NetBSD/sys/uvm/uvm_glue.c
mrg fcc023545e - add new RLIMIT_AS (aka RLIMIT_VMEM) resource that limits the total
address space available to processes.  this limit exists in most other
modern unix variants, and like most of them, our defaults are unlimited.
remove the old mmap / rlimit.datasize hack.

- adds the VMCMD_STACK flag to all the stack-creation vmcmd callers.
it is currently unused, but was added a few years ago.

- add a pair of new process size values to kinfo_proc2{}. one is the
total size of the process memory map, and the other is the total size
adjusted for unused stack space (since most processes have a lot of
this...)

- patch sh, and csh to notice RLIMIT_AS.  (in some cases, the alias
RLIMIT_VMEM was already present and used if availble.)

- patch ps, top and systat to notice the new k_vm_vsize member of
kinfo_proc2{}.

- update irix, svr4, svr4_32, linux and osf1 emulations to support
this information.  (freebsd could be done, but that it's best left
as part of the full-update of compat/freebsd.)


this addresses PR 7897.  it also gives correct memory usage values,
which have never been entirely correct (since mmap), and have been
very incorrect since jemalloc() was enabled.

tested on i386 and sparc64, build tested on several other platforms.

thanks to many folks for feedback and testing but most espcially
chuq and yamt for critical suggestions that lead to this patch not
having a special ugliness i wasn't happy with anyway :-)
2009-03-29 01:02:48 +00:00

