->rxq_desc_busaddr);
sc->sc_intrmask |= rxq->rxq_intrbits;
}
error = gfe_rx_rxqinit(sc, GE_RXPRIO_LO);
if (error)
goto bail;
if ((sc->sc_flags & GE_RXACTIVE) == 0) {
rxq = &sc->sc_rxq[GE_RXPRIO_LO];
GE_WRITE(sc, EFRDP0, rxq->rxq_desc_busaddr);
GE_WRITE(sc, ECRDP0, rxq->rxq_desc_busaddr);
sc->sc_intrmask |= rxq->rxq_intrbits;
}
bail:
GE_FUNC_EXIT(sc, "");
return error;
}
void
gfe_rx_cleanup(struct gfe_softc *sc, enum gfe_rxprio rxprio)
{
struct gfe_rxqueue *rxq = &sc->sc_rxq[rxprio];
GE_FUNC_ENTER(sc, "gfe_rx_cleanup");
if (rxq == NULL) {
GE_FUNC_EXIT(sc, "");
return;
}
if (rxq->rxq_curpkt)
m_freem(rxq->rxq_curpkt);
if ((sc->sc_flags & GE_NOFREE) == 0) {
gfe_dmamem_free(sc, &rxq->rxq_desc_mem);
gfe_dmamem_free(sc, &rxq->rxq_buf_mem);
}
GE_FUNC_EXIT(sc, "");
}
void
gfe_rx_stop(struct gfe_softc *sc, enum gfe_whack_op op)
{
GE_FUNC_ENTER(sc, "gfe_rx_stop");
sc->sc_flags &= ~GE_RXACTIVE;
sc->sc_idlemask &= ~(ETH_IR_RxBits|ETH_IR_RxBuffer|ETH_IR_RxError);
sc->sc_intrmask &= ~(ETH_IR_RxBits|ETH_IR_RxBuffer|ETH_IR_RxError);
GE_WRITE(sc, EIMR, sc->sc_intrmask);
GE_WRITE(sc, ESDCMR, ETH_ESDCMR_AR);
do {
delay(10);
} while (GE_READ(sc, ESDCMR) & ETH_ESDCMR_AR);
gfe_rx_cleanup(sc, GE_RXPRIO_HI);
gfe_rx_cleanup(sc, GE_RXPRIO_MEDHI);
gfe_rx_cleanup(sc, GE_RXPRIO_MEDLO);
gfe_rx_cleanup(sc, GE_RXPRIO_LO);
GE_FUNC_EXIT(sc, "");
}
void
gfe_tick(void *arg)
{
struct gfe_softc * const sc = arg;
uint32_t intrmask;
unsigned int tickflags;
int s;
GE_FUNC_ENTER(sc, "gfe_tick");
s = splnet();
tickflags = sc->sc_tickflags;
sc->sc_tickflags = 0;
intrmask = sc->sc_intrmask;
if (tickflags & GE_TICK_TX_IFSTART)
gfe_ifstart(&sc->sc_ec.ec_if);
if (tickflags & GE_TICK_RX_RESTART) {
intrmask |= sc->sc_idlemask;
if (sc->sc_idlemask & (ETH_IR_RxBuffer_3|ETH_IR_RxError_3)) {
struct gfe_rxqueue *rxq = &sc->sc_rxq[GE_RXPRIO_HI];
rxq->rxq_fi = 0;
GE_WRITE(sc, EFRDP3, rxq->rxq_desc_busaddr);
GE_WRITE(sc, ECRDP3, rxq->rxq_desc_busaddr);
}
if (sc->sc_idlemask & (ETH_IR_RxBuffer_2|ETH_IR_RxError_2)) {
struct gfe_rxqueue *rxq = &sc->sc_rxq[GE_RXPRIO_MEDHI];
rxq->rxq_fi = 0;
GE_WRITE(sc, EFRDP2, rxq->rxq_desc_busaddr);
GE_WRITE(sc, ECRDP2, rxq->rxq_desc_busaddr);
}
if (sc->sc_idlemask & (ETH_IR_RxBuffer_1|ETH_IR_RxError_1)) {
struct gfe_rxqueue *rxq = &sc->sc_rxq[GE_RXPRIO_MEDLO];
rxq->rxq_fi = 0;
GE_WRITE(sc, EFRDP1, rxq->rxq_desc_busaddr);
GE_WRITE(sc, ECRDP1, rxq->rxq_desc_busaddr);
}
if (sc->sc_idlemask & (ETH_IR_RxBuffer_0|ETH_IR_RxError_0)) {
struct gfe_rxqueue *rxq = &sc->sc_rxq[GE_RXPRIO_LO];
rxq->rxq_fi = 0;
GE_WRITE(sc, EFRDP0, rxq->rxq_desc_busaddr);
GE_WRITE(sc, ECRDP0, rxq->rxq_desc_busaddr);
}
sc->sc_idlemask = 0;
}
if (intrmask != sc->sc_intrmask) {
sc->sc_intrmask = intrmask;
GE_WRITE(sc, EIMR, sc->sc_intrmask);
}
gfe_intr(sc);
splx(s);
GE_FUNC_EXIT(sc, "");
}
int
gfe_tx_enqueue(struct gfe_softc *sc, enum gfe_txprio txprio)
{
const int dcache_line_size = curcpu()->ci_ci.dcache_line_size;
struct ifnet * const ifp = &sc->sc_ec.ec_if;
struct gfe_txqueue * const txq = &sc->sc_txq[txprio];
volatile struct gt_eth_desc * const txd = &txq->txq_descs[txq->txq_lo];
uint32_t intrmask = sc->sc_intrmask;
size_t buflen;
struct mbuf *m;
GE_FUNC_ENTER(sc, "gfe_tx_enqueue");
/*
* Anything in the pending queue to enqueue? if not, punt. Likewise
* if the txq is not yet created.
