NetBSD/sys/netinet6/ah_core.c
2009-03-18 17:06:41 +00:00

1546 lines
35 KiB
C

/* $NetBSD: ah_core.c,v 1.47 2009/03/18 17:06:52 cegger Exp $ */
/* $KAME: ah_core.c,v 1.57 2003/07/25 09:33:36 itojun Exp $ */
/*
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* RFC1826/2402 authentication header.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: ah_core.c,v 1.47 2009/03/18 17:06:52 cegger Exp $");
#include "opt_inet.h"
#include "opt_ipsec.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/domain.h>
#include <sys/protosw.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/errno.h>
#include <sys/time.h>
#include <sys/kernel.h>
#include <sys/syslog.h>
#include <net/if.h>
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/in_var.h>
#ifdef INET6
#include <netinet/ip6.h>
#include <netinet6/ip6_var.h>
#include <netinet/icmp6.h>
#include <netinet6/scope6_var.h>
#endif
#include <netinet6/ipsec.h>
#include <netinet6/ah.h>
#include <netinet6/ah_aesxcbcmac.h>
#ifdef IPSEC_ESP
#include <netinet6/esp.h>
#endif
#include <net/pfkeyv2.h>
#include <netkey/keydb.h>
#include <sys/md5.h>
#define MD5_RESULTLEN 16
#include <sys/sha1.h>
#define SHA1_RESULTLEN 20
#include <sys/sha2.h>
#include <sys/rmd160.h>
#define RIPEMD160_RESULTLEN 20
#include <net/net_osdep.h>
static int ah_sumsiz_1216(struct secasvar *);
static int ah_sumsiz_zero(struct secasvar *);
static int ah_common_mature(struct secasvar *);
static int ah_none_mature(struct secasvar *);
static int ah_none_init(struct ah_algorithm_state *, struct secasvar *);
static void ah_none_loop(struct ah_algorithm_state *, u_int8_t *, size_t);
static void ah_none_result(struct ah_algorithm_state *,
u_int8_t *, size_t);
static int ah_keyed_md5_mature(struct secasvar *);
static int ah_keyed_md5_init(struct ah_algorithm_state *,
struct secasvar *);
static void ah_keyed_md5_loop(struct ah_algorithm_state *, u_int8_t *,
size_t);
static void ah_keyed_md5_result(struct ah_algorithm_state *,
u_int8_t *, size_t);
static int ah_keyed_sha1_init(struct ah_algorithm_state *,
struct secasvar *);
static void ah_keyed_sha1_loop(struct ah_algorithm_state *, u_int8_t *,
size_t);
static void ah_keyed_sha1_result(struct ah_algorithm_state *, u_int8_t *,
size_t);
static int ah_hmac_md5_init(struct ah_algorithm_state *,
struct secasvar *);
static void ah_hmac_md5_loop(struct ah_algorithm_state *, u_int8_t *,
size_t);
static void ah_hmac_md5_result(struct ah_algorithm_state *,
u_int8_t *, size_t);
static int ah_hmac_sha1_init(struct ah_algorithm_state *,
struct secasvar *);
static void ah_hmac_sha1_loop(struct ah_algorithm_state *, u_int8_t *,
size_t);
static void ah_hmac_sha1_result(struct ah_algorithm_state *,
u_int8_t *, size_t);
static int ah_hmac_sha2_256_init(struct ah_algorithm_state *,
struct secasvar *);
static void ah_hmac_sha2_256_loop(struct ah_algorithm_state *, u_int8_t *,
size_t);
static void ah_hmac_sha2_256_result(struct ah_algorithm_state *,
u_int8_t *, size_t);
static int ah_hmac_sha2_384_init(struct ah_algorithm_state *,
struct secasvar *);
static void ah_hmac_sha2_384_loop(struct ah_algorithm_state *, u_int8_t *,
size_t);
static void ah_hmac_sha2_384_result(struct ah_algorithm_state *,
u_int8_t *, size_t);
static int ah_hmac_sha2_512_init(struct ah_algorithm_state *,
struct secasvar *);
static void ah_hmac_sha2_512_loop(struct ah_algorithm_state *, u_int8_t *,
size_t);
static void ah_hmac_sha2_512_result(struct ah_algorithm_state *,
u_int8_t *, size_t);
static int ah_hmac_ripemd160_init(struct ah_algorithm_state *,
struct secasvar *);
static void ah_hmac_ripemd160_loop(struct ah_algorithm_state *, u_int8_t *,
size_t);
static void ah_hmac_ripemd160_result(struct ah_algorithm_state *,
u_int8_t *, size_t);
static void ah_update_mbuf(struct mbuf *, int, int,
const struct ah_algorithm *, struct ah_algorithm_state *);
/* checksum algorithms */
static const struct ah_algorithm ah_algorithms[] = {