817 lines
20 KiB
C

/* $NetBSD: uvm_glue.c,v 1.136 2009/03/29 01:02:51 mrg Exp $ */
/*
* Copyright (c) 1997 Charles D. Cranor and Washington University.
* Copyright (c) 1991, 1993, The Regents of the University of California.
*
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* The Mach Operating System project at Carnegie-Mellon University.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Charles D. Cranor,
* Washington University, the University of California, Berkeley and
* its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
* from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
*
*
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
* All rights reserved.
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: uvm_glue.c,v 1.136 2009/03/29 01:02:51 mrg Exp $");
#include "opt_kgdb.h"
#include "opt_kstack.h"
#include "opt_uvmhist.h"
/*
* uvm_glue.c: glue functions
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/resourcevar.h>
#include <sys/buf.h>
#include <sys/user.h>
#include <sys/syncobj.h>
#include <sys/cpu.h>
#include <sys/atomic.h>
#include <uvm/uvm.h>
/*
* local prototypes
*/
static void uvm_swapout(struct lwp *);
static int uarea_swapin(vaddr_t);
/*
* XXXCDC: do these really belong here?
*/
/*
* uvm_kernacc: can the kernel access a region of memory
*
* - used only by /dev/kmem driver (mem.c)
*/
bool
uvm_kernacc(void *addr, size_t len, int rw)
{
bool rv;
vaddr_t saddr, eaddr;
vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
saddr = trunc_page((vaddr_t)addr);
eaddr = round_page((vaddr_t)addr + len);
vm_map_lock_read(kernel_map);
rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
vm_map_unlock_read(kernel_map);
return(rv);
}
#ifdef KGDB
/*
* Change protections on kernel pages from addr to addr+len
* (presumably so debugger can plant a breakpoint).
*
* We force the protection change at the pmap level. If we were
* to use vm_map_protect a change to allow writing would be lazily-
* applied meaning we would still take a protection fault, something
* we really don't want to do. It would also fragment the kernel
* map unnecessarily. We cannot use pmap_protect since it also won't
* enforce a write-enable request. Using pmap_enter is the only way
* we can ensure the change takes place properly.
*/
void
uvm_chgkprot(void *addr, size_t len, int rw)
{
vm_prot_t prot;
paddr_t pa;
vaddr_t sva, eva;
prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
eva = round_page((vaddr_t)addr + len);
for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
/*
* Extract physical address for the page.
*/
if (pmap_extract(pmap_kernel(), sva, &pa) == false)
panic("%s: invalid page", __func__);
pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
}
pmap_update(pmap_kernel());
}
#endif
/*
* uvm_vslock: wire user memory for I/O
*
* - called from physio and sys___sysctl
* - XXXCDC: consider nuking this (or making it a macro?)
*/
int
uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access_type)
{
struct vm_map *map;
vaddr_t start, end;
int error;
map = &vs->vm_map;
start = trunc_page((vaddr_t)addr);
end = round_page((vaddr_t)addr + len);
error = uvm_fault_wire(map, start, end, access_type, 0);
return error;
}
/*
* uvm_vsunlock: unwire user memory wired by uvm_vslock()
*
* - called from physio and sys___sysctl
* - XXXCDC: consider nuking this (or making it a macro?)
*/
void
uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
{
uvm_fault_unwire(&vs->vm_map, trunc_page((vaddr_t)addr),
round_page((vaddr_t)addr + len));
}
/*
* uvm_proc_fork: fork a virtual address space
*
* - the address space is copied as per parent map's inherit values
*/
void
uvm_proc_fork(struct proc *p1, struct proc *p2, bool shared)
{
if (shared == true) {
p2->p_vmspace = NULL;
uvmspace_share(p1, p2);
} else {
p2->p_vmspace = uvmspace_fork(p1->p_vmspace);
}
cpu_proc_fork(p1, p2);
}
/*
* uvm_lwp_fork: fork a thread
*
* - a new "user" structure is allocated for the child process
* [filled in by MD layer...]
* - if specified, the child gets a new user stack described by
* stack and stacksize