* otherwise grab its dmamap.
*/
if (txq == NULL || (m = txq->txq_pendq.ifq_head) == NULL) {
GE_FUNC_EXIT(sc, "-");
return 0;
}
/*
* Have we [over]consumed our limit of descriptors?
* Do we have enough free descriptors?
*/
if (GE_TXDESC_MAX == txq->txq_nactive + 2) {
volatile struct gt_eth_desc * const txd2 = &txq->txq_descs[txq->txq_fi];
uint32_t cmdsts;
size_t pktlen;
GE_TXDPOSTSYNC(sc, txq, txq->txq_fi);
cmdsts = gt32toh(txd2->ed_cmdsts);
if (cmdsts & TX_CMD_O) {
int nextin;
/*
* Sometime the Discovery forgets to update the
* last descriptor. See if we own the descriptor
* after it (since we know we've turned that to
* the discovery and if we owned it, the Discovery
* gave it back). If we do, we know the Discovery
* gave back this one but forgot to mark it as ours.
*/
nextin = txq->txq_fi + 1;
if (nextin == GE_TXDESC_MAX)
nextin = 0;
GE_TXDPOSTSYNC(sc, txq, nextin);
if (gt32toh(txq->txq_descs[nextin].ed_cmdsts) & TX_CMD_O) {
GE_TXDPRESYNC(sc, txq, txq->txq_fi);
GE_TXDPRESYNC(sc, txq, nextin);
GE_FUNC_EXIT(sc, "@");
return 0;
}
#ifdef DEBUG
printf("%s: txenqueue: transmitter resynced at %d\n",
sc->sc_dev.dv_xname, txq->txq_fi);
#endif
}
if (++txq->txq_fi == GE_TXDESC_MAX)
txq->txq_fi = 0;
txq->txq_inptr = gt32toh(txd2->ed_bufptr) - txq->txq_buf_busaddr;
pktlen = (gt32toh(txd2->ed_lencnt) >> 16) & 0xffff;
txq->txq_inptr += roundup(pktlen, dcache_line_size);
txq->txq_nactive--;
/* statistics */
ifp->if_opackets++;
if (cmdsts & TX_STS_ES)
ifp->if_oerrors++;
GE_DPRINTF(sc, ("%%"));
}
buflen = roundup(m->m_pkthdr.len, dcache_line_size);
/*
* If this packet would wrap around the end of the buffer, reset back
* to the beginning.
*/
if (txq->txq_outptr + buflen > GE_TXBUF_SIZE) {
txq->txq_ei_gapcount += GE_TXBUF_SIZE - txq->txq_outptr;
txq->txq_outptr = 0;
}
/*
* Make sure the output packet doesn't run over the beginning of
* what we've already given the GT.
*/
if (txq->txq_nactive > 0 && txq->txq_outptr <= txq->txq_inptr &&
txq->txq_outptr + buflen > txq->txq_inptr) {
intrmask |= txq->txq_intrbits &
(ETH_IR_TxBufferHigh|ETH_IR_TxBufferLow);
if (sc->sc_intrmask != intrmask) {
sc->sc_intrmask = intrmask;
GE_WRITE(sc, EIMR, sc->sc_intrmask);
}
GE_FUNC_EXIT(sc, "#");
return 0;
}
/*
* The end-of-list descriptor we put on last time is the starting point
* for this packet. The GT is supposed to terminate list processing on
* a NULL nxtptr but that currently is broken so a CPU-owned descriptor
* must terminate the list.
*/
intrmask = sc->sc_intrmask;
m_copydata(m, 0, m->m_pkthdr.len,
txq->txq_buf_mem.gdm_kva + txq->txq_outptr);
bus_dmamap_sync(sc->sc_dmat, txq->txq_buf_mem.gdm_map,
txq->txq_outptr, buflen, BUS_DMASYNC_PREWRITE);
txd->ed_bufptr = htogt32(txq->txq_buf_busaddr + txq->txq_outptr);
txd->ed_lencnt = htogt32(m->m_pkthdr.len << 16);
GE_TXDPRESYNC(sc, txq, txq->txq_lo);
/*
* Request a buffer interrupt every 2/3 of the way thru the transmit
* buffer.