{ ah_sumsiz_1216, ah_common_mature, 128, 128, "hmac-md5",
ah_hmac_md5_init, ah_hmac_md5_loop,
ah_hmac_md5_result, },
{ ah_sumsiz_1216, ah_common_mature, 160, 160, "hmac-sha1",
ah_hmac_sha1_init, ah_hmac_sha1_loop,
ah_hmac_sha1_result, },
{ ah_sumsiz_1216, ah_keyed_md5_mature, 128, 128, "keyed-md5",
ah_keyed_md5_init, ah_keyed_md5_loop,
ah_keyed_md5_result, },
{ ah_sumsiz_1216, ah_common_mature, 160, 160, "keyed-sha1",
ah_keyed_sha1_init, ah_keyed_sha1_loop,
ah_keyed_sha1_result, },
{ ah_sumsiz_zero, ah_none_mature, 0, 2048, "none",
ah_none_init, ah_none_loop, ah_none_result, },
{ ah_sumsiz_1216, ah_common_mature, 256, 256,
"hmac-sha2-256",
ah_hmac_sha2_256_init, ah_hmac_sha2_256_loop,
ah_hmac_sha2_256_result, },
{ ah_sumsiz_1216, ah_common_mature, 384, 384,
"hmac-sha2-384",
ah_hmac_sha2_384_init, ah_hmac_sha2_384_loop,
ah_hmac_sha2_384_result, },
{ ah_sumsiz_1216, ah_common_mature, 512, 512,
"hmac-sha2-512",
ah_hmac_sha2_512_init, ah_hmac_sha2_512_loop,
ah_hmac_sha2_512_result, },
{ ah_sumsiz_1216, ah_common_mature, 160, 160,
"hmac-ripemd160",
ah_hmac_ripemd160_init, ah_hmac_ripemd160_loop,
ah_hmac_ripemd160_result, },
{ ah_sumsiz_1216, ah_common_mature, 128, 128,
"aes-xcbc-mac",
ah_aes_xcbc_mac_init, ah_aes_xcbc_mac_loop,
ah_aes_xcbc_mac_result, },
};
const struct ah_algorithm *
ah_algorithm_lookup(int idx)
{
switch (idx) {
case SADB_AALG_MD5HMAC:
return &ah_algorithms[0];
case SADB_AALG_SHA1HMAC:
return &ah_algorithms[1];
case SADB_X_AALG_MD5:
return &ah_algorithms[2];
case SADB_X_AALG_SHA:
return &ah_algorithms[3];
case SADB_X_AALG_NULL:
return &ah_algorithms[4];
case SADB_X_AALG_SHA2_256:
return &ah_algorithms[5];
case SADB_X_AALG_SHA2_384:
return &ah_algorithms[6];
case SADB_X_AALG_SHA2_512:
return &ah_algorithms[7];
case SADB_X_AALG_RIPEMD160HMAC:
return &ah_algorithms[8];
case SADB_X_AALG_AES_XCBC_MAC:
return &ah_algorithms[9];
default:
return NULL;
}
}
static int
ah_sumsiz_1216(struct secasvar *sav)
{
if (!sav)
panic("ah_sumsiz_1216: null pointer is passed");
if (sav->flags & SADB_X_EXT_OLD)
return 16;
else
return 12;
}
static int
ah_sumsiz_zero(struct secasvar *sav)
{
if (!sav)
panic("ah_sumsiz_zero: null pointer is passed");
return 0;
}
static int
ah_common_mature(struct secasvar *sav)
{
const struct ah_algorithm *algo;
if (!sav->key_auth) {
ipseclog((LOG_ERR, "ah_common_mature: no key is given.\n"));
return 1;
}
algo = ah_algorithm_lookup(sav->alg_auth);
if (!algo) {
ipseclog((LOG_ERR, "ah_common_mature: unsupported algorithm.\n"));
return 1;
}
if (sav->key_auth->sadb_key_bits < algo->keymin ||
algo->keymax < sav->key_auth->sadb_key_bits) {
ipseclog((LOG_ERR,
"ah_common_mature: invalid key length %d for %s.\n",
sav->key_auth->sadb_key_bits, algo->name));
return 1;
}
return 0;
}
static int
ah_none_mature(struct secasvar *sav)
{
if (sav->sah->saidx.proto == IPPROTO_AH) {
ipseclog((LOG_ERR,
"ah_none_mature: protocol and algorithm mismatch.\n"));
return 1;
}
return 0;
}
static int
ah_none_init(struct ah_algorithm_state *state, struct secasvar *sav)
{
state->foo = NULL;
return 0;
}
static void
ah_none_loop(struct ah_algorithm_state *state,
u_int8_t *addr, size_t len)
{
}
static void
ah_none_result(struct ah_algorithm_state *state,
u_int8_t *addr, size_t l)
{
}
static int
ah_keyed_md5_mature(struct secasvar *sav)
{
/* anything is okay */
return 0;
}
static int
ah_keyed_md5_init(struct ah_algorithm_state *state, struct secasvar *sav)
{
size_t padlen;
size_t keybitlen;
u_int8_t buf[32];
if (!state)
panic("ah_keyed_md5_init: what?");
state->sav = sav;
state->foo = (void *)malloc(sizeof(MD5_CTX), M_TEMP, M_NOWAIT);
if (state->foo == NULL)
return ENOBUFS;
MD5Init((MD5_CTX *)state->foo);
if (state->sav) {
MD5Update((MD5_CTX *)state->foo,
(u_int8_t *)_KEYBUF(state->sav->key_auth),
(u_int)_KEYLEN(state->sav->key_auth));
/*
* Pad after the key.
* We cannot simply use md5_pad() since the function
* won't update the total length.
