378 lines
12 KiB
C
378 lines
12 KiB
C
/* $NetBSD: rtc.c,v 1.32 2011/03/18 15:31:38 tsutsui Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 1999 Shin Takemura. All rights reserved.
|
|
* Copyright (c) 1999 SATO Kazumi. All rights reserved.
|
|
* Copyright (c) 1999 PocketBSD Project. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the PocketBSD project
|
|
* and its contributors.
|
|
* 4. Neither the name of the project nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: rtc.c,v 1.32 2011/03/18 15:31:38 tsutsui Exp $");
|
|
|
|
#include "opt_vr41xx.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/timetc.h>
|
|
#include <sys/device.h>
|
|
#include <sys/cpu.h>
|
|
|
|
#include <machine/sysconf.h>
|
|
#include <machine/bus.h>
|
|
|
|
#include <dev/clock_subr.h>
|
|
|
|
#include <hpcmips/vr/vr.h>
|
|
#include <hpcmips/vr/vrcpudef.h>
|
|
#include <hpcmips/vr/vripif.h>
|
|
#include <hpcmips/vr/vripreg.h>
|
|
#include <hpcmips/vr/rtcreg.h>
|
|
|
|
/*
|
|
* for debugging definitions
|
|
* VRRTCDEBUG print rtc debugging information
|
|
*/
|
|
#ifdef VRRTCDEBUG
|
|
#ifndef VRRTCDEBUG_CONF
|
|
#define VRRTCDEBUG_CONF 0
|
|
#endif
|
|
int vrrtc_debug = VRRTCDEBUG_CONF;
|
|
#define DPRINTF(arg) if (vrrtc_debug) printf arg;
|
|
#define DDUMP_REGS(arg) if (vrrtc_debug) vrrtc_dump_regs(arg);
|
|
#else /* VRRTCDEBUG */
|
|
#define DPRINTF(arg)
|
|
#define DDUMP_REGS(arg)
|
|
#endif /* VRRTCDEBUG */
|
|
|
|
struct vrrtc_softc {
|
|
device_t sc_dev;
|
|
bus_space_tag_t sc_iot;
|
|
bus_space_handle_t sc_ioh;
|
|
void *sc_ih;
|
|
#ifndef SINGLE_VRIP_BASE
|
|
int sc_rtcint_reg;
|
|
int sc_tclk_h_reg, sc_tclk_l_reg;
|
|
int sc_tclk_cnt_h_reg, sc_tclk_cnt_l_reg;
|
|
#endif /* SINGLE_VRIP_BASE */
|
|
int64_t sc_epoch;
|
|
struct todr_chip_handle sc_todr;
|
|
struct timecounter sc_tc;
|
|
};
|
|
|
|
void vrrtc_init(device_t);
|
|
int vrrtc_get(todr_chip_handle_t, struct timeval *);
|
|
int vrrtc_set(todr_chip_handle_t, struct timeval *);
|
|
uint32_t vrrtc_get_timecount(struct timecounter *);
|
|
|
|
struct platform_clock vr_clock = {
|
|
#define CLOCK_RATE 128
|
|
CLOCK_RATE, vrrtc_init,
|
|
};
|
|
|
|
int vrrtc_match(device_t, cfdata_t, void *);
|
|
void vrrtc_attach(device_t, device_t, void *);
|
|
int vrrtc_intr(void*, vaddr_t, uint32_t);
|
|
void vrrtc_dump_regs(struct vrrtc_softc *);
|
|
|
|
CFATTACH_DECL_NEW(vrrtc, sizeof(struct vrrtc_softc),
