NetBSD/lib/libkvm/kvm.c
1993-05-11 06:44:54 +00:00

1503 lines
34 KiB
C

/*-
* Copyright (c) 1989 The Regents of the University of California.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* PATCHES MAGIC LEVEL PATCH THAT GOT US HERE
* -------------------- ----- ----------------------
* CURRENT PATCH LEVEL: 2 00052
* -------------------- ----- ----------------------
*
* 08 Sep 92 Greenman & Kranenburg Change vaddr calc, move bogus #endif
* 05 Aug 92 David Greenman Fix kernel namelist db create/use
*/
#if defined(LIBC_SCCS) && !defined(lint)
static char sccsid[] = "@(#)kvm.c 5.18 (Berkeley) 5/7/91";
#endif /* LIBC_SCCS and not lint */
/*
* Updated for 386BSD 0.1 by David Greenman (davidg%implode@percy.rain.com)
* and Paul Kranenburg (pk@cs.few.eur.nl)
* 20-Aug-1992
*/
#include <sys/param.h>
#include <sys/user.h>
#include <sys/proc.h>
#include <sys/ioctl.h>
#include <sys/kinfo.h>
#include <sys/tty.h>
#include <machine/vmparam.h>
#include <fcntl.h>
#include <nlist.h>
#include <kvm.h>
#include <ndbm.h>
#include <limits.h>
#include <paths.h>
#include <stdio.h>
#include <string.h>
#ifdef SPPWAIT
#define NEWVM
#endif
#ifdef NEWVM
#define btop(x) (((unsigned)(x)) >> PGSHIFT) /* XXX */
#define ptob(x) ((caddr_t)((x) << PGSHIFT)) /* XXX */
#include <vm/vm.h> /* ??? kinfo_proc currently includes this*/
#include <vm/vm_page.h>
#include <vm/swap_pager.h>
#include <sys/kinfo_proc.h>
#ifdef hp300
#include <hp300/hp300/pte.h>
#endif
#else /* NEWVM */
#include <machine/pte.h>
#include <sys/vmmac.h>
#include <sys/text.h>
#endif /* NEWVM */
/*
* files
*/
static const char *unixf, *memf, *kmemf, *swapf;
static int unixx, mem, kmem, swap;
static DBM *db;
/*
* flags
*/
static int deadkernel;
static int kvminit = 0;
static int kvmfilesopen = 0;
/*
* state
*/
static struct kinfo_proc *kvmprocbase, *kvmprocptr;
static int kvmnprocs;
/*
* u. buffer
*/
static union {
struct user user;
char upages[UPAGES][NBPG];
} user;
#ifdef NEWVM
struct swapblk {
long offset; /* offset in swap device */
long size; /* remaining size of block in swap device */
};
#endif
/*
* random other stuff
*/
#ifndef NEWVM
static struct pte *Usrptmap, *usrpt;
static struct pte *Sysmap;
static int Syssize;
#endif
static int dmmin, dmmax;
static int pcbpf;
static int argaddr0; /* XXX */
static int argaddr1;
static int swaddr;
static int nswap;
static char *tmp;
#if defined(hp300)
static int lowram;
static struct ste *Sysseg;
#endif
#if defined(i386)
static struct pde *PTD;
#endif
#define basename(cp) ((tmp=rindex((cp), '/')) ? tmp+1 : (cp))
#define MAXSYMSIZE 256
#if defined(hp300)
#define pftoc(f) ((f) - lowram)
#define iskva(v) (1)
#endif
#ifndef pftoc
#define pftoc(f) (f)
#endif
#ifndef iskva
#define iskva(v) ((u_long)(v) & KERNBASE)
#endif
static struct nlist nl[] = {
{ "_Usrptmap" },
#define X_USRPTMAP 0
{ "_usrpt" },
#define X_USRPT 1
{ "_nswap" },
#define X_NSWAP 2
{ "_dmmin" },
#define X_DMMIN 3
{ "_dmmax" },
#define X_DMMAX 4
{ "_vm_page_buckets" },
#define X_VM_PAGE_BUCKETS 5
{ "_vm_page_hash_mask" },
#define X_VM_PAGE_HASH_MASK 6
{ "_page_shift" },
#define X_PAGE_SHIFT 7
/*
* everything here and down, only if a dead kernel
*/
{ "_Sysmap" },
#define X_SYSMAP 8
#define X_DEADKERNEL X_SYSMAP
{ "_Syssize" },
#define X_SYSSIZE 9
{ "_allproc" },
#define X_ALLPROC 10
{ "_zombproc" },
#define X_ZOMBPROC 11
{ "_nproc" },
#define X_NPROC 12
#define X_LAST 12
#if defined(hp300)
{ "_Sysseg" },
#define X_SYSSEG (X_LAST+1)
{ "_lowram" },
#define X_LOWRAM (X_LAST+2)
#endif
#if defined(i386)
{ "_IdlePTD" },
#define X_IdlePTD (X_LAST+1)
#endif
{ "" },
};
static off_t Vtophys();
static void klseek(), seterr(), setsyserr(), vstodb();
static int getkvars(), kvm_doprocs(), kvm_init();
#ifdef NEWVM
static int vatosw();
static int findpage();
#endif
/*
* returns 0 if files were opened now,
* 1 if files were already opened,
* -1 if files could not be opened.