*/
if (_KEYLEN(state->sav->key_auth) < 56)
padlen = 64 - 8 - _KEYLEN(state->sav->key_auth);
else
padlen = 64 + 64 - 8 - _KEYLEN(state->sav->key_auth);
keybitlen = _KEYLEN(state->sav->key_auth);
keybitlen *= 8;
buf[0] = 0x80;
MD5Update((MD5_CTX *)state->foo, &buf[0], 1);
padlen--;
memset(buf, 0, sizeof(buf));
while (sizeof(buf) < padlen) {
MD5Update((MD5_CTX *)state->foo, &buf[0], sizeof(buf));
padlen -= sizeof(buf);
}
if (padlen) {
MD5Update((MD5_CTX *)state->foo, &buf[0], padlen);
}
buf[0] = (keybitlen >> 0) & 0xff;
buf[1] = (keybitlen >> 8) & 0xff;
buf[2] = (keybitlen >> 16) & 0xff;
buf[3] = (keybitlen >> 24) & 0xff;
MD5Update((MD5_CTX *)state->foo, buf, 8);
}
return 0;
}
static void
ah_keyed_md5_loop(struct ah_algorithm_state *state, u_int8_t *addr,
size_t len)
{
if (!state)
panic("ah_keyed_md5_loop: what?");
MD5Update((MD5_CTX *)state->foo, addr, len);
}
static void
ah_keyed_md5_result(struct ah_algorithm_state *state, u_int8_t *addr,
size_t l)
{
u_char digest[MD5_RESULTLEN];
if (!state)
panic("ah_keyed_md5_result: what?");
if (state->sav) {
MD5Update((MD5_CTX *)state->foo,
(u_int8_t *)_KEYBUF(state->sav->key_auth),
(u_int)_KEYLEN(state->sav->key_auth));
}
MD5Final(digest, (MD5_CTX *)state->foo);
free(state->foo, M_TEMP);
memcpy( addr, digest, sizeof(digest) > l ? l : sizeof(digest));
}
static int
ah_keyed_sha1_init(struct ah_algorithm_state *state, struct secasvar *sav)
{
SHA1_CTX *ctxt;
size_t padlen;
size_t keybitlen;
u_int8_t buf[32];
if (!state)
panic("ah_keyed_sha1_init: what?");
state->sav = sav;
state->foo = (void *)malloc(sizeof(SHA1_CTX), M_TEMP, M_NOWAIT);
if (!state->foo)
return ENOBUFS;
ctxt = (SHA1_CTX *)state->foo;
SHA1Init(ctxt);
if (state->sav) {
SHA1Update(ctxt, (u_int8_t *)_KEYBUF(state->sav->key_auth),
(u_int)_KEYLEN(state->sav->key_auth));
/*
* Pad after the key.
*/
if (_KEYLEN(state->sav->key_auth) < 56)
padlen = 64 - 8 - _KEYLEN(state->sav->key_auth);
else
padlen = 64 + 64 - 8 - _KEYLEN(state->sav->key_auth);
keybitlen = _KEYLEN(state->sav->key_auth);
keybitlen *= 8;
buf[0] = 0x80;
SHA1Update(ctxt, &buf[0], 1);
padlen--;
memset(buf, 0, sizeof(buf));
while (sizeof(buf) < padlen) {
SHA1Update(ctxt, &buf[0], sizeof(buf));
padlen -= sizeof(buf);
}
if (padlen) {
SHA1Update(ctxt, &buf[0], padlen);
}
buf[0] = (keybitlen >> 0) & 0xff;
buf[1] = (keybitlen >> 8) & 0xff;
buf[2] = (keybitlen >> 16) & 0xff;
buf[3] = (keybitlen >> 24) & 0xff;
SHA1Update(ctxt, buf, 8);
}
return 0;
}
static void
ah_keyed_sha1_loop(struct ah_algorithm_state *state, u_int8_t *addr,
size_t len)
{
SHA1_CTX *ctxt;
if (!state || !state->foo)
panic("ah_keyed_sha1_loop: what?");
ctxt = (SHA1_CTX *)state->foo;
SHA1Update(ctxt, (u_int8_t *)addr, (size_t)len);
}
static void
ah_keyed_sha1_result(struct ah_algorithm_state *state, u_int8_t *addr,
size_t l)
{
u_char digest[SHA1_RESULTLEN]; /* SHA-1 generates 160 bits */
SHA1_CTX *ctxt;
if (!state || !state->foo)
panic("ah_keyed_sha1_result: what?");
ctxt = (SHA1_CTX *)state->foo;
if (state->sav) {
SHA1Update(ctxt, (u_int8_t *)_KEYBUF(state->sav->key_auth),
(u_int)_KEYLEN(state->sav->key_auth));
}
SHA1Final((u_int8_t *)digest, ctxt);
memcpy( addr, digest, sizeof(digest) > l ? l : sizeof(digest));
free(state->foo, M_TEMP);
}
static int
ah_hmac_md5_init(struct ah_algorithm_state *state, struct secasvar *sav)
{
u_char *ipad;
u_char *opad;
u_char tk[MD5_RESULTLEN];
u_char *key;
size_t keylen;
size_t i;
MD5_CTX *ctxt;
if (!state)
panic("ah_hmac_md5_init: what?");
state->sav = sav;
state->foo = (void *)malloc(64 + 64 + sizeof(MD5_CTX), M_TEMP, M_NOWAIT);
if (!state->foo)
return ENOBUFS;
ipad = (u_char *)state->foo;
opad = (u_char *)(ipad + 64);
ctxt = (MD5_CTX *)(opad + 64);
/* compress the key if necessery */
if (64 < _KEYLEN(state->sav->key_auth)) {
MD5Init(ctxt);
MD5Update(ctxt, _KEYBUF(state->sav->key_auth),
_KEYLEN(state->sav->key_auth));
MD5Final(&tk[0], ctxt);
key = &tk[0];
keylen = 16;
} else {
key = _KEYBUF(state->sav->key_auth);
keylen = _KEYLEN(state->sav->key_auth);
}