|
|
vrrtc_match, vrrtc_attach, NULL, NULL);
|
|
|
|
int
|
|
vrrtc_match(device_t parent, cfdata_t cf, void *aux)
|
|
{
|
|
|
|
return 1;
|
|
}
|
|
|
|
#ifndef SINGLE_VRIP_BASE
|
|
#define RTCINT_REG_W (sc->sc_rtcint_reg)
|
|
#define TCLK_H_REG_W (sc->sc_tclk_h_reg)
|
|
#define TCLK_L_REG_W (sc->sc_tclk_l_reg)
|
|
#define TCLK_CNT_H_REG_W (sc->sc_tclk_cnt_h_reg)
|
|
#define TCLK_CNT_L_REG_W (sc->sc_tclk_cnt_l_reg)
|
|
#endif /* SINGLE_VRIP_BASE */
|
|
|
|
void
|
|
vrrtc_attach(device_t parent, device_t self, void *aux)
|
|
{
|
|
struct vrip_attach_args *va = aux;
|
|
struct vrrtc_softc *sc = device_private(self);
|
|
int year;
|
|
|
|
#ifndef SINGLE_VRIP_BASE
|
|
if (va->va_addr == VR4102_RTC_ADDR) {
|
|
sc->sc_rtcint_reg = VR4102_RTCINT_REG_W;
|
|
sc->sc_tclk_h_reg = VR4102_TCLK_H_REG_W;
|
|
sc->sc_tclk_l_reg = VR4102_TCLK_L_REG_W;
|
|
sc->sc_tclk_cnt_h_reg = VR4102_TCLK_CNT_H_REG_W;
|
|
sc->sc_tclk_cnt_l_reg = VR4102_TCLK_CNT_L_REG_W;
|
|
} else if (va->va_addr == VR4122_RTC_ADDR) {
|
|
sc->sc_rtcint_reg = VR4122_RTCINT_REG_W;
|
|
sc->sc_tclk_h_reg = VR4122_TCLK_H_REG_W;
|
|
sc->sc_tclk_l_reg = VR4122_TCLK_L_REG_W;
|
|
sc->sc_tclk_cnt_h_reg = VR4122_TCLK_CNT_H_REG_W;
|
|
sc->sc_tclk_cnt_l_reg = VR4122_TCLK_CNT_L_REG_W;
|
|
} else if (va->va_addr == VR4181_RTC_ADDR) {
|
|
sc->sc_rtcint_reg = VR4181_RTCINT_REG_W;
|
|
sc->sc_tclk_h_reg = RTC_NO_REG_W;
|
|
sc->sc_tclk_l_reg = RTC_NO_REG_W;
|
|
sc->sc_tclk_cnt_h_reg = RTC_NO_REG_W;
|
|
sc->sc_tclk_cnt_l_reg = RTC_NO_REG_W;
|
|
} else {
|
|
panic("%s: unknown base address 0x%lx",
|
|
device_xname(self), va->va_addr);
|
|
}
|
|
#endif /* SINGLE_VRIP_BASE */
|
|
|
|
sc->sc_iot = va->va_iot;
|
|
if (bus_space_map(sc->sc_iot, va->va_addr, va->va_size,
|
|
0 /* no flags */, &sc->sc_ioh)) {
|
|
printf("vrrtc_attach: can't map i/o space\n");
|
|
return;
|
|
}
|
|
/* RTC interrupt handler is directly dispatched from CPU intr */
|
|
vr_intr_establish(VR_INTR1, vrrtc_intr, sc);
|
|
/* But need to set level 1 interrupt mask register,
|
|
* so regsiter fake interrurpt handler
|
|
*/
|
|
if (!(sc->sc_ih = vrip_intr_establish(va->va_vc, va->va_unit, 0,
|
|
IPL_CLOCK, 0, 0))) {
|
|
printf (":can't map interrupt.\n");
|
|
return;
|
|
}
|
|
/*
|
|
* Rtc is attached to call this routine
|
|
* before cpu_initclock() calls clock_init().
|
|
* So we must disable all interrupt for now.