*/
kvm_openfiles(uf, mf, sf)
const char *uf, *mf, *sf;
{
if (kvmfilesopen)
return (1);
unixx = mem = kmem = swap = -1;
unixf = (uf == NULL) ? _PATH_UNIX : uf;
memf = (mf == NULL) ? _PATH_MEM : mf;
if ((unixx = open(unixf, O_RDONLY, 0)) == -1) {
setsyserr("can't open %s", unixf);
goto failed;
}
if ((mem = open(memf, O_RDONLY, 0)) == -1) {
setsyserr("can't open %s", memf);
goto failed;
}
if (sf != NULL)
swapf = sf;
if (mf != NULL) {
deadkernel++;
kmemf = mf;
kmem = mem;
swap = -1;
} else {
kmemf = _PATH_KMEM;
if ((kmem = open(kmemf, O_RDONLY, 0)) == -1) {
setsyserr("can't open %s", kmemf);
goto failed;
}
swapf = (sf == NULL) ? _PATH_DRUM : sf;
/*
* live kernel - avoid looking up nlist entries
* past X_DEADKERNEL.
*/
nl[X_DEADKERNEL].n_name = "";
}
if (swapf != NULL && ((swap = open(swapf, O_RDONLY, 0)) == -1)) {
seterr("can't open %s", swapf);
goto failed;
}
kvmfilesopen++;
if (kvminit == 0 && kvm_init(NULL, NULL, NULL, 0) == -1) /*XXX*/
return (-1);
return (0);
failed:
kvm_close();
return (-1);
}
static
kvm_init(uf, mf, sf)
char *uf, *mf, *sf;
{
if (kvmfilesopen == 0 && kvm_openfiles(NULL, NULL, NULL) == -1)
return (-1);
if (getkvars() == -1)
return (-1);
kvminit = 1;
return (0);
}
kvm_close()
{
if (unixx != -1) {
close(unixx);
unixx = -1;
}
if (kmem != -1) {
if (kmem != mem)
close(kmem);
/* otherwise kmem is a copy of mem, and will be closed below */
kmem = -1;
}
if (mem != -1) {
close(mem);
mem = -1;
}
if (swap != -1) {
close(swap);
swap = -1;
}
if (db != NULL) {
dbm_close(db);
db = NULL;
}
kvminit = 0;
kvmfilesopen = 0;
deadkernel = 0;
#ifndef NEWVM
if (Sysmap) {
free(Sysmap);
Sysmap = NULL;
}
#endif
}
kvm_nlist(nl)
struct nlist *nl;
{
datum key, data;
char dbname[MAXPATHLEN];
char dbversion[_POSIX2_LINE_MAX];
char kversion[_POSIX2_LINE_MAX];
int dbversionlen;
char symbuf[MAXSYMSIZE];
struct nlist nbuf, *n;
int num, did;
if (kvmfilesopen == 0 && kvm_openfiles(NULL, NULL, NULL) == -1)
return (-1);
if (deadkernel)
goto hard2;
/*
* initialize key datum
*/
key.dptr = symbuf;
if (db != NULL)
goto win; /* off to the races */
/*
* open database
*/
sprintf(dbname, "%s/kvm_%s", _PATH_VARRUN, basename(unixf));
if ((db = dbm_open(dbname, O_RDONLY, 0)) == NULL)
goto hard2;
/*
* read version out of database
*/
bcopy("VERSION", symbuf, sizeof ("VERSION")-1);
key.dsize = (sizeof ("VERSION") - 1);
data = dbm_fetch(db, key);
if (data.dptr == NULL)
goto hard1;
bcopy(data.dptr, dbversion, data.dsize);
dbversionlen = data.dsize;
/*
* read version string from kernel memory
*/
bcopy("_version", symbuf, sizeof ("_version")-1);
key.dsize = (sizeof ("_version")-1);
data = dbm_fetch(db, key);
if (data.dptr == NULL)
goto hard1;
if (data.dsize != sizeof (struct nlist))
goto hard1;
bcopy(data.dptr, &nbuf, sizeof (struct nlist));
lseek(kmem, nbuf.n_value, 0);
if (read(kmem, kversion, dbversionlen) != dbversionlen)
goto hard1;
/*
* if they match, we win - otherwise do it the hard way
*/
if (bcmp(dbversion, kversion, dbversionlen) != 0)
goto hard1;
/*
* getem from the database.
