NetBSD/sys/arch/hpcmips/vr/rtc.c
2011-03-18 15:31:38 +00:00

378 lines
12 KiB
C

/* $NetBSD: rtc.c,v 1.32 2011/03/18 15:31:38 tsutsui Exp $ */
/*-
* Copyright (c) 1999 Shin Takemura. All rights reserved.
* Copyright (c) 1999 SATO Kazumi. All rights reserved.
* Copyright (c) 1999 PocketBSD Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the PocketBSD project
* and its contributors.
* 4. Neither the name of the project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: rtc.c,v 1.32 2011/03/18 15:31:38 tsutsui Exp $");
#include "opt_vr41xx.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/timetc.h>
#include <sys/device.h>
#include <sys/cpu.h>
#include <machine/sysconf.h>
#include <machine/bus.h>
#include <dev/clock_subr.h>
#include <hpcmips/vr/vr.h>
#include <hpcmips/vr/vrcpudef.h>
#include <hpcmips/vr/vripif.h>
#include <hpcmips/vr/vripreg.h>
#include <hpcmips/vr/rtcreg.h>
/*
* for debugging definitions
* VRRTCDEBUG print rtc debugging information
*/
#ifdef VRRTCDEBUG
#ifndef VRRTCDEBUG_CONF
#define VRRTCDEBUG_CONF 0
#endif
int vrrtc_debug = VRRTCDEBUG_CONF;
#define DPRINTF(arg) if (vrrtc_debug) printf arg;
#define DDUMP_REGS(arg) if (vrrtc_debug) vrrtc_dump_regs(arg);
#else /* VRRTCDEBUG */
#define DPRINTF(arg)
#define DDUMP_REGS(arg)
#endif /* VRRTCDEBUG */
struct vrrtc_softc {
device_t sc_dev;
bus_space_tag_t sc_iot;
bus_space_handle_t sc_ioh;
void *sc_ih;
#ifndef SINGLE_VRIP_BASE
int sc_rtcint_reg;
int sc_tclk_h_reg, sc_tclk_l_reg;
int sc_tclk_cnt_h_reg, sc_tclk_cnt_l_reg;
#endif /* SINGLE_VRIP_BASE */
int64_t sc_epoch;
struct todr_chip_handle sc_todr;
struct timecounter sc_tc;
};
void vrrtc_init(device_t);
int vrrtc_get(todr_chip_handle_t, struct timeval *);
int vrrtc_set(todr_chip_handle_t, struct timeval *);
uint32_t vrrtc_get_timecount(struct timecounter *);
struct platform_clock vr_clock = {
#define CLOCK_RATE 128
CLOCK_RATE, vrrtc_init,
};
int vrrtc_match(device_t, cfdata_t, void *);
void vrrtc_attach(device_t, device_t, void *);
int vrrtc_intr(void*, vaddr_t, uint32_t);
void vrrtc_dump_regs(struct vrrtc_softc *);
CFATTACH_DECL_NEW(vrrtc, sizeof(struct vrrtc_softc),
vrrtc_match, vrrtc_attach, NULL, NULL);
int
vrrtc_match(device_t parent, cfdata_t cf, void *aux)
{
return 1;
}
#ifndef SINGLE_VRIP_BASE
#define RTCINT_REG_W (sc->sc_rtcint_reg)
#define TCLK_H_REG_W (sc->sc_tclk_h_reg)
#define TCLK_L_REG_W (sc->sc_tclk_l_reg)
#define TCLK_CNT_H_REG_W (sc->sc_tclk_cnt_h_reg)
#define TCLK_CNT_L_REG_W (sc->sc_tclk_cnt_l_reg)
#endif /* SINGLE_VRIP_BASE */
void
vrrtc_attach(device_t parent, device_t self, void *aux)
{
struct vrip_attach_args *va = aux;
struct vrrtc_softc *sc = device_private(self);
int year;
#ifndef SINGLE_VRIP_BASE
if (va->va_addr == VR4102_RTC_ADDR) {
sc->sc_rtcint_reg = VR4102_RTCINT_REG_W;
sc->sc_tclk_h_reg = VR4102_TCLK_H_REG_W;
sc->sc_tclk_l_reg = VR4102_TCLK_L_REG_W;
sc->sc_tclk_cnt_h_reg = VR4102_TCLK_CNT_H_REG_W;
sc->sc_tclk_cnt_l_reg = VR4102_TCLK_CNT_L_REG_W;
} else if (va->va_addr == VR4122_RTC_ADDR) {
sc->sc_rtcint_reg = VR4122_RTCINT_REG_W;
sc->sc_tclk_h_reg = VR4122_TCLK_H_REG_W;
sc->sc_tclk_l_reg = VR4122_TCLK_L_REG_W;