memset(ipad, 0, 64);
memset(opad, 0, 64);
memcpy( ipad, key, keylen);
memcpy( opad, key, keylen);
for (i = 0; i < 64; i++) {
ipad[i] ^= 0x36;
opad[i] ^= 0x5c;
}
MD5Init(ctxt);
MD5Update(ctxt, ipad, 64);
return 0;
}
static void
ah_hmac_md5_loop(struct ah_algorithm_state *state, u_int8_t *addr,
size_t len)
{
MD5_CTX *ctxt;
if (!state || !state->foo)
panic("ah_hmac_md5_loop: what?");
ctxt = (MD5_CTX *)(((u_int8_t *)state->foo) + 128);
MD5Update(ctxt, addr, len);
}
static void
ah_hmac_md5_result(struct ah_algorithm_state *state, u_int8_t *addr,
size_t l)
{
u_char digest[MD5_RESULTLEN];
u_char *ipad;
u_char *opad;
MD5_CTX *ctxt;
if (!state || !state->foo)
panic("ah_hmac_md5_result: what?");
ipad = (u_char *)state->foo;
opad = (u_char *)(ipad + 64);
ctxt = (MD5_CTX *)(opad + 64);
MD5Final(digest, ctxt);
MD5Init(ctxt);
MD5Update(ctxt, opad, 64);
MD5Update(ctxt, digest, sizeof(digest));
MD5Final(digest, ctxt);
memcpy( addr, digest, sizeof(digest) > l ? l : sizeof(digest));
free(state->foo, M_TEMP);
}
static int
ah_hmac_sha1_init(struct ah_algorithm_state *state, struct secasvar *sav)
{
u_char *ipad;
u_char *opad;
SHA1_CTX *ctxt;
u_char tk[SHA1_RESULTLEN]; /* SHA-1 generates 160 bits */
u_char *key;
size_t keylen;
size_t i;
if (!state)
panic("ah_hmac_sha1_init: what?");
state->sav = sav;
state->foo = (void *)malloc(64 + 64 + sizeof(SHA1_CTX),
M_TEMP, M_NOWAIT);
if (!state->foo)
return ENOBUFS;
ipad = (u_char *)state->foo;
opad = (u_char *)(ipad + 64);
ctxt = (SHA1_CTX *)(opad + 64);
/* compress the key if necessery */
if (64 < _KEYLEN(state->sav->key_auth)) {
SHA1Init(ctxt);
SHA1Update(ctxt, _KEYBUF(state->sav->key_auth),
_KEYLEN(state->sav->key_auth));
SHA1Final(&tk[0], ctxt);
key = &tk[0];
keylen = SHA1_RESULTLEN;
} else {
key = _KEYBUF(state->sav->key_auth);
keylen = _KEYLEN(state->sav->key_auth);
}
memset(ipad, 0, 64);
memset(opad, 0, 64);
memcpy( ipad, key, keylen);
memcpy( opad, key, keylen);
for (i = 0; i < 64; i++) {
ipad[i] ^= 0x36;
opad[i] ^= 0x5c;
}
SHA1Init(ctxt);
SHA1Update(ctxt, ipad, 64);
return 0;
}
static void
ah_hmac_sha1_loop(struct ah_algorithm_state *state, u_int8_t *addr,
size_t len)
{
SHA1_CTX *ctxt;
if (!state || !state->foo)
panic("ah_hmac_sha1_loop: what?");
ctxt = (SHA1_CTX *)(((u_char *)state->foo) + 128);
SHA1Update(ctxt, (u_int8_t *)addr, (size_t)len);
}
static void
ah_hmac_sha1_result(struct ah_algorithm_state *state, u_int8_t *addr,
size_t l)
{
u_char digest[SHA1_RESULTLEN]; /* SHA-1 generates 160 bits */
u_char *ipad;
u_char *opad;
SHA1_CTX *ctxt;
if (!state || !state->foo)
panic("ah_hmac_sha1_result: what?");
ipad = (u_char *)state->foo;
opad = (u_char *)(ipad + 64);
ctxt = (SHA1_CTX *)(opad + 64);
SHA1Final((u_int8_t *)digest, ctxt);
SHA1Init(ctxt);
SHA1Update(ctxt, opad, 64);
SHA1Update(ctxt, (u_int8_t *)digest, sizeof(digest));
SHA1Final((u_int8_t *)digest, ctxt);
memcpy( addr, digest, sizeof(digest) > l ? l : sizeof(digest));
free(state->foo, M_TEMP);
}
static int
ah_hmac_sha2_256_init(struct ah_algorithm_state *state, struct secasvar *sav)
{
u_char *ipad;
u_char *opad;
SHA256_CTX *ctxt;
u_char tk[SHA256_DIGEST_LENGTH];
u_char *key;
size_t keylen;
size_t i;
if (!state)
panic("ah_hmac_sha2_256_init: what?");
state->sav = sav;
state->foo = (void *)malloc(64 + 64 + sizeof(SHA256_CTX),
M_TEMP, M_NOWAIT);
if (!state->foo)
return ENOBUFS;
ipad = (u_char *)state->foo;
opad = (u_char *)(ipad + 64);
ctxt = (SHA256_CTX *)(opad + 64);
/* compress the key if necessery */
if (64 < _KEYLEN(state->sav->key_auth)) {
memset(tk, 0, sizeof(tk));
SHA256_Init(ctxt);
SHA256_Update(ctxt, _KEYBUF(state->sav->key_auth),
_KEYLEN(state->sav->key_auth));
SHA256_Final(&tk[0], ctxt);
key = &tk[0];
keylen = sizeof(tk) < 64 ? sizeof(tk) : 64;
} else {
key = _KEYBUF(state->sav->key_auth);
keylen = _KEYLEN(state->sav->key_auth);
}
memset(ipad, 0, 64);
memset(opad, 0, 64);
memcpy( ipad, key, keylen);
memcpy( opad, key, keylen);
for (i = 0; i < 64; i++) {
ipad[i] ^= 0x36;
opad[i] ^= 0x5c;
}
SHA256_Init(ctxt);
SHA256_Update(ctxt, ipad, 64);