*/
win:
num = did = 0;
for (n = nl; n->n_name && n->n_name[0]; n++, num++) {
int len;
/*
* clear out fields from users buffer
*/
n->n_type = 0;
n->n_other = 0;
n->n_desc = 0;
n->n_value = 0;
/*
* query db
*/
if ((len = strlen(n->n_name)) > MAXSYMSIZE) {
seterr("symbol too large");
return (-1);
}
(void)strcpy(symbuf, n->n_name);
key.dsize = len;
data = dbm_fetch(db, key);
if (data.dptr == NULL || data.dsize != sizeof (struct nlist))
continue;
bcopy(data.dptr, &nbuf, sizeof (struct nlist));
n->n_value = nbuf.n_value;
n->n_type = nbuf.n_type;
n->n_desc = nbuf.n_desc;
n->n_other = nbuf.n_other;
did++;
}
return (num - did);
hard1:
dbm_close(db);
db = NULL;
hard2:
num = nlist(unixf, nl);
if (num == -1)
seterr("nlist (hard way) failed");
return (num);
}
kvm_getprocs(what, arg)
int what, arg;
{
static int ocopysize = -1;
if (kvminit == 0 && kvm_init(NULL, NULL, NULL, 0) == -1)
return (NULL);
if (!deadkernel) {
int ret, copysize;
if ((ret = getkerninfo(what, NULL, NULL, arg)) == -1) {
setsyserr("can't get estimate for kerninfo");
return (-1);
}
copysize = ret;
if (copysize > ocopysize || !kvmprocbase) {
if (ocopysize == -1 || !kvmprocbase)
kvmprocbase =
(struct kinfo_proc *)malloc(copysize);
else
kvmprocbase =
(struct kinfo_proc *)realloc(kvmprocbase,
copysize);
if (!kvmprocbase) {
seterr("out of memory");
return (-1);
}
}
ocopysize = copysize;
if ((ret = getkerninfo(what, kvmprocbase, &copysize,
arg)) == -1) {
setsyserr("can't get proc list");
return (-1);
}
if (copysize % sizeof (struct kinfo_proc)) {
seterr("proc size mismatch (got %d total, kinfo_proc: %d)",
copysize, sizeof (struct kinfo_proc));
return (-1);
}
kvmnprocs = copysize / sizeof (struct kinfo_proc);
} else {
int nproc;
if (kvm_read((void *) nl[X_NPROC].n_value, &nproc,
sizeof (int)) != sizeof (int)) {
seterr("can't read nproc");
return (-1);
}
if ((kvmprocbase = (struct kinfo_proc *)
malloc(nproc * sizeof (struct kinfo_proc))) == NULL) {
seterr("out of memory (addr: %x nproc = %d)",
nl[X_NPROC].n_value, nproc);
return (-1);
}
kvmnprocs = kvm_doprocs(what, arg, kvmprocbase);
realloc(kvmprocbase, kvmnprocs * sizeof (struct kinfo_proc));
}
kvmprocptr = kvmprocbase;
return (kvmnprocs);
}
/*
* XXX - should NOT give up so easily - especially since the kernel
* may be corrupt (it died). Should gather as much information as possible.
* Follows proc ptrs instead of reading table since table may go
* away soon.
*/
static
kvm_doprocs(what, arg, buff)
int what, arg;
char *buff;
{
struct proc *p, proc;
register char *bp = buff;
int i = 0;
int doingzomb = 0;
struct eproc eproc;
struct pgrp pgrp;
struct session sess;
struct tty tty;
#ifndef NEWVM
struct text text;
#endif
/* allproc */
if (kvm_read((void *) nl[X_ALLPROC].n_value, &p,
sizeof (struct proc *)) != sizeof (struct proc *)) {
seterr("can't read allproc");
return (-1);
}
again:
for (; p; p = proc.p_nxt) {
if (kvm_read(p, &proc, sizeof (struct proc)) !=
sizeof (struct proc)) {
seterr("can't read proc at %x", p);
return (-1);
}
#ifdef NEWVM
if (kvm_read(proc.p_cred, &eproc.e_pcred,
sizeof (struct pcred)) == sizeof (struct pcred))
(void) kvm_read(eproc.e_pcred.pc_ucred, &eproc.e_ucred,
sizeof (struct ucred));
switch(ki_op(what)) {
case KINFO_PROC_PID:
if (proc.p_pid != (pid_t)arg)
continue;
break;
case KINFO_PROC_UID:
if (eproc.e_ucred.cr_uid != (uid_t)arg)
continue;
break;
case KINFO_PROC_RUID:
if (eproc.e_pcred.p_ruid != (uid_t)arg)
continue;
break;
}
#else
switch(ki_op(what)) {
case KINFO_PROC_PID:
if (proc.p_pid != (pid_t)arg)
continue;
break;
case KINFO_PROC_UID:
if (proc.p_uid != (uid_t)arg)
continue;
break;
case KINFO_PROC_RUID:
if (proc.p_ruid != (uid_t)arg)
continue;
break;
}
#endif
/*
* gather eproc
*/
eproc.e_paddr = p;
if (kvm_read(proc.p_pgrp, &pgrp, sizeof (struct pgrp)) !=
sizeof (struct pgrp)) {
seterr("can't read pgrp at %x", proc.p_pgrp);
return (-1);
}
eproc.e_sess = pgrp.pg_session;
eproc.e_pgid = pgrp.pg_id;