|
|
*/
|
|
/*
|
|
* Disable all rtc interrupts
|
|
*/
|
|
/* Disable Elapse compare intr */
|
|
bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_H_REG_W, 0);
|
|
bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_M_REG_W, 0);
|
|
bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_L_REG_W, 0);
|
|
/* Disable RTC Long1 intr */
|
|
bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W, 0);
|
|
bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_L_REG_W, 0);
|
|
/* Disable RTC Long2 intr */
|
|
bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL2_H_REG_W, 0);
|
|
bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL2_L_REG_W, 0);
|
|
/* Disable RTC TCLK intr */
|
|
if (TCLK_H_REG_W != RTC_NO_REG_W) {
|
|
bus_space_write_2(sc->sc_iot, sc->sc_ioh, TCLK_H_REG_W, 0);
|
|
bus_space_write_2(sc->sc_iot, sc->sc_ioh, TCLK_L_REG_W, 0);
|
|
}
|
|
/*
|
|
* Clear all rtc intrrupts.
|
|
*/
|
|
bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCINT_REG_W, RTCINT_ALL);
|
|
|
|
/*
|
|
* Figure out the epoch, which could be either forward or
|
|
* backwards in time. We assume that the start date will always
|
|
* be on Jan 1.
|
|
*/
|
|
for (year = EPOCHYEAR; year < POSIX_BASE_YEAR; year++) {
|
|
sc->sc_epoch += LEAPYEAR4(year) ? SECYR + SECDAY : SECYR;
|
|
}
|
|
for (year = POSIX_BASE_YEAR; year < EPOCHYEAR; year++) {
|
|
sc->sc_epoch -= LEAPYEAR4(year) ? SECYR + SECDAY : SECYR;
|
|
}
|
|
|
|
/*
|
|
* Initialize MI todr(9)
|
|
*/
|
|
sc->sc_todr.todr_settime = vrrtc_set;
|
|
sc->sc_todr.todr_gettime = vrrtc_get;
|
|
sc->sc_todr.cookie = sc;
|
|
todr_attach(&sc->sc_todr);
|
|
|
|
platform_clock_attach(self, &vr_clock);
|
|
}
|
|
|
|
int
|
|
vrrtc_intr(void *arg, vaddr_t pc, uint32_t status)
|
|
{
|
|
struct vrrtc_softc *sc = arg;
|
|
struct clockframe cf;
|
|
|
|
bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCINT_REG_W, RTCINT_ALL);
|
|
cf.pc = pc;
|
|
cf.sr = status;
|
|
cf.intr = (curcpu()->ci_idepth > 1);
|
|
hardclock(&cf);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
vrrtc_init(device_t self)
|
|
{
|
|
struct vrrtc_softc *sc = device_private(self);
|
|
|
|
DDUMP_REGS(sc);
|
|
/*
|
|
* Set tick (CLOCK_RATE)
|
|
*/
|
|
bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W, 0);
|
|
bus_space_write_2(sc->sc_iot, sc->sc_ioh,
|
|
RTCL1_L_REG_W, RTCL1_L_HZ / CLOCK_RATE);
|
|
|
|
/*
|
|
* Initialize timecounter.
|
|
*/
|
|
sc->sc_tc.tc_get_timecount = vrrtc_get_timecount;
|
|
sc->sc_tc.tc_name = "vrrtc";
|
|
sc->sc_tc.tc_counter_mask = 0xffff;
|
|
sc->sc_tc.tc_frequency = ETIME_L_HZ;
|
|
sc->sc_tc.tc_priv = sc;
|
|
sc->sc_tc.tc_quality = 100;
|
|
tc_init(&sc->sc_tc);
|
|
}
|
|
|
|
uint32_t
|
|
vrrtc_get_timecount(struct timecounter *tc)
|
|
{
|
|
struct vrrtc_softc *sc = (struct vrrtc_softc *)tc->tc_priv;
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
|
|
return bus_space_read_2(iot, ioh, ETIME_L_REG_W);
|
|
}
|
|
|
|
int
|
|
vrrtc_get(todr_chip_handle_t tch, struct timeval *tvp)
|
|
{
|
|
struct vrrtc_softc *sc = (struct vrrtc_softc *)tch->cookie;
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
uint32_t timeh; /* elapse time (2*timeh sec) */
|
|
uint32_t timel; /* timel/32768 sec */
|
|
uint64_t sec, usec;
|
|
|
|
timeh = bus_space_read_2(iot, ioh, ETIME_H_REG_W);
|
|
timeh = (timeh << 16) | bus_space_read_2(iot, ioh, ETIME_M_REG_W);