*/
txq->txq_ei_gapcount += buflen;
if (txq->txq_ei_gapcount > 2 * GE_TXBUF_SIZE / 3) {
txd->ed_cmdsts = htogt32(TX_CMD_FIRST|TX_CMD_LAST|TX_CMD_EI);
txq->txq_ei_gapcount = 0;
} else {
txd->ed_cmdsts = htogt32(TX_CMD_FIRST|TX_CMD_LAST);
}
#if 0
GE_DPRINTF(sc, ("([%d]->%08lx.%08lx.%08lx.%08lx)", txq->txq_lo,
((unsigned long *)txd)[0], ((unsigned long *)txd)[1],
((unsigned long *)txd)[2], ((unsigned long *)txd)[3]));
#endif
GE_TXDPRESYNC(sc, txq, txq->txq_lo);
txq->txq_outptr += buflen;
/*
* Tell the SDMA engine to "Fetch!"
*/
GE_WRITE(sc, ESDCMR,
txq->txq_esdcmrbits & (ETH_ESDCMR_TXDH|ETH_ESDCMR_TXDL));
GE_DPRINTF(sc, ("(%d)", txq->txq_lo));
/*
* Update the last out appropriately.
*/
txq->txq_nactive++;
if (++txq->txq_lo == GE_TXDESC_MAX)
txq->txq_lo = 0;
/*
* Move mbuf from the pending queue to the snd queue.
*/
IF_DEQUEUE(&txq->txq_pendq, m);
#if NBPFILTER > 0
if (ifp->if_bpf != NULL)
bpf_mtap(ifp->if_bpf, m);
#endif
m_freem(m);
ifp->if_flags &= ~IFF_OACTIVE;
/*
* Since we have put an item into the packet queue, we now want
* an interrupt when the transmit queue finishes processing the
* list. But only update the mask if needs changing.
*/
intrmask |= txq->txq_intrbits & (ETH_IR_TxEndHigh|ETH_IR_TxEndLow);
if (sc->sc_intrmask != intrmask) {
sc->sc_intrmask = intrmask;
GE_WRITE(sc, EIMR, sc->sc_intrmask);
}
if (ifp->if_timer == 0)
ifp->if_timer = 5;
GE_FUNC_EXIT(sc, "*");
return 1;
}
uint32_t
gfe_tx_done(struct gfe_softc *sc, enum gfe_txprio txprio, uint32_t intrmask)
{
struct gfe_txqueue * const txq = &sc->sc_txq[txprio];
struct ifnet * const ifp = &sc->sc_ec.ec_if;
GE_FUNC_ENTER(sc, "gfe_tx_done");
if (txq == NULL) {
GE_FUNC_EXIT(sc, "");
return intrmask;
}
while (txq->txq_nactive > 0) {
const int dcache_line_size = curcpu()->ci_ci.dcache_line_size;
volatile struct gt_eth_desc *txd = &txq->txq_descs[txq->txq_fi];
uint32_t cmdsts;
size_t pktlen;
GE_TXDPOSTSYNC(sc, txq, txq->txq_fi);
if ((cmdsts = gt32toh(txd->ed_cmdsts)) & TX_CMD_O) {
int nextin;
if (txq->txq_nactive == 1) {
GE_TXDPRESYNC(sc, txq, txq->txq_fi);
GE_FUNC_EXIT(sc, "");
return intrmask;
}
/*
* Sometimes the Discovery forgets to update the
* ownership bit in the descriptor. See if we own the
* descriptor after it (since we know we've turned
* that to the Discovery and if we own it now then the
* Discovery gave it back). If we do, we know the
* Discovery gave back this one but forgot to mark it
* as ours.
*/
nextin = txq->txq_fi + 1;
if (nextin == GE_TXDESC_MAX)
nextin = 0;
GE_TXDPOSTSYNC(sc, txq, nextin);
if (gt32toh(txq->txq_descs[nextin].ed_cmdsts) & TX_CMD_O) {
GE_TXDPRESYNC(sc, txq, txq->txq_fi);
GE_TXDPRESYNC(sc, txq, nextin);
GE_FUNC_EXIT(sc, "");
return intrmask;
}
#ifdef DEBUG
printf("%s: txdone: transmitter resynced at %d\n",
sc->sc_dev.dv_xname, txq->txq_fi);
#endif
}
#if 0
GE_DPRINTF(sc, ("([%d]<-%08lx.%08lx.%08lx.%08lx)",
txq->txq_lo,
((unsigned long *)txd)[0], ((unsigned long *)txd)[1],
((unsigned long *)txd)[2], ((unsigned long *)txd)[3]));
#endif
GE_DPRINTF(sc, ("(%d)", txq->txq_fi));
if (++txq->txq_fi == GE_TXDESC_MAX)
txq->txq_fi = 0;
txq->txq_inptr = gt32toh(txd->ed_bufptr) - txq->txq_buf_busaddr;
pktlen = (gt32toh(txd->ed_lencnt) >> 16) & 0xffff;
bus_dmamap_sync(sc->sc_dmat, txq->txq_buf_mem.gdm_map,
txq->txq_inptr, pktlen, BUS_DMASYNC_POSTWRITE);
txq->txq_inptr += roundup(pktlen, dcache_line_size);