eproc.e_jobc = pgrp.pg_jobc;
if (kvm_read(pgrp.pg_session, &sess, sizeof (struct session))
!= sizeof (struct session)) {
seterr("can't read session at %x", pgrp.pg_session);
return (-1);
}
if ((proc.p_flag&SCTTY) && sess.s_ttyp != NULL) {
if (kvm_read(sess.s_ttyp, &tty, sizeof (struct tty))
!= sizeof (struct tty)) {
seterr("can't read tty at %x", sess.s_ttyp);
return (-1);
}
eproc.e_tdev = tty.t_dev;
eproc.e_tsess = tty.t_session;
if (tty.t_pgrp != NULL) {
if (kvm_read(tty.t_pgrp, &pgrp, sizeof (struct
pgrp)) != sizeof (struct pgrp)) {
seterr("can't read tpgrp at &x",
tty.t_pgrp);
return (-1);
}
eproc.e_tpgid = pgrp.pg_id;
} else
eproc.e_tpgid = -1;
} else
eproc.e_tdev = NODEV;
if (proc.p_wmesg)
kvm_read(proc.p_wmesg, eproc.e_wmesg, WMESGLEN);
#ifdef NEWVM
(void) kvm_read(proc.p_vmspace, &eproc.e_vm,
sizeof (struct vmspace));
eproc.e_xsize = eproc.e_xrssize =
eproc.e_xccount = eproc.e_xswrss = 0;
#else
if (proc.p_textp) {
kvm_read(proc.p_textp, &text, sizeof (text));
eproc.e_xsize = text.x_size;
eproc.e_xrssize = text.x_rssize;
eproc.e_xccount = text.x_ccount;
eproc.e_xswrss = text.x_swrss;
} else {
eproc.e_xsize = eproc.e_xrssize =
eproc.e_xccount = eproc.e_xswrss = 0;
}
#endif
switch(ki_op(what)) {
case KINFO_PROC_PGRP:
if (eproc.e_pgid != (pid_t)arg)
continue;
break;
case KINFO_PROC_TTY:
if ((proc.p_flag&SCTTY) == 0 ||
eproc.e_tdev != (dev_t)arg)
continue;
break;
}
i++;
bcopy(&proc, bp, sizeof (struct proc));
bp += sizeof (struct proc);
bcopy(&eproc, bp, sizeof (struct eproc));
bp+= sizeof (struct eproc);
}
if (!doingzomb) {
/* zombproc */
if (kvm_read((void *) nl[X_ZOMBPROC].n_value, &p,
sizeof (struct proc *)) != sizeof (struct proc *)) {
seterr("can't read zombproc");
return (-1);
}
doingzomb = 1;
goto again;
}
return (i);
}
struct proc *
kvm_nextproc()
{
if (!kvmprocbase && kvm_getprocs(0, 0) == -1)
return (NULL);
if (kvmprocptr >= (kvmprocbase + kvmnprocs)) {
seterr("end of proc list");
return (NULL);
}
return((struct proc *)(kvmprocptr++));
}
struct eproc *
kvm_geteproc(p)
const struct proc *p;
{
return ((struct eproc *)(((char *)p) + sizeof (struct proc)));
}
kvm_setproc()
{
kvmprocptr = kvmprocbase;
}
kvm_freeprocs()
{
if (kvmprocbase) {
free(kvmprocbase);
kvmprocbase = NULL;
}
}
#ifdef i386
/* See also ./sys/kern/kern_execve.c */
#define ARGSIZE (roundup(ARG_MAX, NBPG))
#endif
#ifdef NEWVM
struct user *
kvm_getu(p)
const struct proc *p;
{
register struct kinfo_proc *kp = (struct kinfo_proc *)p;
register int i;
register char *up;
u_int vaddr;
struct swapblk swb;
if (kvminit == 0 && kvm_init(NULL, NULL, NULL, 0) == -1)
return (NULL);
if (p->p_stat == SZOMB) {
seterr("zombie process");
return (NULL);
}
argaddr0 = argaddr1 = swaddr = 0;
if ((p->p_flag & SLOAD) == 0) {
vm_offset_t maddr;
if (swap < 0) {
seterr("no swap");
return (NULL);
}
/*
* Costly operation, better set enable_swap to zero
* in vm/vm_glue.c, since paging of user pages isn't
* done yet anyway.
*/
if (vatosw(p, USRSTACK + i * NBPG, &maddr, &swb) == 0)
return NULL;
if (maddr == 0 && swb.size < UPAGES * NBPG)
return NULL;
for (i = 0; i < UPAGES; i++) {
if (maddr) {
(void) lseek(mem, maddr + i * NBPG, 0);
if (read(mem,
(char *)user.upages[i], NBPG) != NBPG) {
seterr(
"can't read u for pid %d from %s",
p->p_pid, swapf);
return NULL;
}
} else {
(void) lseek(swap, swb.offset + i * NBPG, 0);
if (read(swap,
(char *)user.upages[i], NBPG) != NBPG) {
seterr(
"can't read u for pid %d from %s",
p->p_pid, swapf);
return NULL;
}
}
}
return(&user.user);
}
/*
* Read u-area one page at a time for the benefit of post-mortems
*/
up = (char *) p->p_addr;
for (i = 0; i < UPAGES; i++) {
klseek(kmem, (long)up, 0);
if (read(kmem, user.upages[i], CLBYTES) != CLBYTES) {
seterr("cant read page %x of u of pid %d from %s",
up, p->p_pid, kmemf);
return(NULL);
}
up += CLBYTES;
}
pcbpf = (int) btop(p->p_addr); /* what should this be really? */
/*
* Conjure up a physical address for the arguments.