return 0;
}
static void
ah_hmac_sha2_256_loop(struct ah_algorithm_state *state, u_int8_t *addr,
size_t len)
{
SHA256_CTX *ctxt;
if (!state || !state->foo)
panic("ah_hmac_sha2_256_loop: what?");
ctxt = (SHA256_CTX *)(((u_char *)state->foo) + 128);
SHA256_Update(ctxt, (void *)addr, (size_t)len);
}
static void
ah_hmac_sha2_256_result(struct ah_algorithm_state *state, u_int8_t *addr,
size_t l)
{
u_char digest[SHA256_DIGEST_LENGTH];
u_char *ipad;
u_char *opad;
SHA256_CTX *ctxt;
if (!state || !state->foo)
panic("ah_hmac_sha2_256_result: what?");
ipad = (u_char *)state->foo;
opad = (u_char *)(ipad + 64);
ctxt = (SHA256_CTX *)(opad + 64);
SHA256_Final((void *)digest, ctxt);
SHA256_Init(ctxt);
SHA256_Update(ctxt, opad, 64);
SHA256_Update(ctxt, (void *)digest, sizeof(digest));
SHA256_Final((void *)digest, ctxt);
memcpy( addr, digest, sizeof(digest) > l ? l : sizeof(digest));
free(state->foo, M_TEMP);
}
static int
ah_hmac_sha2_384_init(struct ah_algorithm_state *state, struct secasvar *sav)
{
u_char *ipad;
u_char *opad;
SHA384_CTX *ctxt;
u_char tk[SHA384_DIGEST_LENGTH];
u_char *key;
size_t keylen;
size_t i;
if (!state)
panic("ah_hmac_sha2_384_init: what?");
state->sav = sav;
state->foo = (void *)malloc(64 + 64 + sizeof(SHA384_CTX),
M_TEMP, M_NOWAIT);
if (!state->foo)
return ENOBUFS;
memset(state->foo, 0, 64 + 64 + sizeof(SHA384_CTX));
ipad = (u_char *)state->foo;
opad = (u_char *)(ipad + 64);
ctxt = (SHA384_CTX *)(opad + 64);
/* compress the key if necessery */
if (64 < _KEYLEN(state->sav->key_auth)) {
memset(tk, 0, sizeof(tk));
SHA384_Init(ctxt);
SHA384_Update(ctxt, _KEYBUF(state->sav->key_auth),
_KEYLEN(state->sav->key_auth));
SHA384_Final(&tk[0], ctxt);
key = &tk[0];
keylen = sizeof(tk) < 64 ? sizeof(tk) : 64;
} else {
key = _KEYBUF(state->sav->key_auth);
keylen = _KEYLEN(state->sav->key_auth);
}
memset(ipad, 0, 64);
memset(opad, 0, 64);
memcpy( ipad, key, keylen);
memcpy( opad, key, keylen);
for (i = 0; i < 64; i++) {
ipad[i] ^= 0x36;
opad[i] ^= 0x5c;
}
SHA384_Init(ctxt);
SHA384_Update(ctxt, ipad, 64);
return 0;
}
static void
ah_hmac_sha2_384_loop(struct ah_algorithm_state *state, u_int8_t *addr,
size_t len)
{
SHA384_CTX *ctxt;
if (!state || !state->foo)
panic("ah_hmac_sha2_384_loop: what?");
ctxt = (SHA384_CTX *)(((u_char *)state->foo) + 128);
SHA384_Update(ctxt, (void *)addr, (size_t)len);
}
static void
ah_hmac_sha2_384_result(struct ah_algorithm_state *state, u_int8_t *addr,
size_t l)
{
u_char digest[SHA384_DIGEST_LENGTH];
u_char *ipad;
u_char *opad;
SHA384_CTX *ctxt;
if (!state || !state->foo)
panic("ah_hmac_sha2_384_result: what?");
ipad = (u_char *)state->foo;
opad = (u_char *)(ipad + 64);
ctxt = (SHA384_CTX *)(opad + 64);
SHA384_Final((void *)digest, ctxt);
SHA384_Init(ctxt);
SHA384_Update(ctxt, opad, 64);
SHA384_Update(ctxt, (void *)digest, sizeof(digest));
SHA384_Final((void *)digest, ctxt);
memcpy( addr, digest, sizeof(digest) > l ? l : sizeof(digest));
free(state->foo, M_TEMP);
}
static int
ah_hmac_sha2_512_init(struct ah_algorithm_state *state, struct secasvar *sav)
{
u_char *ipad;
u_char *opad;
SHA512_CTX *ctxt;
u_char tk[SHA512_DIGEST_LENGTH];
u_char *key;
size_t keylen;
size_t i;
if (!state)
panic("ah_hmac_sha2_512_init: what?");
state->sav = sav;
state->foo = (void *)malloc(64 + 64 + sizeof(SHA512_CTX),
M_TEMP, M_NOWAIT);
if (!state->foo)
return ENOBUFS;
memset(state->foo, 0, 64 + 64 + sizeof(SHA512_CTX));
ipad = (u_char *)state->foo;
opad = (u_char *)(ipad + 64);
ctxt = (SHA512_CTX *)(opad + 64);
/* compress the key if necessery */
if (64 < _KEYLEN(state->sav->key_auth)) {
memset(tk, 0, sizeof(tk));
SHA512_Init(ctxt);
SHA512_Update(ctxt, _KEYBUF(state->sav->key_auth),
_KEYLEN(state->sav->key_auth));
SHA512_Final(&tk[0], ctxt);
key = &tk[0];
keylen = sizeof(tk) < 64 ? sizeof(tk) : 64;
} else {
key = _KEYBUF(state->sav->key_auth);
keylen = _KEYLEN(state->sav->key_auth);
}
memset(ipad, 0, 64);
memset(opad, 0, 64);
memcpy( ipad, key, keylen);
memcpy( opad, key, keylen);
for (i = 0; i < 64; i++) {