sc->sc_tclk_cnt_h_reg = VR4122_TCLK_CNT_H_REG_W;
sc->sc_tclk_cnt_l_reg = VR4122_TCLK_CNT_L_REG_W;
} else if (va->va_addr == VR4181_RTC_ADDR) {
sc->sc_rtcint_reg = VR4181_RTCINT_REG_W;
sc->sc_tclk_h_reg = RTC_NO_REG_W;
sc->sc_tclk_l_reg = RTC_NO_REG_W;
sc->sc_tclk_cnt_h_reg = RTC_NO_REG_W;
sc->sc_tclk_cnt_l_reg = RTC_NO_REG_W;
} else {
panic("%s: unknown base address 0x%lx",
device_xname(self), va->va_addr);
}
#endif /* SINGLE_VRIP_BASE */
sc->sc_iot = va->va_iot;
if (bus_space_map(sc->sc_iot, va->va_addr, va->va_size,
0 /* no flags */, &sc->sc_ioh)) {
printf("vrrtc_attach: can't map i/o space\n");
return;
}
/* RTC interrupt handler is directly dispatched from CPU intr */
vr_intr_establish(VR_INTR1, vrrtc_intr, sc);
/* But need to set level 1 interrupt mask register,
* so regsiter fake interrurpt handler
*/
if (!(sc->sc_ih = vrip_intr_establish(va->va_vc, va->va_unit, 0,
IPL_CLOCK, 0, 0))) {
printf (":can't map interrupt.\n");
return;
}
/*
* Rtc is attached to call this routine
* before cpu_initclock() calls clock_init().
* So we must disable all interrupt for now.
*/
/*
* Disable all rtc interrupts
*/
/* Disable Elapse compare intr */
bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_H_REG_W, 0);
bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_M_REG_W, 0);
bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_L_REG_W, 0);
/* Disable RTC Long1 intr */
bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W, 0);
bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_L_REG_W, 0);
/* Disable RTC Long2 intr */
bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL2_H_REG_W, 0);
bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL2_L_REG_W, 0);
/* Disable RTC TCLK intr */
if (TCLK_H_REG_W != RTC_NO_REG_W) {
bus_space_write_2(sc->sc_iot, sc->sc_ioh, TCLK_H_REG_W, 0);
bus_space_write_2(sc->sc_iot, sc->sc_ioh, TCLK_L_REG_W, 0);
}
/*
* Clear all rtc intrrupts.
*/
bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCINT_REG_W, RTCINT_ALL);
/*
* Figure out the epoch, which could be either forward or
* backwards in time. We assume that the start date will always
* be on Jan 1.
*/
for (year = EPOCHYEAR; year < POSIX_BASE_YEAR; year++) {
sc->sc_epoch += LEAPYEAR4(year) ? SECYR + SECDAY : SECYR;
}
for (year = POSIX_BASE_YEAR; year < EPOCHYEAR; year++) {
sc->sc_epoch -= LEAPYEAR4(year) ? SECYR + SECDAY : SECYR;
}
/*
* Initialize MI todr(9)
*/
sc->sc_todr.todr_settime = vrrtc_set;
sc->sc_todr.todr_gettime = vrrtc_get;
sc->sc_todr.cookie = sc;
todr_attach(&sc->sc_todr);
platform_clock_attach(self, &vr_clock);
}
int
vrrtc_intr(void *arg, vaddr_t pc, uint32_t status)
{
struct vrrtc_softc *sc = arg;
struct clockframe cf;
bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCINT_REG_W, RTCINT_ALL);
cf.pc = pc;
cf.sr = status;
cf.intr = (curcpu()->ci_idepth > 1);
hardclock(&cf);
return 0;
}
void
vrrtc_init(device_t self)
{
struct vrrtc_softc *sc = device_private(self);
DDUMP_REGS(sc);
/*
* Set tick (CLOCK_RATE)
*/
bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W, 0);
bus_space_write_2(sc->sc_iot, sc->sc_ioh,
RTCL1_L_REG_W, RTCL1_L_HZ / CLOCK_RATE);
/*
* Initialize timecounter.