*/
#ifdef hp300
if (kp->kp_eproc.e_vm.vm_pmap.pm_ptab) {
struct pte pte[CLSIZE*2];
klseek(kmem,
(long)&kp->kp_eproc.e_vm.vm_pmap.pm_ptab
[btoc(USRSTACK-CLBYTES*2)], 0);
if (read(kmem, (char *)&pte, sizeof(pte)) == sizeof(pte)) {
#if CLBYTES < 2048
argaddr0 = ctob(pftoc(pte[CLSIZE*0].pg_pfnum));
#endif
argaddr1 = ctob(pftoc(pte[CLSIZE*1].pg_pfnum));
}
}
#endif
kp->kp_eproc.e_vm.vm_rssize =
kp->kp_eproc.e_vm.vm_pmap.pm_stats.resident_count; /* XXX */
vaddr = (u_int)kp->kp_eproc.e_vm.vm_maxsaddr + MAXSSIZ - ARGSIZE;
#ifdef i386
if (kp->kp_eproc.e_vm.vm_pmap.pm_pdir) {
struct pde pde;
klseek(kmem,
(long)(&kp->kp_eproc.e_vm.vm_pmap.pm_pdir[pdei(vaddr)]), 0);
if (read(kmem, (char *)&pde, sizeof pde) == sizeof pde
&& pde.pd_v) {
struct pte pte;
if (lseek(mem, (long)ctob(pde.pd_pfnum) +
(ptei(vaddr) * sizeof pte), 0) == -1)
seterr("kvm_getu: lseek");
if (read(mem, (char *)&pte, sizeof pte) == sizeof pte) {
if (pte.pg_v) {
argaddr1 = (long)ctob(pte.pg_pfnum);
} else {
goto hard;
}
} else {
seterr("kvm_getu: read");
}
} else {
goto hard;
}
}
#endif /* i386 */
hard:
if (vatosw(p, vaddr, &argaddr1, &swb)) {
if (argaddr1 == 0 && swb.size >= ARGSIZE)
swaddr = swb.offset;
}
return(&user.user);
}
#else
struct user *
kvm_getu(p)
const struct proc *p;
{
struct pte *pteaddr, apte;
struct pte arguutl[HIGHPAGES+(CLSIZE*2)];
register int i;
int ncl;
if (kvminit == 0 && kvm_init(NULL, NULL, NULL, 0) == -1)
return (NULL);
if (p->p_stat == SZOMB) {
seterr("zombie process");
return (NULL);
}
if ((p->p_flag & SLOAD) == 0) {
if (swap < 0) {
seterr("no swap");
return (NULL);
}
(void) lseek(swap, (long)dtob(p->p_swaddr), 0);
if (read(swap, (char *)&user.user, sizeof (struct user)) !=
sizeof (struct user)) {
seterr("can't read u for pid %d from %s",
p->p_pid, swapf);
return (NULL);
}
pcbpf = 0;
argaddr0 = 0;
argaddr1 = 0;
return (&user.user);
}
pteaddr = &Usrptmap[btokmx(p->p_p0br) + p->p_szpt - 1];
klseek(kmem, (long)pteaddr, 0);
if (read(kmem, (char *)&apte, sizeof(apte)) != sizeof(apte)) {
seterr("can't read indir pte to get u for pid %d from %s",
p->p_pid, kmemf);
return (NULL);
}
lseek(mem, (long)ctob(pftoc(apte.pg_pfnum+1)) - sizeof(arguutl), 0);
if (read(mem, (char *)arguutl, sizeof(arguutl)) != sizeof(arguutl)) {
seterr("can't read page table for u of pid %d from %s",
p->p_pid, memf);
return (NULL);
}
if (arguutl[0].pg_fod == 0 && arguutl[0].pg_pfnum)
argaddr0 = ctob(pftoc(arguutl[0].pg_pfnum));
else
argaddr0 = 0;
if (arguutl[CLSIZE*1].pg_fod == 0 && arguutl[CLSIZE*1].pg_pfnum)
argaddr1 = ctob(pftoc(arguutl[CLSIZE*1].pg_pfnum));
else
argaddr1 = 0;
pcbpf = arguutl[CLSIZE*2].pg_pfnum;
ncl = (sizeof (struct user) + CLBYTES - 1) / CLBYTES;
while (--ncl >= 0) {
i = ncl * CLSIZE;
lseek(mem,
(long)ctob(pftoc(arguutl[(CLSIZE*2)+i].pg_pfnum)), 0);
if (read(mem, user.upages[i], CLBYTES) != CLBYTES) {
seterr("can't read page %d of u of pid %d from %s",
arguutl[(CLSIZE*2)+i].pg_pfnum, p->p_pid, memf);
return(NULL);
}
}
return (&user.user);
}
#endif
char *
kvm_getargs(p, up)
const struct proc *p;
const struct user *up;
{
#ifdef i386
/* See also ./sys/kern/kern_execve.c */
static char cmdbuf[ARGSIZE];
static union {
char argc[ARGSIZE];
int argi[ARGSIZE/sizeof (int)];
} argspac;
#else
static char cmdbuf[CLBYTES*2];
static union {
char argc[CLBYTES*2];
int argi[CLBYTES*2/sizeof (int)];
} argspac;
#endif
register char *cp;
register int *ip;
char c;
int nbad;
#ifndef NEWVM
struct dblock db;
#endif
const char *file;
int stkoff = 0;
#if defined(NEWVM) && defined(hp300)
stkoff = 20; /* XXX for sigcode */
#endif
if (up == NULL || p->p_pid == 0 || p->p_pid == 2)
goto retucomm;
if ((p->p_flag & SLOAD) == 0 || argaddr1 == 0) {
#ifdef NEWVM
if (swaddr == 0)
goto retucomm; /* XXX for now */
#ifdef i386
(void) lseek(swap, swaddr, 0);
if (read(swap, &argspac.argc[0], ARGSIZE) != ARGSIZE)
goto bad;
#else
if (argaddr0) {
lseek(swap, (long)argaddr0, 0);
if (read(swap, (char *)&argspac, CLBYTES) != CLBYTES)
goto bad;
} else
bzero(&argspac, CLBYTES);
lseek(swap, (long)argaddr1, 0);
if (read(swap, &argspac.argc[CLBYTES], CLBYTES) != CLBYTES)
goto bad;
#endif
#else
if (swap < 0 || p->p_ssize == 0)
goto retucomm;
vstodb(0, CLSIZE, &up->u_smap, &db, 1);
(void) lseek(swap, (long)dtob(db.db_base), 0);
if (read(swap, (char *)&argspac.argc[CLBYTES], CLBYTES)
!= CLBYTES)
goto bad;
vstodb(1, CLSIZE, &up->u_smap, &db, 1);
(void) lseek(swap, (long)dtob(db.db_base), 0);
if (read(swap, (char *)&argspac.argc[0], CLBYTES) != CLBYTES)
goto bad;
file = swapf;