* - NOTE: the kernel stack may be at a different location in the child
* process, and thus addresses of automatic variables may be invalid
* after cpu_lwp_fork returns in the child process. We do nothing here
* after cpu_lwp_fork returns.
* - XXXCDC: we need a way for this to return a failure value rather
* than just hang
*/
void
uvm_lwp_fork(struct lwp *l1, struct lwp *l2, void *stack, size_t stacksize,
void (*func)(void *), void *arg)
{
int error;
/*
* Wire down the U-area for the process, which contains the PCB
* and the kernel stack. Wired state is stored in l->l_flag's
* L_INMEM bit rather than in the vm_map_entry's wired count
* to prevent kernel_map fragmentation. If we reused a cached U-area,
* L_INMEM will already be set and we don't need to do anything.
*
* Note the kernel stack gets read/write accesses right off the bat.
*/
if ((l2->l_flag & LW_INMEM) == 0) {
vaddr_t uarea = USER_TO_UAREA(l2->l_addr);
if ((error = uarea_swapin(uarea)) != 0)
panic("%s: uvm_fault_wire failed: %d", __func__, error);
#ifdef PMAP_UAREA
/* Tell the pmap this is a u-area mapping */
PMAP_UAREA(uarea);
#endif
l2->l_flag |= LW_INMEM;
}
#ifdef KSTACK_CHECK_MAGIC
/*
* fill stack with magic number
*/
kstack_setup_magic(l2);
#endif
/*
* cpu_lwp_fork() copy and update the pcb, and make the child ready
* to run. If this is a normal user fork, the child will exit
* directly to user mode via child_return() on its first time
* slice and will not return here. If this is a kernel thread,
* the specified entry point will be executed.
*/
cpu_lwp_fork(l1, l2, stack, stacksize, func, arg);
}
static int
uarea_swapin(vaddr_t addr)
{
return uvm_fault_wire(kernel_map, addr, addr + USPACE,
VM_PROT_READ | VM_PROT_WRITE, 0);
}
static void
uarea_swapout(vaddr_t addr)
{
uvm_fault_unwire(kernel_map, addr, addr + USPACE);
}
#ifndef USPACE_ALIGN
#define USPACE_ALIGN 0
#endif
static pool_cache_t uvm_uarea_cache;
static int
uarea_ctor(void *arg, void *obj, int flags)
{
KASSERT((flags & PR_WAITOK) != 0);
return uarea_swapin((vaddr_t)obj);
}
static void *
uarea_poolpage_alloc(struct pool *pp, int flags)
{
return (void *)uvm_km_alloc(kernel_map, pp->pr_alloc->pa_pagesz,
USPACE_ALIGN, UVM_KMF_PAGEABLE |
((flags & PR_WAITOK) != 0 ? UVM_KMF_WAITVA :
(UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)));
}
static void
uarea_poolpage_free(struct pool *pp, void *addr)
{
uvm_km_free(kernel_map, (vaddr_t)addr, pp->pr_alloc->pa_pagesz,
UVM_KMF_PAGEABLE);
}
static struct pool_allocator uvm_uarea_allocator = {
.pa_alloc = uarea_poolpage_alloc,
.pa_free = uarea_poolpage_free,
.pa_pagesz = USPACE,
};
void
uvm_uarea_init(void)
{
int flags = PR_NOTOUCH;
/*
* specify PR_NOALIGN unless the alignment provided by
* the backend (USPACE_ALIGN) is sufficient to provide
* pool page size (UPSACE) alignment.
*/
if ((USPACE_ALIGN == 0 && USPACE != PAGE_SIZE) ||
(USPACE_ALIGN % USPACE) != 0) {
flags |= PR_NOALIGN;
}
uvm_uarea_cache = pool_cache_init(USPACE, USPACE_ALIGN, 0, flags,
"uarea", &uvm_uarea_allocator, IPL_NONE, uarea_ctor, NULL, NULL);
}
/*
* uvm_uarea_alloc: allocate a u-area
*/
bool
uvm_uarea_alloc(vaddr_t *uaddrp)
{
*uaddrp = (vaddr_t)pool_cache_get(uvm_uarea_cache, PR_WAITOK);
return true;
}
/*
* uvm_uarea_free: free a u-area
*/
void
uvm_uarea_free(vaddr_t uaddr, struct cpu_info *ci)
{
pool_cache_put(uvm_uarea_cache, (void *)uaddr);
}
/*
* uvm_proc_exit: exit a virtual address space
*
* - borrow proc0's address space because freeing the vmspace
* of the dead process may block.
*/
void
uvm_proc_exit(struct proc *p)
{
struct lwp *l = curlwp; /* XXX */
struct vmspace *ovm;
KASSERT(p == l->l_proc);
ovm = p->p_vmspace;
/*
* borrow proc0's address space.
*/
KPREEMPT_DISABLE(l);
pmap_deactivate(l);
p->p_vmspace = proc0.p_vmspace;
pmap_activate(l);
KPREEMPT_ENABLE(l);
uvmspace_free(ovm);
}
void
uvm_lwp_exit(struct lwp *l)
{
vaddr_t va = USER_TO_UAREA(l->l_addr);
l->l_flag &= ~LW_INMEM;
uvm_uarea_free(va, l->l_cpu);
l->l_addr = NULL;
}
/*
* uvm_init_limit: init per-process VM limits
*
* - called for process 0 and then inherited by all others.
*/
void
uvm_init_limits(struct proc *p)
{
/*