/* statistics */
ifp->if_opackets++;
if (cmdsts & TX_STS_ES)
ifp->if_oerrors++;
/* txd->ed_bufptr = 0; */
ifp->if_timer = 5;
--txq->txq_nactive;
}
if (txq->txq_nactive != 0)
panic("%s: transmit fifo%d empty but active count (%d) > 0!",
sc->sc_dev.dv_xname, txprio, txq->txq_nactive);
ifp->if_timer = 0;
intrmask &= ~(txq->txq_intrbits & (ETH_IR_TxEndHigh|ETH_IR_TxEndLow));
intrmask &= ~(txq->txq_intrbits & (ETH_IR_TxBufferHigh|ETH_IR_TxBufferLow));
GE_FUNC_EXIT(sc, "");
return intrmask;
}
int
gfe_tx_txqalloc(struct gfe_softc *sc, enum gfe_txprio txprio)
{
struct gfe_txqueue * const txq = &sc->sc_txq[txprio];
int error;
GE_FUNC_ENTER(sc, "gfe_tx_txqalloc");
error = gfe_dmamem_alloc(sc, &txq->txq_desc_mem, 1,
GE_TXDESC_MEMSIZE, BUS_DMA_NOCACHE);
if (error) {
GE_FUNC_EXIT(sc, "");
return error;
}
error = gfe_dmamem_alloc(sc, &txq->txq_buf_mem, 1, GE_TXBUF_SIZE, 0);
if (error) {
gfe_dmamem_free(sc, &txq->txq_desc_mem);
GE_FUNC_EXIT(sc, "");
return error;
}
GE_FUNC_EXIT(sc, "");
return 0;
}
int
gfe_tx_start(struct gfe_softc *sc, enum gfe_txprio txprio)
{
struct gfe_txqueue * const txq = &sc->sc_txq[txprio];
volatile struct gt_eth_desc *txd;
unsigned int i;
bus_addr_t addr;
GE_FUNC_ENTER(sc, "gfe_tx_start");
sc->sc_intrmask &= ~(ETH_IR_TxEndHigh|ETH_IR_TxBufferHigh|
ETH_IR_TxEndLow |ETH_IR_TxBufferLow);
if (sc->sc_flags & GE_NOFREE) {
KASSERT(txq->txq_desc_mem.gdm_kva != NULL);
KASSERT(txq->txq_buf_mem.gdm_kva != NULL);
} else {
int error = gfe_tx_txqalloc(sc, txprio);
if (error) {
GE_FUNC_EXIT(sc, "!");
return error;
}
}
txq->txq_descs =
(volatile struct gt_eth_desc *) txq->txq_desc_mem.gdm_kva;
txq->txq_desc_busaddr = txq->txq_desc_mem.gdm_map->dm_segs[0].ds_addr;
txq->txq_buf_busaddr = txq->txq_buf_mem.gdm_map->dm_segs[0].ds_addr;
txq->txq_pendq.ifq_maxlen = 10;
txq->txq_ei_gapcount = 0;
txq->txq_nactive = 0;
txq->txq_fi = 0;
txq->txq_lo = 0;
txq->txq_inptr = GE_TXBUF_SIZE;
txq->txq_outptr = 0;
for (i = 0, txd = txq->txq_descs,
addr = txq->txq_desc_busaddr + sizeof(*txd);
i < GE_TXDESC_MAX - 1;
i++, txd++, addr += sizeof(*txd)) {
/*
* update the nxtptr to point to the next txd.
*/
txd->ed_cmdsts = 0;
txd->ed_nxtptr = htogt32(addr);
}
txq->txq_descs[GE_TXDESC_MAX-1].ed_nxtptr =
htogt32(txq->txq_desc_busaddr);
bus_dmamap_sync(sc->sc_dmat, txq->txq_desc_mem.gdm_map, 0,
GE_TXDESC_MEMSIZE, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
switch (txprio) {
case GE_TXPRIO_HI:
txq->txq_intrbits = ETH_IR_TxEndHigh|ETH_IR_TxBufferHigh;
txq->txq_esdcmrbits = ETH_ESDCMR_TXDH;
txq->txq_epsrbits = ETH_EPSR_TxHigh;
txq->txq_ectdp = ETH_ECTDP1(sc->sc_macno);
GE_WRITE(sc, ECTDP1, txq->txq_desc_busaddr);
break;
case GE_TXPRIO_LO:
txq->txq_intrbits = ETH_IR_TxEndLow|ETH_IR_TxBufferLow;
txq->txq_esdcmrbits = ETH_ESDCMR_TXDL;
txq->txq_epsrbits = ETH_EPSR_TxLow;
txq->txq_ectdp = ETH_ECTDP0(sc->sc_macno);
GE_WRITE(sc, ECTDP0, txq->txq_desc_busaddr);
break;
case GE_TXPRIO_NONE:
break;
}
#if 0
GE_DPRINTF(sc, ("(ectdp=%#x", txq->txq_ectdp));
gt_write(device_parent(&sc->sc_dev), txq->txq_ectdp,
txq->txq_desc_busaddr);
GE_DPRINTF(sc, (")"));
#endif
/*
* If we are restarting, there may be packets in the pending queue
* waiting to be enqueued. Try enqueuing packets from both priority
* queues until the pending queue is empty or there no room for them
* on the device.