#endif
} else {
#ifdef i386
lseek(mem, (long)argaddr1, 0);
if (read(mem, &argspac.argc[0], ARGSIZE) != ARGSIZE)
goto bad;
#else
if (argaddr0) {
lseek(mem, (long)argaddr0, 0);
if (read(mem, (char *)&argspac, CLBYTES) != CLBYTES)
goto bad;
} else
bzero(&argspac, CLBYTES);
lseek(mem, (long)argaddr1, 0);
if (read(mem, &argspac.argc[CLBYTES], CLBYTES) != CLBYTES)
goto bad;
#endif
file = (char *) memf;
}
nbad = 0;
#ifdef i386
ip = &argspac.argi[(ARGSIZE-ARG_MAX)/sizeof (int)];
for (cp = (char *)ip; cp < &argspac.argc[ARGSIZE-stkoff]; cp++) {
#else
ip = &argspac.argi[CLBYTES*2/sizeof (int)];
ip -= 2; /* last arg word and .long 0 */
ip -= stkoff / sizeof (int);
while (*--ip) {
if (ip == argspac.argi)
goto retucomm;
}
*(char *)ip = ' ';
ip++;
for (cp = (char *)ip; cp < &argspac.argc[CLBYTES*2-stkoff]; cp++) {
#endif
c = *cp;
if (c == 0) { /* convert null between arguments to space */
*cp = ' ';
if (*(cp+1) == 0) break; /* if null argument follows then no more args */
}
else if (c < ' ' || c > 0176) {
if (++nbad >= 5*(0+1)) { /* eflg -> 0 XXX */ /* limit number of bad chars to 5 */
*cp++ = '?';
break;
}
*cp = '?';
}
else if (0 == 0 && c == '=') { /* eflg -> 0 XXX */
while (*--cp != ' ')
if (cp <= (char *)ip)
break;
break;
}
}
*cp = 0;
while (*--cp == ' ')
*cp = 0;
cp = (char *)ip;
(void) strcpy(cmdbuf, cp);
if (cp[0] == '-' || cp[0] == '?' || cp[0] <= ' ') {
(void) strcat(cmdbuf, " (");
(void) strncat(cmdbuf, p->p_comm, sizeof(p->p_comm));
(void) strcat(cmdbuf, ")");
}
return (cmdbuf);
bad:
seterr("error locating command name for pid %d from %s",
p->p_pid, file);
retucomm:
(void) strcpy(cmdbuf, " (");
(void) strncat(cmdbuf, p->p_comm, sizeof (p->p_comm));
(void) strcat(cmdbuf, ")");
return (cmdbuf);
}
static
getkvars()
{
if (kvm_nlist(nl) == -1)
return (-1);
if (deadkernel) {
/* We must do the sys map first because klseek uses it */
long addr;
#ifndef NEWVM
Syssize = nl[X_SYSSIZE].n_value;
Sysmap = (struct pte *)
calloc((unsigned) Syssize, sizeof (struct pte));
if (Sysmap == NULL) {
seterr("out of space for Sysmap");
return (-1);
}
addr = (long) nl[X_SYSMAP].n_value;
addr &= ~KERNBASE;
(void) lseek(kmem, addr, 0);
if (read(kmem, (char *) Sysmap, Syssize * sizeof (struct pte))
!= Syssize * sizeof (struct pte)) {
seterr("can't read Sysmap");
return (-1);
}
#endif
#if defined(hp300)
addr = (long) nl[X_LOWRAM].n_value;
(void) lseek(kmem, addr, 0);
if (read(kmem, (char *) &lowram, sizeof (lowram))
!= sizeof (lowram)) {
seterr("can't read lowram");
return (-1);
}
lowram = btop(lowram);
Sysseg = (struct ste *) malloc(NBPG);
if (Sysseg == NULL) {
seterr("out of space for Sysseg");
return (-1);
}
addr = (long) nl[X_SYSSEG].n_value;
(void) lseek(kmem, addr, 0);
read(kmem, (char *)&addr, sizeof(addr));
(void) lseek(kmem, (long)addr, 0);
if (read(kmem, (char *) Sysseg, NBPG) != NBPG) {
seterr("can't read Sysseg");
return (-1);
}
#endif
#if defined(i386)
PTD = (struct pde *) malloc(NBPG);
if (PTD == NULL) {
seterr("out of space for PTD");
return (-1);
}
addr = (long) nl[X_IdlePTD].n_value;
(void) lseek(kmem, addr, 0);
read(kmem, (char *)&addr, sizeof(addr));
(void) lseek(kmem, (long)addr, 0);
if (read(kmem, (char *) PTD, NBPG) != NBPG) {
seterr("can't read PTD");
return (-1);
}
#endif
}
#ifndef NEWVM
usrpt = (struct pte *)nl[X_USRPT].n_value;
Usrptmap = (struct pte *)nl[X_USRPTMAP].n_value;
#endif
if (kvm_read((void *) nl[X_NSWAP].n_value, &nswap, sizeof (long)) !=
sizeof (long)) {
seterr("can't read nswap");
return (-1);
}
if (kvm_read((void *) nl[X_DMMIN].n_value, &dmmin, sizeof (long)) !=
sizeof (long)) {
seterr("can't read dmmin");
return (-1);
}
if (kvm_read((void *) nl[X_DMMAX].n_value, &dmmax, sizeof (long)) !=
sizeof (long)) {
seterr("can't read dmmax");
return (-1);
}
return (0);
}
kvm_read(loc, buf, len)
void *loc;
void *buf;
{
if (kvmfilesopen == 0 && kvm_openfiles(NULL, NULL, NULL) == -1)
return (-1);
if (iskva(loc)) {
klseek(kmem, (off_t) loc, 0);
if (read(kmem, buf, len) != len) {
seterr("error reading kmem at %x", loc);
return (-1);
}
} else {
lseek(mem, (off_t) loc, 0);
if (read(mem, buf, len) != len) {
seterr("error reading mem at %x", loc);
return (-1);
}
}
return (len);
}
static void
klseek(fd, loc, off)
int fd;
off_t loc;
int off;
{
if (deadkernel) {
if ((loc = Vtophys(loc)) == -1)
return;
}
(void) lseek(fd, (off_t)loc, off);
}
#ifndef NEWVM
/*
* Given a base/size pair in virtual swap area,
* return a physical base/size pair which is the
* (largest) initial, physically contiguous block.