ipad[i] ^= 0x36;
opad[i] ^= 0x5c;
}
SHA512_Init(ctxt);
SHA512_Update(ctxt, ipad, 64);
return 0;
}
static void
ah_hmac_sha2_512_loop(struct ah_algorithm_state *state, u_int8_t *addr,
size_t len)
{
SHA512_CTX *ctxt;
if (!state || !state->foo)
panic("ah_hmac_sha2_512_loop: what?");
ctxt = (SHA512_CTX *)(((u_char *)state->foo) + 128);
SHA512_Update(ctxt, (void *)addr, (size_t)len);
}
static void
ah_hmac_sha2_512_result(struct ah_algorithm_state *state, u_int8_t *addr,
size_t l)
{
u_char digest[SHA512_DIGEST_LENGTH];
u_char *ipad;
u_char *opad;
SHA512_CTX *ctxt;
if (!state || !state->foo)
panic("ah_hmac_sha2_512_result: what?");
ipad = (u_char *)state->foo;
opad = (u_char *)(ipad + 64);
ctxt = (SHA512_CTX *)(opad + 64);
SHA512_Final((void *)digest, ctxt);
SHA512_Init(ctxt);
SHA512_Update(ctxt, opad, 64);
SHA512_Update(ctxt, (void *)digest, sizeof(digest));
SHA512_Final((void *)digest, ctxt);
memcpy( addr, digest, sizeof(digest) > l ? l : sizeof(digest));
free(state->foo, M_TEMP);
}
static int
ah_hmac_ripemd160_init(struct ah_algorithm_state *state, struct secasvar *sav)
{
u_char *ipad;
u_char *opad;
RMD160_CTX *ctxt;
u_char tk[RIPEMD160_RESULTLEN];
u_char *key;
size_t keylen;
size_t i;
if (!state)
panic("ah_hmac_ripemd160_init: what?");
state->sav = sav;
state->foo = (void *)malloc(64 + 64 + sizeof(RMD160_CTX),
M_TEMP, M_NOWAIT);
if (!state->foo)
return ENOBUFS;
memset(state->foo, 0, 64 + 64 + sizeof(RMD160_CTX));
ipad = (u_char *)state->foo;
opad = (u_char *)(ipad + 64);
ctxt = (RMD160_CTX *)(opad + 64);
/* compress the key if necessery */
if (64 < _KEYLEN(state->sav->key_auth)) {
memset(tk, 0, sizeof(tk));
RMD160Init(ctxt);
RMD160Update(ctxt, _KEYBUF(state->sav->key_auth),
_KEYLEN(state->sav->key_auth));
RMD160Final(&tk[0], ctxt);
key = &tk[0];
keylen = sizeof(tk) < 64 ? sizeof(tk) : 64;
} else {
key = _KEYBUF(state->sav->key_auth);
keylen = _KEYLEN(state->sav->key_auth);
}
memset(ipad, 0, 64);
memset(opad, 0, 64);
memcpy( ipad, key, keylen);
memcpy( opad, key, keylen);
for (i = 0; i < 64; i++) {
ipad[i] ^= 0x36;
opad[i] ^= 0x5c;
}
RMD160Init(ctxt);
RMD160Update(ctxt, ipad, 64);
return 0;
}
static void
ah_hmac_ripemd160_loop(struct ah_algorithm_state *state, u_int8_t *addr,
size_t len)
{
RMD160_CTX *ctxt;
if (!state || !state->foo)
panic("ah_hmac_ripemd160_loop: what?");
ctxt = (RMD160_CTX *)(((u_char *)state->foo) + 128);
RMD160Update(ctxt, (void *)addr, (size_t)len);
}
static void
ah_hmac_ripemd160_result(struct ah_algorithm_state *state, u_int8_t *addr,
size_t l)
{
u_char digest[RIPEMD160_RESULTLEN];
u_char *ipad;
u_char *opad;
RMD160_CTX *ctxt;
if (!state || !state->foo)
panic("ah_hmac_ripemd160_result: what?");
ipad = (u_char *)state->foo;
opad = (u_char *)(ipad + 64);
ctxt = (RMD160_CTX *)(opad + 64);
RMD160Final((void *)digest, ctxt);
RMD160Init(ctxt);
RMD160Update(ctxt, opad, 64);
RMD160Update(ctxt, (void *)digest, sizeof(digest));
RMD160Final((void *)digest, ctxt);
memcpy( addr, digest, sizeof(digest) > l ? l : sizeof(digest));
free(state->foo, M_TEMP);
}
/*------------------------------------------------------------*/
/*
* go generate the checksum.
*/
static void
ah_update_mbuf(struct mbuf *m, int off, int len,
const struct ah_algorithm *algo, struct ah_algorithm_state *algos)
{
struct mbuf *n;
int tlen;
/* easy case first */
if (off + len <= m->m_len) {
(algo->update)(algos, mtod(m, u_int8_t *) + off, len);
return;
}
for (n = m; n; n = n->m_next) {
if (off < n->m_len)
break;
off -= n->m_len;
}
if (!n)
panic("ah_update_mbuf: wrong offset specified");
for (/* nothing */; n && len > 0; n = n->m_next) {
if (n->m_len == 0)
continue;
if (n->m_len - off < len)
tlen = n->m_len - off;
else
tlen = len;
(algo->update)(algos, mtod(n, u_int8_t *) + off, tlen);
len -= tlen;
off = 0;
}
}
#ifdef INET
/*
* Go generate the checksum. This function won't modify the mbuf chain
* except AH itself.
*
* NOTE: the function does not free mbuf on failure.
* Don't use m_copy(), it will try to share cluster mbuf by using refcnt.