*/
while (gfe_tx_enqueue(sc, txprio))
continue;
GE_FUNC_EXIT(sc, "");
return 0;
}
void
gfe_tx_cleanup(struct gfe_softc *sc, enum gfe_txprio txprio, int flush)
{
struct gfe_txqueue * const txq = &sc->sc_txq[txprio];
GE_FUNC_ENTER(sc, "gfe_tx_cleanup");
if (txq == NULL) {
GE_FUNC_EXIT(sc, "");
return;
}
if (!flush) {
GE_FUNC_EXIT(sc, "");
return;
}
if ((sc->sc_flags & GE_NOFREE) == 0) {
gfe_dmamem_free(sc, &txq->txq_desc_mem);
gfe_dmamem_free(sc, &txq->txq_buf_mem);
}
GE_FUNC_EXIT(sc, "-F");
}
void
gfe_tx_stop(struct gfe_softc *sc, enum gfe_whack_op op)
{
GE_FUNC_ENTER(sc, "gfe_tx_stop");
GE_WRITE(sc, ESDCMR, ETH_ESDCMR_STDH|ETH_ESDCMR_STDL);
sc->sc_intrmask = gfe_tx_done(sc, GE_TXPRIO_HI, sc->sc_intrmask);
sc->sc_intrmask = gfe_tx_done(sc, GE_TXPRIO_LO, sc->sc_intrmask);
sc->sc_intrmask &= ~(ETH_IR_TxEndHigh|ETH_IR_TxBufferHigh|
ETH_IR_TxEndLow |ETH_IR_TxBufferLow);
gfe_tx_cleanup(sc, GE_TXPRIO_HI, op == GE_WHACK_STOP);
gfe_tx_cleanup(sc, GE_TXPRIO_LO, op == GE_WHACK_STOP);
sc->sc_ec.ec_if.if_timer = 0;
GE_FUNC_EXIT(sc, "");
}
int
gfe_intr(void *arg)
{
struct gfe_softc * const sc = arg;
uint32_t cause;
uint32_t intrmask = sc->sc_intrmask;
int claim = 0;
int cnt;
GE_FUNC_ENTER(sc, "gfe_intr");
for (cnt = 0; cnt < 4; cnt++) {
if (sc->sc_intrmask != intrmask) {
sc->sc_intrmask = intrmask;
GE_WRITE(sc, EIMR, sc->sc_intrmask);
}
cause = GE_READ(sc, EICR);
cause &= sc->sc_intrmask;
GE_DPRINTF(sc, (".%#x", cause));
if (cause == 0)
break;
claim = 1;
GE_WRITE(sc, EICR, ~cause);
#ifndef GE_NORX
if (cause & (ETH_IR_RxBuffer|ETH_IR_RxError))
intrmask = gfe_rx_process(sc, cause, intrmask);
#endif
#ifndef GE_NOTX
if (cause & (ETH_IR_TxBufferHigh|ETH_IR_TxEndHigh))
intrmask = gfe_tx_done(sc, GE_TXPRIO_HI, intrmask);
if (cause & (ETH_IR_TxBufferLow|ETH_IR_TxEndLow))
intrmask = gfe_tx_done(sc, GE_TXPRIO_LO, intrmask);
#endif
if (cause & ETH_IR_MIIPhySTC) {
sc->sc_flags |= GE_PHYSTSCHG;
/* intrmask &= ~ETH_IR_MIIPhySTC; */
}
}
while (gfe_tx_enqueue(sc, GE_TXPRIO_HI))
continue;
while (gfe_tx_enqueue(sc, GE_TXPRIO_LO))
continue;
GE_FUNC_EXIT(sc, "");
return claim;
}
int
gfe_mii_mediachange (struct ifnet *ifp)
{
struct gfe_softc *sc = ifp->if_softc;
if (ifp->if_flags & IFF_UP)
mii_mediachg(&sc->sc_mii);
return (0);
}
void
gfe_mii_mediastatus (struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct gfe_softc *sc = ifp->if_softc;
if (sc->sc_flags & GE_PHYSTSCHG) {
sc->sc_flags &= ~GE_PHYSTSCHG;
mii_pollstat(&sc->sc_mii);
}
ifmr->ifm_status = sc->sc_mii.mii_media_status;
ifmr->ifm_active = sc->sc_mii.mii_media_active;
}
int
gfe_mii_read (struct device *self, int phy, int reg)
{
return gt_mii_read(self, device_parent(self), phy, reg);
}
void
gfe_mii_write (struct device *self, int phy, int reg, int value)
{
gt_mii_write(self, device_parent(self), phy, reg, value);
}
void
gfe_mii_statchg (struct device *self)
{
/* struct gfe_softc *sc = device_private(self); */