*/
static void
vstodb(vsbase, vssize, dmp, dbp, rev)
register int vsbase;
int vssize;
struct dmap *dmp;
register struct dblock *dbp;
{
register int blk = dmmin;
register swblk_t *ip = dmp->dm_map;
vsbase = ctod(vsbase);
vssize = ctod(vssize);
if (vsbase < 0 || vsbase + vssize > dmp->dm_size)
/*panic("vstodb")*/;
while (vsbase >= blk) {
vsbase -= blk;
if (blk < dmmax)
blk *= 2;
ip++;
}
if (*ip <= 0 || *ip + blk > nswap)
/*panic("vstodb")*/;
dbp->db_size = MIN(vssize, blk - vsbase);
dbp->db_base = *ip + (rev ? blk - (vsbase + dbp->db_size) : vsbase);
}
#endif
#ifdef NEWVM
static off_t
Vtophys(loc)
u_long loc;
{
off_t newloc = (off_t) -1;
#ifdef hp300
int p, ste, pte;
ste = *(int *)&Sysseg[loc >> SG_ISHIFT];
if ((ste & SG_V) == 0) {
seterr("vtophys: segment not valid");
return((off_t) -1);
}
p = btop(loc & SG_PMASK);
newloc = (ste & SG_FRAME) + (p * sizeof(struct pte));
(void) lseek(kmem, (long)(newloc-(off_t)ptob(lowram)), 0);
if (read(kmem, (char *)&pte, sizeof pte) != sizeof pte) {
seterr("vtophys: cannot locate pte");
return((off_t) -1);
}
newloc = pte & PG_FRAME;
if (pte == PG_NV || newloc < (off_t)ptob(lowram)) {
seterr("vtophys: page not valid");
return((off_t) -1);
}
newloc = (newloc - (off_t)ptob(lowram)) + (loc & PGOFSET);
#endif
#ifdef i386
struct pde pde;
struct pte pte;
int p;
pde = PTD[loc >> PD_SHIFT];
if (pde.pd_v == 0) {
seterr("vtophys: page directory entry not valid");
return((off_t) -1);
}
p = btop(loc & PT_MASK);
newloc = pde.pd_pfnum + (p * sizeof(struct pte));
(void) lseek(kmem, (long)newloc, 0);
if (read(kmem, (char *)&pte, sizeof pte) != sizeof pte) {
seterr("vtophys: cannot obtain desired pte");
return((off_t) -1);
}
newloc = pte.pg_pfnum;
if (pte.pg_v == 0) {
seterr("vtophys: page table entry not valid");
return((off_t) -1);
}
newloc += (loc & PGOFSET);
#endif
return((off_t) newloc);
}
#else
static off_t
vtophys(loc)
long loc;
{
int p;
off_t newloc;
register struct pte *pte;
newloc = loc & ~KERNBASE;
p = btop(newloc);
#if defined(vax) || defined(tahoe)
if ((loc & KERNBASE) == 0) {
seterr("vtophys: translating non-kernel address");
return((off_t) -1);
}
#endif
if (p >= Syssize) {
seterr("vtophys: page out of bound (%d>=%d)", p, Syssize);
return((off_t) -1);
}
pte = &Sysmap[p];
if (pte->pg_v == 0 && (pte->pg_fod || pte->pg_pfnum == 0)) {
seterr("vtophys: page not valid");
return((off_t) -1);
}
#if defined(hp300)
if (pte->pg_pfnum < lowram) {
seterr("vtophys: non-RAM page (%d<%d)", pte->pg_pfnum, lowram);
return((off_t) -1);
}
#endif
loc = (long) (ptob(pftoc(pte->pg_pfnum)) + (loc & PGOFSET));
return(loc);
}
#endif
#ifdef NEWVM
/*
* locate address of unwired or swapped page
*/
#define DEBUG 0
#define KREAD(off, addr, len) \
(kvm_read((void *)(off), (char *)(addr), (len)) == (len))
static int
vatosw(p, vaddr, maddr, swb)
struct proc *p ;
vm_offset_t vaddr;
vm_offset_t *maddr;
struct swapblk *swb;
{
register struct kinfo_proc *kp = (struct kinfo_proc *)p;
vm_map_t mp = &kp->kp_eproc.e_vm.vm_map;
struct vm_object vm_object;
struct vm_map_entry vm_entry;
struct pager_struct pager;
struct swpager swpager;
struct swblock swblock;
long addr, off;
int i;
if (p->p_pid == 0 || p->p_pid == 2)
return 0;
addr = (long)mp->header.next;
for (i = 0; i < mp->nentries; i++) {
/* Weed through map entries until vaddr in range */
if (!KREAD(addr, &vm_entry, sizeof(vm_entry))) {
setsyserr("vatosw: read vm_map_entry");
return 0;
}
if ((vaddr >= vm_entry.start) && (vaddr <= vm_entry.end) &&
(vm_entry.object.vm_object != 0))
break;