|
|
timel = bus_space_read_2(iot, ioh, ETIME_L_REG_W);
|
|
|
|
DPRINTF(("clock_get: timeh %08x timel %08x\n", timeh, timel));
|
|
|
|
timeh -= EPOCHOFF;
|
|
sec = (uint64_t)timeh * 2;
|
|
sec -= sc->sc_epoch;
|
|
tvp->tv_sec = sec;
|
|
tvp->tv_sec += timel / ETIME_L_HZ;
|
|
|
|
/* scale from 32kHz to 1MHz */
|
|
usec = (timel % ETIME_L_HZ);
|
|
usec *= 1000000;
|
|
usec /= ETIME_L_HZ;
|
|
tvp->tv_usec = usec;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
vrrtc_set(todr_chip_handle_t tch, struct timeval *tvp)
|
|
{
|
|
struct vrrtc_softc *sc = (struct vrrtc_softc *)tch->cookie;
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
uint32_t timeh; /* elapse time (2*timeh sec) */
|
|
uint32_t timel; /* timel/32768 sec */
|
|
int64_t sec, cnt;
|
|
|
|
sec = tvp->tv_sec + sc->sc_epoch;
|
|
sec += sc->sc_epoch;
|
|
timeh = EPOCHOFF + (sec / 2);
|
|
timel = sec % 2;
|
|
|
|
cnt = tvp->tv_usec;
|
|
/* scale from 1MHz to 32kHz */
|
|
cnt *= ETIME_L_HZ;
|
|
cnt /= 1000000;
|
|
timel += (uint32_t)cnt;
|
|
|
|
bus_space_write_2(iot, ioh, ETIME_H_REG_W, (timeh >> 16) & 0xffff);
|
|
bus_space_write_2(iot, ioh, ETIME_M_REG_W, timeh & 0xffff);
|
|
bus_space_write_2(iot, ioh, ETIME_L_REG_W, timel);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
vrrtc_dump_regs(struct vrrtc_softc *sc)
|
|
{
|
|
int timeh;
|
|
int timel;
|
|
|
|
timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_H_REG_W);
|
|
timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_M_REG_W);
|
|
timel = (timel << 16)
|
|
| bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_L_REG_W);
|
|
printf("clock_init() Elapse Time %04x%04x\n", timeh, timel);
|
|
|
|
timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_H_REG_W);
|
|
timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_M_REG_W);
|
|
timel = (timel << 16)
|
|
| bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_L_REG_W);
|
|
printf("clock_init() Elapse Compare %04x%04x\n", timeh, timel);
|
|
|
|
timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W);
|
|
timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_L_REG_W);
|
|
printf("clock_init() LONG1 %04x%04x\n", timeh, timel);
|
|
|
|
timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_CNT_H_REG_W);
|
|
timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_CNT_L_REG_W);
|
|
printf("clock_init() LONG1 CNTL %04x%04x\n", timeh, timel);
|
|
|
|
timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_H_REG_W);
|
|
timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_L_REG_W);
|
|
printf("clock_init() LONG2 %04x%04x\n", timeh, timel);
|
|
|
|
timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_CNT_H_REG_W);
|
|
timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_CNT_L_REG_W);
|
|
printf("clock_init() LONG2 CNTL %04x%04x\n", timeh, timel);
|
|
|
|
if (TCLK_H_REG_W != RTC_NO_REG_W) {
|
|
timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_H_REG_W);
|
|
timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_L_REG_W);
|
|
printf("clock_init() TCLK %04x%04x\n", timeh, timel);
|
|
|
|
timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh,
|
|
TCLK_CNT_H_REG_W);
|
|
timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh,
|
|
TCLK_CNT_L_REG_W);
|
|
printf("clock_init() TCLK CNTL %04x%04x\n", timeh, timel);
|
|
}
|
|
}
|