/* do nothing? */
}
int
gfe_whack(struct gfe_softc *sc, enum gfe_whack_op op)
{
int error = 0;
GE_FUNC_ENTER(sc, "gfe_whack");
switch (op) {
case GE_WHACK_RESTART:
#ifndef GE_NOTX
gfe_tx_stop(sc, op);
#endif
/* sc->sc_ec.ec_if.if_flags &= ~IFF_RUNNING; */
/* FALLTHROUGH */
case GE_WHACK_START:
#ifndef GE_NOHASH
if (error == 0 && sc->sc_hashtable == NULL) {
error = gfe_hash_alloc(sc);
if (error)
break;
}
if (op != GE_WHACK_RESTART)
gfe_hash_fill(sc);
#endif
#ifndef GE_NORX
if (op != GE_WHACK_RESTART) {
error = gfe_rx_prime(sc);
if (error)
break;
}
#endif
#ifndef GE_NOTX
error = gfe_tx_start(sc, GE_TXPRIO_HI);
if (error)
break;
#endif
sc->sc_ec.ec_if.if_flags |= IFF_RUNNING;
GE_WRITE(sc, EPCR, sc->sc_pcr | ETH_EPCR_EN);
GE_WRITE(sc, EPCXR, sc->sc_pcxr);
GE_WRITE(sc, EICR, 0);
GE_WRITE(sc, EIMR, sc->sc_intrmask);
#ifndef GE_NOHASH
GE_WRITE(sc, EHTPR, sc->sc_hash_mem.gdm_map->dm_segs->ds_addr);
#endif
#ifndef GE_NORX
GE_WRITE(sc, ESDCMR, ETH_ESDCMR_ERD);
sc->sc_flags |= GE_RXACTIVE;
#endif
/* FALLTHROUGH */
case GE_WHACK_CHANGE:
GE_DPRINTF(sc, ("(pcr=%#x,imr=%#x)",
GE_READ(sc, EPCR), GE_READ(sc, EIMR)));
GE_WRITE(sc, EPCR, sc->sc_pcr | ETH_EPCR_EN);
GE_WRITE(sc, EIMR, sc->sc_intrmask);
gfe_ifstart(&sc->sc_ec.ec_if);
GE_DPRINTF(sc, ("(ectdp0=%#x, ectdp1=%#x)",
GE_READ(sc, ECTDP0), GE_READ(sc, ECTDP1)));
GE_FUNC_EXIT(sc, "");
return error;
case GE_WHACK_STOP:
break;
}
#ifdef GE_DEBUG
if (error)
GE_DPRINTF(sc, (" failed: %d\n", error));
#endif
GE_WRITE(sc, EPCR, sc->sc_pcr);
GE_WRITE(sc, EIMR, 0);
sc->sc_ec.ec_if.if_flags &= ~IFF_RUNNING;
#ifndef GE_NOTX
gfe_tx_stop(sc, GE_WHACK_STOP);
#endif
#ifndef GE_NORX
gfe_rx_stop(sc, GE_WHACK_STOP);
#endif
#ifndef GE_NOHASH
if ((sc->sc_flags & GE_NOFREE) == 0) {
gfe_dmamem_free(sc, &sc->sc_hash_mem);
sc->sc_hashtable = NULL;
}
#endif
GE_FUNC_EXIT(sc, "");
return error;
}
int
gfe_hash_compute(struct gfe_softc *sc, const uint8_t eaddr[ETHER_ADDR_LEN])
{
uint32_t w0, add0, add1;
uint32_t result;
GE_FUNC_ENTER(sc, "gfe_hash_compute");
add0 = ((uint32_t) eaddr[5] << 0) |
((uint32_t) eaddr[4] << 8) |
((uint32_t) eaddr[3] << 16);
add0 = ((add0 & 0x00f0f0f0) >> 4) | ((add0 & 0x000f0f0f) << 4);
add0 = ((add0 & 0x00cccccc) >> 2) | ((add0 & 0x00333333) << 2);
add0 = ((add0 & 0x00aaaaaa) >> 1) | ((add0 & 0x00555555) << 1);
add1 = ((uint32_t) eaddr[2] << 0) |
((uint32_t) eaddr[1] << 8) |
((uint32_t) eaddr[0] << 16);
add1 = ((add1 & 0x00f0f0f0) >> 4) | ((add1 & 0x000f0f0f) << 4);
add1 = ((add1 & 0x00cccccc) >> 2) | ((add1 & 0x00333333) << 2);
add1 = ((add1 & 0x00aaaaaa) >> 1) | ((add1 & 0x00555555) << 1);
GE_DPRINTF(sc, ("%s=", ether_sprintf(eaddr)));
/*
* hashResult is the 15 bits Hash entry address.
* ethernetADD is a 48 bit number, which is derived from the Ethernet
* MAC address, by nibble swapping in every byte (i.e MAC address
* of 0x123456789abc translates to ethernetADD of 0x21436587a9cb).