addr = (long)vm_entry.next;
}
if (i == mp->nentries) {
seterr("%u: map not found\n", p->p_pid);
return 0;
}
if (vm_entry.is_a_map || vm_entry.is_sub_map) {
seterr("%u: Is a map\n", p->p_pid);
return 0;
}
/* Locate memory object */
off = (vaddr - vm_entry.start) + vm_entry.offset;
addr = (long)vm_entry.object.vm_object;
while (1) {
if (!KREAD(addr, &vm_object, sizeof vm_object)) {
setsyserr("vatosw: read vm_object");
return 0;
}
#if DEBUG
fprintf(stderr, "%u: find page: object %#x offset %x\n",
p->p_pid, addr, off);
#endif
/* Lookup in page queue */
if (findpage(addr, off, maddr))
return 1;
if (vm_object.shadow == 0)
break;
#if DEBUG
fprintf(stderr, "%u: shadow obj at %x: offset %x+%x\n",
p->p_pid, addr, off, vm_object.shadow_offset);
#endif
addr = (long)vm_object.shadow;
off += vm_object.shadow_offset;
}
if (!vm_object.pager) {
seterr("%u: no pager\n", p->p_pid);
return 0;
}
/* Find address in swap space */
if (!KREAD(vm_object.pager, &pager, sizeof pager)) {
setsyserr("vatosw: read pager");
return 0;
}
if (pager.pg_type != PG_SWAP) {
seterr("%u: weird pager\n", p->p_pid);
return 0;
}
/* Get swap pager data */
if (!KREAD(pager.pg_data, &swpager, sizeof swpager)) {
setsyserr("vatosw: read swpager");
return 0;
}
off += vm_object.paging_offset;
/* Read swap block array */
if (!KREAD((long)swpager.sw_blocks +
(off/dbtob(swpager.sw_bsize)) * sizeof swblock,
&swblock, sizeof swblock)) {
setsyserr("vatosw: read swblock");
return 0;
}
swb->offset = dbtob(swblock.swb_block)+ (off % dbtob(swpager.sw_bsize));
swb->size = dbtob(swpager.sw_bsize) - (off % dbtob(swpager.sw_bsize));
return 1;
}
#define atop(x) (((unsigned)(x)) >> page_shift)
#define vm_page_hash(object, offset) \
(((unsigned)object+(unsigned)atop(offset))&vm_page_hash_mask)
static int
findpage(object, offset, maddr)
long object;
long offset;
vm_offset_t *maddr;
{
static long vm_page_hash_mask;
static long vm_page_buckets;
static long page_shift;
queue_head_t bucket;
struct vm_page mem;
long addr, baddr;
if (vm_page_hash_mask == 0 && !KREAD(nl[X_VM_PAGE_HASH_MASK].n_value,
&vm_page_hash_mask, sizeof (long))) {
seterr("can't read vm_page_hash_mask");
return 0;
}
if (page_shift == 0 && !KREAD(nl[X_PAGE_SHIFT].n_value,
&page_shift, sizeof (long))) {
seterr("can't read page_shift");
return 0;
}
if (vm_page_buckets == 0 && !KREAD(nl[X_VM_PAGE_BUCKETS].n_value,
&vm_page_buckets, sizeof (long))) {
seterr("can't read vm_page_buckets");
return 0;
}
baddr = vm_page_buckets + vm_page_hash(object,offset) * sizeof(queue_head_t);
if (!KREAD(baddr, &bucket, sizeof (bucket))) {
seterr("can't read vm_page_bucket");
return 0;
}
addr = (long)bucket.next;
while (addr != baddr) {
if (!KREAD(addr, &mem, sizeof (mem))) {
seterr("can't read vm_page");
return 0;
}
if ((long)mem.object == object && mem.offset == offset) {
*maddr = (long)mem.phys_addr;
return 1;
}
addr = (long)mem.hashq.next;
}
return 0;
}
#endif /* NEWVM */
#include <varargs.h>
static char errbuf[_POSIX2_LINE_MAX];
static void
seterr(va_alist)
va_dcl
{
char *fmt;
va_list ap;
va_start(ap);
fmt = va_arg(ap, char *);
(void) vsnprintf(errbuf, _POSIX2_LINE_MAX, fmt, ap);
#if DEBUG
(void) vfprintf(stderr, fmt, ap);
#endif
va_end(ap);
}
static void
setsyserr(va_alist)
va_dcl
{
char *fmt, *cp;
va_list ap;
extern int errno;
va_start(ap);
fmt = va_arg(ap, char *);
(void) vsnprintf(errbuf, _POSIX2_LINE_MAX, fmt, ap);
for (cp=errbuf; *cp; cp++)
;
snprintf(cp, _POSIX2_LINE_MAX - (cp - errbuf), ": %s", strerror(errno));
va_end(ap);
}
char *
kvm_geterr()
{
return (errbuf);
}