* Set up the initial limits on process VM. Set the maximum
* resident set size to be all of (reasonably) available memory.
* This causes any single, large process to start random page
* replacement once it fills memory.
*/
p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
p->p_rlimit[RLIMIT_STACK].rlim_max = maxsmap;
p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
p->p_rlimit[RLIMIT_DATA].rlim_max = maxdmap;
p->p_rlimit[RLIMIT_AS].rlim_cur = RLIM_INFINITY;
p->p_rlimit[RLIMIT_AS].rlim_max = RLIM_INFINITY;
p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free);
}
#ifdef DEBUG
int enableswap = 1;
int swapdebug = 0;
#define SDB_FOLLOW 1
#define SDB_SWAPIN 2
#define SDB_SWAPOUT 4
#endif
/*
* uvm_swapin: swap in an lwp's u-area.
*
* - must be called with the LWP's swap lock held.
* - naturally, must not be called with l == curlwp
*/
void
uvm_swapin(struct lwp *l)
{
int error;
KASSERT(mutex_owned(&l->l_swaplock));
KASSERT(l != curlwp);
error = uarea_swapin(USER_TO_UAREA(l->l_addr));
if (error) {
panic("%s: rewiring stack failed: %d", __func__, error);
}
/*
* Some architectures need to be notified when the user area has
* moved to new physical page(s) (e.g. see mips/mips/vm_machdep.c).
*/
cpu_swapin(l);
lwp_lock(l);
if (l->l_stat == LSRUN)
sched_enqueue(l, false);
l->l_flag |= LW_INMEM;
l->l_swtime = 0;
lwp_unlock(l);
++uvmexp.swapins;
}
/*
* uvm_kick_scheduler: kick the scheduler into action if not running.
*
* - called when swapped out processes have been awoken.
*/
void
uvm_kick_scheduler(void)
{
if (uvm.swap_running == false)
return;
mutex_enter(&uvm_scheduler_mutex);
uvm.scheduler_kicked = true;
cv_signal(&uvm.scheduler_cv);
mutex_exit(&uvm_scheduler_mutex);
}
/*
* uvm_scheduler: process zero main loop
*
* - attempt to swapin every swaped-out, runnable process in order of
* priority.
* - if not enough memory, wake the pagedaemon and let it clear space.
*/
void
uvm_scheduler(void)
{
struct lwp *l, *ll;
int pri;
int ppri;
l = curlwp;
lwp_lock(l);
l->l_priority = PRI_VM;
l->l_class = SCHED_FIFO;
lwp_unlock(l);
for (;;) {
#ifdef DEBUG
mutex_enter(&uvm_scheduler_mutex);
while (!enableswap)
cv_wait(&uvm.scheduler_cv, &uvm_scheduler_mutex);
mutex_exit(&uvm_scheduler_mutex);
#endif
ll = NULL; /* process to choose */
ppri = INT_MIN; /* its priority */
mutex_enter(proc_lock);
LIST_FOREACH(l, &alllwp, l_list) {
/* is it a runnable swapped out process? */
if (l->l_stat == LSRUN && !(l->l_flag & LW_INMEM)) {
pri = l->l_swtime + l->l_slptime -
(l->l_proc->p_nice - NZERO) * 8;
if (pri > ppri) { /* higher priority? */
ll = l;
ppri = pri;
}
}
}
#ifdef DEBUG
if (swapdebug & SDB_FOLLOW)
printf("%s: running, procp %p pri %d\n", __func__, ll,
ppri);
#endif
/*
* Nothing to do, back to sleep
*/
if ((l = ll) == NULL) {
mutex_exit(proc_lock);
mutex_enter(&uvm_scheduler_mutex);
if (uvm.scheduler_kicked == false)
cv_wait(&uvm.scheduler_cv,
&uvm_scheduler_mutex);
uvm.scheduler_kicked = false;
mutex_exit(&uvm_scheduler_mutex);
continue;
}
/*
* we have found swapped out process which we would like
* to bring back in.
*
* XXX: this part is really bogus cuz we could deadlock
* on memory despite our feeble check
*/
if (uvmexp.free > atop(USPACE)) {
#ifdef DEBUG
if (swapdebug & SDB_SWAPIN)
printf("swapin: pid %d(%s)@%p, pri %d "
"free %d\n", l->l_proc->p_pid,
l->l_proc->p_comm, l->l_addr, ppri,
uvmexp.free);
#endif
mutex_enter(&l->l_swaplock);
mutex_exit(proc_lock);
uvm_swapin(l);
mutex_exit(&l->l_swaplock);
continue;
} else {
/*
* not enough memory, jab the pageout daemon and
* wait til the coast is clear
*/
mutex_exit(proc_lock);
#ifdef DEBUG
if (swapdebug & SDB_FOLLOW)
printf("%s: no room for pid %d(%s),"
" free %d\n", __func__, l->l_proc->p_pid,
l->l_proc->p_comm, uvmexp.free);
#endif
uvm_wait("schedpwait");
#ifdef DEBUG
if (swapdebug & SDB_FOLLOW)
printf("%s: room again, free %d\n", __func__,
uvmexp.free);
#endif
}
}
}
/*
* swappable: is LWP "l" swappable?
*/
static bool
swappable(struct lwp *l)
{
if ((l->l_flag & (LW_INMEM|LW_SYSTEM|LW_WEXIT)) != LW_INMEM)
return false;
if ((l->l_pflag & LP_RUNNING) != 0)
return false;
if (l->l_holdcnt != 0)