*/
int
ah4_calccksum(struct mbuf *m, u_int8_t *ahdat, size_t len,
const struct ah_algorithm *algo, struct secasvar *sav)
{
int off;
int hdrtype;
size_t advancewidth;
struct ah_algorithm_state algos;
u_char sumbuf[AH_MAXSUMSIZE];
int error = 0;
int ahseen;
struct mbuf *n = NULL;
if ((m->m_flags & M_PKTHDR) == 0)
return EINVAL;
ahseen = 0;
hdrtype = -1; /* dummy, it is called IPPROTO_IP */
off = 0;
error = (algo->init)(&algos, sav);
if (error)
return error;
advancewidth = 0; /* safety */
again:
/* gory. */
switch (hdrtype) {
case -1: /* first one only */
{
/*
* copy ip hdr, modify to fit the AH checksum rule,
* then take a checksum.
*/
struct ip iphdr;
size_t hlen;
m_copydata(m, off, sizeof(iphdr), (void *)&iphdr);
hlen = iphdr.ip_hl << 2;
iphdr.ip_ttl = 0;
iphdr.ip_sum = htons(0);
if (ip4_ah_cleartos)
iphdr.ip_tos = 0;
iphdr.ip_off = htons(ntohs(iphdr.ip_off) & ip4_ah_offsetmask);
(algo->update)(&algos, (u_int8_t *)&iphdr, sizeof(struct ip));
if (hlen != sizeof(struct ip)) {
u_char *p;
int i, l, skip;
if (hlen > MCLBYTES) {
error = EMSGSIZE;
goto fail;
}
MGET(n, M_DONTWAIT, MT_DATA);
if (n && hlen > MLEN) {
MCLGET(n, M_DONTWAIT);
if ((n->m_flags & M_EXT) == 0) {
m_free(n);
n = NULL;
}
}
if (n == NULL) {
error = ENOBUFS;
goto fail;
}
m_copydata(m, off, hlen, mtod(n, void *));
/*
* IP options processing.
* See RFC2402 appendix A.
*/
p = mtod(n, u_char *);
i = sizeof(struct ip);
while (i < hlen) {
if (i + IPOPT_OPTVAL >= hlen) {
ipseclog((LOG_ERR, "ah4_calccksum: "
"invalid IP option\n"));
error = EINVAL;
goto fail;
}
if (p[i + IPOPT_OPTVAL] == IPOPT_EOL ||
p[i + IPOPT_OPTVAL] == IPOPT_NOP ||
i + IPOPT_OLEN < hlen)
;
else {
ipseclog((LOG_ERR,
"ah4_calccksum: invalid IP option "
"(type=%02x)\n",
p[i + IPOPT_OPTVAL]));
error = EINVAL;
goto fail;
}
skip = 1;
switch (p[i + IPOPT_OPTVAL]) {
case IPOPT_EOL:
case IPOPT_NOP:
l = 1;
skip = 0;
break;
case IPOPT_SECURITY: /* 0x82 */
case 0x85: /* Extended security */
case 0x86: /* Commercial security */
case 0x94: /* Router alert */
case 0x95: /* RFC1770 */
l = p[i + IPOPT_OLEN];
if (l < 2)
goto invalopt;
skip = 0;
break;
default:
l = p[i + IPOPT_OLEN];
if (l < 2)
goto invalopt;
skip = 1;
break;
}
if (l < 1 || hlen - i < l) {
invalopt:
ipseclog((LOG_ERR,
"ah4_calccksum: invalid IP option "
"(type=%02x len=%02x)\n",
p[i + IPOPT_OPTVAL],
p[i + IPOPT_OLEN]));
error = EINVAL;
goto fail;
}
if (skip)
memset(p + i, 0, l);
if (p[i + IPOPT_OPTVAL] == IPOPT_EOL)
break;
i += l;
}
p = mtod(n, u_char *) + sizeof(struct ip);
(algo->update)(&algos, p, hlen - sizeof(struct ip));
m_free(n);
n = NULL;
}
hdrtype = (iphdr.ip_p) & 0xff;
advancewidth = hlen;
break;
}
case IPPROTO_AH:
{
struct ah ah;
int siz;
int hdrsiz;
int totlen;
m_copydata(m, off, sizeof(ah), (void *)&ah);
hdrsiz = (sav->flags & SADB_X_EXT_OLD)
? sizeof(struct ah)
: sizeof(struct newah);
siz = (*algo->sumsiz)(sav);
totlen = (ah.ah_len + 2) << 2;
/*
* special treatment is necessary for the first one, not others
*/
if (!ahseen) {
if (totlen > m->m_pkthdr.len - off ||
totlen > MCLBYTES) {
error = EMSGSIZE;
goto fail;
}
MGET(n, M_DONTWAIT, MT_DATA);
if (n && totlen > MLEN) {
MCLGET(n, M_DONTWAIT);
if ((n->m_flags & M_EXT) == 0) {
m_free(n);
n = NULL;
}
}
if (n == NULL) {
error = ENOBUFS;
goto fail;
}
m_copydata(m, off, totlen, mtod(n, void *));
n->m_len = totlen;
memset(mtod(n, u_int8_t *) + hdrsiz, 0, siz);
(algo->update)(&algos, mtod(n, u_int8_t *), n->m_len);
m_free(n);
n = NULL;
} else
ah_update_mbuf(m, off, totlen, algo, &algos);
ahseen++;
hdrtype = ah.ah_nxt;
advancewidth = totlen;
break;
}
default:
ah_update_mbuf(m, off, m->m_pkthdr.len - off, algo, &algos);
advancewidth = m->m_pkthdr.len - off;
break;
}
off += advancewidth;
if (off < m->m_pkthdr.len)
goto again;
if (len < (*algo->sumsiz)(sav)) {
error = EINVAL;
goto fail;
}
(algo->result)(&algos, sumbuf, sizeof(sumbuf));
memcpy( ahdat, &sumbuf[0], (*algo->sumsiz)(sav));
if (n)
m_free(n);
return error;
fail:
if (n)
m_free(n);
return error;
}
#endif
#ifdef INET6
/*
* Go generate the checksum. This function won't modify the mbuf chain
* except AH itself.