*/
if ((sc->sc_pcr & ETH_EPCR_HM) == 0) {
/*
* hashResult[14:0] = hashFunc0(ethernetADD[47:0])
*
* hashFunc0 calculates the hashResult in the following manner:
* hashResult[ 8:0] = ethernetADD[14:8,1,0]
* XOR ethernetADD[23:15] XOR ethernetADD[32:24]
*/
result = (add0 & 3) | ((add0 >> 6) & ~3);
result ^= (add0 >> 15) ^ (add1 >> 0);
result &= 0x1ff;
/*
* hashResult[14:9] = ethernetADD[7:2]
*/
result |= (add0 & ~3) << 7; /* excess bits will be masked */
GE_DPRINTF(sc, ("0(%#x)", result & 0x7fff));
} else {
#define TRIBITFLIP 073516240 /* yes its in octal */
/*
* hashResult[14:0] = hashFunc1(ethernetADD[47:0])
*
* hashFunc1 calculates the hashResult in the following manner:
* hashResult[08:00] = ethernetADD[06:14]
* XOR ethernetADD[15:23] XOR ethernetADD[24:32]
*/
w0 = ((add0 >> 6) ^ (add0 >> 15) ^ (add1)) & 0x1ff;
/*
* Now bitswap those 9 bits
*/
result = 0;
result |= ((TRIBITFLIP >> (((w0 >> 0) & 7) * 3)) & 7) << 6;
result |= ((TRIBITFLIP >> (((w0 >> 3) & 7) * 3)) & 7) << 3;
result |= ((TRIBITFLIP >> (((w0 >> 6) & 7) * 3)) & 7) << 0;
/*
* hashResult[14:09] = ethernetADD[00:05]
*/
result |= ((TRIBITFLIP >> (((add0 >> 0) & 7) * 3)) & 7) << 12;
result |= ((TRIBITFLIP >> (((add0 >> 3) & 7) * 3)) & 7) << 9;
GE_DPRINTF(sc, ("1(%#x)", result));
}
GE_FUNC_EXIT(sc, "");
return result & ((sc->sc_pcr & ETH_EPCR_HS_512) ? 0x7ff : 0x7fff);
}
int
gfe_hash_entry_op(struct gfe_softc *sc, enum gfe_hash_op op,
enum gfe_rxprio prio, const uint8_t eaddr[ETHER_ADDR_LEN])
{
uint64_t he;
uint64_t *maybe_he_p = NULL;
int limit;
int hash;
int maybe_hash = 0;
GE_FUNC_ENTER(sc, "gfe_hash_entry_op");
hash = gfe_hash_compute(sc, eaddr);
if (sc->sc_hashtable == NULL) {
panic("%s:%d: hashtable == NULL!", sc->sc_dev.dv_xname,
__LINE__);
}
/*
* Assume we are going to insert so create the hash entry we
* are going to insert. We also use it to match entries we
* will be removing.
*/
he = ((uint64_t) eaddr[5] << 43) |
((uint64_t) eaddr[4] << 35) |
((uint64_t) eaddr[3] << 27) |
((uint64_t) eaddr[2] << 19) |
((uint64_t) eaddr[1] << 11) |
((uint64_t) eaddr[0] << 3) |
HSH_PRIO_INS(prio) | HSH_V | HSH_R;
/*
* The GT will search upto 12 entries for a hit, so we must mimic that.
*/
hash &= sc->sc_hashmask / sizeof(he);
for (limit = HSH_LIMIT; limit > 0 ; --limit) {
/*
* Does the GT wrap at the end, stop at the, or overrun the
* end? Assume it wraps for now. Stash a copy of the
* current hash entry.
*/
uint64_t *he_p = &sc->sc_hashtable[hash];
uint64_t thishe = *he_p;
/*
* If the hash entry isn't valid, that break the chain. And
* this entry a good candidate for reuse.
*/
if ((thishe & HSH_V) == 0) {
maybe_he_p = he_p;
break;
}
/*
* If the hash entry has the same address we are looking for
* then ... if we are removing and the skip bit is set, its
* already been removed. if are adding and the skip bit is
* clear, then its already added. In either return EBUSY
* indicating the op has already been done. Otherwise flip
* the skip bit and return 0.
*/
if (((he ^ thishe) & HSH_ADDR_MASK) == 0) {
if (((op == GE_HASH_REMOVE) && (thishe & HSH_S)) ||
((op == GE_HASH_ADD) && (thishe & HSH_S) == 0))
return EBUSY;
*he_p = thishe ^ HSH_S;
bus_dmamap_sync(sc->sc_dmat, sc->sc_hash_mem.gdm_map,
hash * sizeof(he), sizeof(he),
BUS_DMASYNC_PREWRITE);
GE_FUNC_EXIT(sc, "^");
return 0;
}
/*
* If we haven't found a slot for the entry and this entry
* is currently being skipped, return this entry.
*/
if (maybe_he_p == NULL && (thishe & HSH_S)) {
maybe_he_p = he_p;
maybe_hash = hash;
}
hash = (hash + 1) & (sc->sc_hashmask / sizeof(he));
}
/*
* If we got here, then there was no entry to remove.
*/
if (op == GE_HASH_REMOVE) {
GE_FUNC_EXIT(sc, "?");
return ENOENT;
}
/*
* If we couldn't find a slot, return an error.
*/
if (maybe_he_p == NULL) {
GE_FUNC_EXIT(sc, "!");
return ENOSPC;
}
/* Update the entry.