return false;
if (l->l_class != SCHED_OTHER)
return false;
if (l->l_syncobj == &rw_syncobj || l->l_syncobj == &mutex_syncobj)
return false;
if (l->l_proc->p_stat != SACTIVE && l->l_proc->p_stat != SSTOP)
return false;
return true;
}
/*
* swapout_threads: find threads that can be swapped and unwire their
* u-areas.
*
* - called by the pagedaemon
* - try and swap at least one processs
* - processes that are sleeping or stopped for maxslp or more seconds
* are swapped... otherwise the longest-sleeping or stopped process
* is swapped, otherwise the longest resident process...
*/
void
uvm_swapout_threads(void)
{
struct lwp *l;
struct lwp *outl, *outl2;
int outpri, outpri2;
int didswap = 0;
extern int maxslp;
bool gotit;
/* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */
#ifdef DEBUG
if (!enableswap)
return;
#endif
/*
* outl/outpri : stop/sleep thread with largest sleeptime < maxslp
* outl2/outpri2: the longest resident thread (its swap time)
*/
outl = outl2 = NULL;
outpri = outpri2 = 0;
restart:
mutex_enter(proc_lock);
LIST_FOREACH(l, &alllwp, l_list) {
KASSERT(l->l_proc != NULL);
if (!mutex_tryenter(&l->l_swaplock))
continue;
if (!swappable(l)) {
mutex_exit(&l->l_swaplock);
continue;
}
switch (l->l_stat) {
case LSONPROC:
break;
case LSRUN:
if (l->l_swtime > outpri2) {
outl2 = l;
outpri2 = l->l_swtime;
}
break;
case LSSLEEP:
case LSSTOP:
if (l->l_slptime >= maxslp) {
mutex_exit(proc_lock);
uvm_swapout(l);
/*
* Locking in the wrong direction -
* try to prevent the LWP from exiting.
*/
gotit = mutex_tryenter(proc_lock);
mutex_exit(&l->l_swaplock);
didswap++;
if (!gotit)
goto restart;
continue;
} else if (l->l_slptime > outpri) {
outl = l;
outpri = l->l_slptime;
}
break;
}
mutex_exit(&l->l_swaplock);
}
/*
* If we didn't get rid of any real duds, toss out the next most
* likely sleeping/stopped or running candidate. We only do this
* if we are real low on memory since we don't gain much by doing
* it (USPACE bytes).
*/
if (didswap == 0 && uvmexp.free <= atop(round_page(USPACE))) {
if ((l = outl) == NULL)
l = outl2;
#ifdef DEBUG
if (swapdebug & SDB_SWAPOUT)
printf("%s: no duds, try procp %p\n", __func__, l);
#endif
if (l) {
mutex_enter(&l->l_swaplock);
mutex_exit(proc_lock);
if (swappable(l))
uvm_swapout(l);
mutex_exit(&l->l_swaplock);
return;
}
}
mutex_exit(proc_lock);
}
/*
* uvm_swapout: swap out lwp "l"
*
* - currently "swapout" means "unwire U-area" and "pmap_collect()"
* the pmap.
* - must be called with l->l_swaplock held.
* - XXXCDC: should deactivate all process' private anonymous memory
*/
static void
uvm_swapout(struct lwp *l)
{
struct vm_map *map;
KASSERT(mutex_owned(&l->l_swaplock));
#ifdef DEBUG
if (swapdebug & SDB_SWAPOUT)
printf("%s: lid %d.%d(%s)@%p, stat %x pri %d free %d\n",
__func__, l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm,
l->l_addr, l->l_stat, l->l_slptime, uvmexp.free);
#endif
/*
* Mark it as (potentially) swapped out.
*/
lwp_lock(l);
if (!swappable(l)) {
KDASSERT(l->l_cpu != curcpu());
lwp_unlock(l);
return;
}
l->l_flag &= ~LW_INMEM;
l->l_swtime = 0;
if (l->l_stat == LSRUN)
sched_dequeue(l);
lwp_unlock(l);
l->l_ru.ru_nswap++;
++uvmexp.swapouts;
/*
* Do any machine-specific actions necessary before swapout.
* This can include saving floating point state, etc.
*/
cpu_swapout(l);
/*
* Unwire the to-be-swapped process's user struct and kernel stack.
*/
uarea_swapout(USER_TO_UAREA(l->l_addr));
map = &l->l_proc->p_vmspace->vm_map;
if (vm_map_lock_try(map)) {
pmap_collect(vm_map_pmap(map));
vm_map_unlock(map);
}
}
/*
* uvm_lwp_hold: prevent lwp "l" from being swapped out, and bring
* back into memory if it is currently swapped.
*/
void
uvm_lwp_hold(struct lwp *l)
{
if (l == curlwp) {
atomic_inc_uint(&l->l_holdcnt);
} else {
mutex_enter(&l->l_swaplock);
if (atomic_inc_uint_nv(&l->l_holdcnt) == 1 &&
(l->l_flag & LW_INMEM) == 0)
uvm_swapin(l);
mutex_exit(&l->l_swaplock);
}
}
/*
* uvm_lwp_rele: release a hold on lwp "l". when the holdcount
* drops to zero, it's eligable to be swapped.
*/
void
uvm_lwp_rele(struct lwp *l)
{
KASSERT(l->l_holdcnt != 0);
atomic_dec_uint(&l->l_holdcnt);
}