*
* NOTE: the function does not free mbuf on failure.
* Don't use m_copy(), it will try to share cluster mbuf by using refcnt.
*/
int
ah6_calccksum(struct mbuf *m, u_int8_t *ahdat, size_t len,
const struct ah_algorithm *algo, struct secasvar *sav)
{
int newoff, off;
int proto, nxt;
struct mbuf *n = NULL;
int error;
int ahseen;
struct ah_algorithm_state algos;
u_char sumbuf[AH_MAXSUMSIZE];
if ((m->m_flags & M_PKTHDR) == 0)
return EINVAL;
error = (algo->init)(&algos, sav);
if (error)
return error;
off = 0;
proto = IPPROTO_IPV6;
nxt = -1;
ahseen = 0;
again:
newoff = ip6_nexthdr(m, off, proto, &nxt);
if (newoff < 0)
newoff = m->m_pkthdr.len;
else if (newoff <= off) {
error = EINVAL;
goto fail;
}
switch (proto) {
case IPPROTO_IPV6:
/*
* special treatment is necessary for the first one, not others
*/
if (off == 0) {
struct ip6_hdr ip6copy;
if (newoff - off != sizeof(struct ip6_hdr)) {
error = EINVAL;
goto fail;
}
m_copydata(m, off, newoff - off, (void *)&ip6copy);
/* RFC2402 */
ip6copy.ip6_flow = 0;
ip6copy.ip6_vfc &= ~IPV6_VERSION_MASK;
ip6copy.ip6_vfc |= IPV6_VERSION;
ip6copy.ip6_hlim = 0;
in6_clearscope(&ip6copy.ip6_src); /* XXX */
in6_clearscope(&ip6copy.ip6_dst); /* XXX */
(algo->update)(&algos, (u_int8_t *)&ip6copy,
sizeof(struct ip6_hdr));
} else {
newoff = m->m_pkthdr.len;
ah_update_mbuf(m, off, m->m_pkthdr.len - off, algo,
&algos);
}
break;
case IPPROTO_AH:
{
int siz;
int hdrsiz;
hdrsiz = (sav->flags & SADB_X_EXT_OLD)
? sizeof(struct ah)
: sizeof(struct newah);
siz = (*algo->sumsiz)(sav);
/*
* special treatment is necessary for the first one, not others
*/
if (!ahseen) {
if (newoff - off > MCLBYTES) {
error = EMSGSIZE;
goto fail;
}
MGET(n, M_DONTWAIT, MT_DATA);
if (n && newoff - off > MLEN) {
MCLGET(n, M_DONTWAIT);
if ((n->m_flags & M_EXT) == 0) {
m_free(n);
n = NULL;
}
}
if (n == NULL) {
error = ENOBUFS;
goto fail;
}
m_copydata(m, off, newoff - off, mtod(n, void *));
n->m_len = newoff - off;
memset(mtod(n, u_int8_t *) + hdrsiz, 0, siz);
(algo->update)(&algos, mtod(n, u_int8_t *), n->m_len);
m_free(n);
n = NULL;
} else
ah_update_mbuf(m, off, newoff - off, algo, &algos);
ahseen++;
break;
}
case IPPROTO_HOPOPTS:
case IPPROTO_DSTOPTS:
{
struct ip6_ext *ip6e;
int hdrlen, optlen;
u_int8_t *p, *optend, *optp;
if (newoff - off > MCLBYTES) {
error = EMSGSIZE;
goto fail;
}
MGET(n, M_DONTWAIT, MT_DATA);
if (n && newoff - off > MLEN) {
MCLGET(n, M_DONTWAIT);
if ((n->m_flags & M_EXT) == 0) {
m_free(n);
n = NULL;
}
}
if (n == NULL) {
error = ENOBUFS;
goto fail;
}
m_copydata(m, off, newoff - off, mtod(n, void *));
n->m_len = newoff - off;
ip6e = mtod(n, struct ip6_ext *);
hdrlen = (ip6e->ip6e_len + 1) << 3;
if (newoff - off < hdrlen) {
error = EINVAL;
m_free(n);
n = NULL;
goto fail;
}
p = mtod(n, u_int8_t *);
optend = p + hdrlen;
/*
* ICV calculation for the options header including all
* options. This part is a little tricky since there are
* two type of options; mutable and immutable. We try to
* null-out mutable ones here.
*/
optp = p + 2;
while (optp < optend) {
if (optp[0] == IP6OPT_PAD1)
optlen = 1;
else {
if (optp + 2 > optend) {
error = EINVAL;
m_free(n);
n = NULL;
goto fail;
}
optlen = optp[1] + 2;
}
if (optp + optlen > optend) {
error = EINVAL;
m_free(n);
n = NULL;
goto fail;
}
if (optp[0] & IP6OPT_MUTABLE)
memset(optp + 2, 0, optlen - 2);
optp += optlen;
}
(algo->update)(&algos, mtod(n, u_int8_t *), n->m_len);
m_free(n);
n = NULL;
break;
}
case IPPROTO_ROUTING:
/*
* For an input packet, we can just calculate `as is'.
* For an output packet, we assume ip6_output have already
* made packet how it will be received at the final
* destination.
*/
/* FALLTHROUGH */
default:
ah_update_mbuf(m, off, newoff - off, algo, &algos);
break;
}
if (newoff < m->m_pkthdr.len) {
proto = nxt;
off = newoff;
goto again;
}
if (len < (*algo->sumsiz)(sav)) {
error = EINVAL;
goto fail;
}
(algo->result)(&algos, sumbuf, sizeof(sumbuf));
memcpy( ahdat, &sumbuf[0], (*algo->sumsiz)(sav));
/* just in case */
if (n)
m_free(n);
return 0;
fail:
/* just in case */
if (n)
m_free(n);
return error;
}
#endif