*/
*maybe_he_p = he;
bus_dmamap_sync(sc->sc_dmat, sc->sc_hash_mem.gdm_map,
maybe_hash * sizeof(he), sizeof(he), BUS_DMASYNC_PREWRITE);
GE_FUNC_EXIT(sc, "+");
return 0;
}
int
gfe_hash_multichg(struct ethercom *ec, const struct ether_multi *enm, u_long cmd)
{
struct gfe_softc * const sc = ec->ec_if.if_softc;
int error;
enum gfe_hash_op op;
enum gfe_rxprio prio;
GE_FUNC_ENTER(sc, "hash_multichg");
/*
* Is this a wildcard entry? If so and its being removed, recompute.
*/
if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
if (cmd == SIOCDELMULTI) {
GE_FUNC_EXIT(sc, "");
return ENETRESET;
}
/*
* Switch in
*/
sc->sc_flags |= GE_ALLMULTI;
if ((sc->sc_pcr & ETH_EPCR_PM) == 0) {
sc->sc_pcr |= ETH_EPCR_PM;
GE_WRITE(sc, EPCR, sc->sc_pcr);
GE_FUNC_EXIT(sc, "");
return 0;
}
GE_FUNC_EXIT(sc, "");
return ENETRESET;
}
prio = GE_RXPRIO_MEDLO;
op = (cmd == SIOCDELMULTI ? GE_HASH_REMOVE : GE_HASH_ADD);
if (sc->sc_hashtable == NULL) {
GE_FUNC_EXIT(sc, "");
return 0;
}
error = gfe_hash_entry_op(sc, op, prio, enm->enm_addrlo);
if (error == EBUSY) {
printf("%s: multichg: tried to %s %s again\n",
sc->sc_dev.dv_xname,
cmd == SIOCDELMULTI ? "remove" : "add",
ether_sprintf(enm->enm_addrlo));
GE_FUNC_EXIT(sc, "");
return 0;
}
if (error == ENOENT) {
printf("%s: multichg: failed to remove %s: not in table\n",
sc->sc_dev.dv_xname,
ether_sprintf(enm->enm_addrlo));
GE_FUNC_EXIT(sc, "");
return 0;
}
if (error == ENOSPC) {
printf("%s: multichg: failed to add %s: no space; regenerating table\n",
sc->sc_dev.dv_xname,
ether_sprintf(enm->enm_addrlo));
GE_FUNC_EXIT(sc, "");
return ENETRESET;
}
GE_DPRINTF(sc, ("%s: multichg: %s: %s succeeded\n",
sc->sc_dev.dv_xname,
cmd == SIOCDELMULTI ? "remove" : "add",
ether_sprintf(enm->enm_addrlo)));
GE_FUNC_EXIT(sc, "");
return 0;
}
int
gfe_hash_fill(struct gfe_softc *sc)
{
struct ether_multistep step;
struct ether_multi *enm;
int error;
GE_FUNC_ENTER(sc, "gfe_hash_fill");
error = gfe_hash_entry_op(sc, GE_HASH_ADD, GE_RXPRIO_HI,
LLADDR(sc->sc_ec.ec_if.if_sadl));
if (error)
GE_FUNC_EXIT(sc, "!");
return error;
sc->sc_flags &= ~GE_ALLMULTI;
if ((sc->sc_ec.ec_if.if_flags & IFF_PROMISC) == 0)
sc->sc_pcr &= ~ETH_EPCR_PM;
ETHER_FIRST_MULTI(step, &sc->sc_ec, enm);
while (enm != NULL) {
if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
sc->sc_flags |= GE_ALLMULTI;
sc->sc_pcr |= ETH_EPCR_PM;
} else {
error = gfe_hash_entry_op(sc, GE_HASH_ADD,
GE_RXPRIO_MEDLO, enm->enm_addrlo);
if (error == ENOSPC)
break;
}
ETHER_NEXT_MULTI(step, enm);
}
GE_FUNC_EXIT(sc, "");
return error;
}
int
gfe_hash_alloc(struct gfe_softc *sc)
{
int error;
GE_FUNC_ENTER(sc, "gfe_hash_alloc");
sc->sc_hashmask = (sc->sc_pcr & ETH_EPCR_HS_512 ? 16 : 256)*1024 - 1;
error = gfe_dmamem_alloc(sc, &sc->sc_hash_mem, 1, sc->sc_hashmask + 1,
BUS_DMA_NOCACHE);
if (error) {
printf("%s: failed to allocate %d bytes for hash table: %d\n",
sc->sc_dev.dv_xname, sc->sc_hashmask + 1, error);
GE_FUNC_EXIT(sc, "");
return error;
}
sc->sc_hashtable = (uint64_t *) sc->sc_hash_mem.gdm_kva;
memset(sc->sc_hashtable, 0, sc->sc_hashmask + 1);
bus_dmamap_sync(sc->sc_dmat, sc->sc_hash_mem.gdm_map,
0, sc->sc_hashmask + 1, BUS_DMASYNC_PREWRITE);
GE_FUNC_EXIT(sc, "");
return 0;
}