*/
sc->sc_tc.tc_get_timecount = vrrtc_get_timecount;
sc->sc_tc.tc_name = "vrrtc";
sc->sc_tc.tc_counter_mask = 0xffff;
sc->sc_tc.tc_frequency = ETIME_L_HZ;
sc->sc_tc.tc_priv = sc;
sc->sc_tc.tc_quality = 100;
tc_init(&sc->sc_tc);
}
uint32_t
vrrtc_get_timecount(struct timecounter *tc)
{
struct vrrtc_softc *sc = (struct vrrtc_softc *)tc->tc_priv;
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
return bus_space_read_2(iot, ioh, ETIME_L_REG_W);
}
int
vrrtc_get(todr_chip_handle_t tch, struct timeval *tvp)
{
struct vrrtc_softc *sc = (struct vrrtc_softc *)tch->cookie;
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
uint32_t timeh; /* elapse time (2*timeh sec) */
uint32_t timel; /* timel/32768 sec */
uint64_t sec, usec;
timeh = bus_space_read_2(iot, ioh, ETIME_H_REG_W);
timeh = (timeh << 16) | bus_space_read_2(iot, ioh, ETIME_M_REG_W);
timel = bus_space_read_2(iot, ioh, ETIME_L_REG_W);
DPRINTF(("clock_get: timeh %08x timel %08x\n", timeh, timel));
timeh -= EPOCHOFF;
sec = (uint64_t)timeh * 2;
sec -= sc->sc_epoch;
tvp->tv_sec = sec;
tvp->tv_sec += timel / ETIME_L_HZ;
/* scale from 32kHz to 1MHz */
usec = (timel % ETIME_L_HZ);
usec *= 1000000;
usec /= ETIME_L_HZ;
tvp->tv_usec = usec;
return 0;
}
int
vrrtc_set(todr_chip_handle_t tch, struct timeval *tvp)
{
struct vrrtc_softc *sc = (struct vrrtc_softc *)tch->cookie;
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
uint32_t timeh; /* elapse time (2*timeh sec) */
uint32_t timel; /* timel/32768 sec */
int64_t sec, cnt;
sec = tvp->tv_sec + sc->sc_epoch;
sec += sc->sc_epoch;
timeh = EPOCHOFF + (sec / 2);
timel = sec % 2;
cnt = tvp->tv_usec;
/* scale from 1MHz to 32kHz */
cnt *= ETIME_L_HZ;
cnt /= 1000000;
timel += (uint32_t)cnt;
bus_space_write_2(iot, ioh, ETIME_H_REG_W, (timeh >> 16) & 0xffff);
bus_space_write_2(iot, ioh, ETIME_M_REG_W, timeh & 0xffff);
bus_space_write_2(iot, ioh, ETIME_L_REG_W, timel);
return 0;
}
void
vrrtc_dump_regs(struct vrrtc_softc *sc)
{
int timeh;
int timel;
timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_H_REG_W);
timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_M_REG_W);
timel = (timel << 16)
| bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_L_REG_W);
printf("clock_init() Elapse Time %04x%04x\n", timeh, timel);
timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_H_REG_W);
timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_M_REG_W);
timel = (timel << 16)
| bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_L_REG_W);
printf("clock_init() Elapse Compare %04x%04x\n", timeh, timel);
timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W);
timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_L_REG_W);
printf("clock_init() LONG1 %04x%04x\n", timeh, timel);
timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_CNT_H_REG_W);
timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_CNT_L_REG_W);
printf("clock_init() LONG1 CNTL %04x%04x\n", timeh, timel);
timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_H_REG_W);
timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_L_REG_W);
printf("clock_init() LONG2 %04x%04x\n", timeh, timel);
timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_CNT_H_REG_W);
timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_CNT_L_REG_W);
printf("clock_init() LONG2 CNTL %04x%04x\n", timeh, timel);
if (TCLK_H_REG_W != RTC_NO_REG_W) {
timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_H_REG_W);
timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_L_REG_W);
printf("clock_init() TCLK %04x%04x\n", timeh, timel);
timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh,
TCLK_CNT_H_REG_W);
timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh,
TCLK_CNT_L_REG_W);
printf("clock_init() TCLK CNTL %04x%04x\n", timeh, timel);
}
}