1c2419d28a
clean up some other stuff along the way, including: - use m68k/cacheops.*, remove duplicates from cpu.h. - centralize a few declarations in (all the copies of) cpu.h. - define M68K_VAC on platforms which have a VAC. - switch the sun platforms to the (now common) proc_trampoline(). - do the phys_map thang on the sun platforms too, no reason not to.
269 lines
8.3 KiB
C
269 lines
8.3 KiB
C
/* $NetBSD: cpu.h,v 1.39 2002/10/20 02:37:27 chs Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1988 University of Utah.
|
|
* Copyright (c) 1982, 1990, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* the Systems Programming Group of the University of Utah Computer
|
|
* Science Department.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from: Utah $Hdr: cpu.h 1.16 91/03/25$
|
|
*
|
|
* @(#)cpu.h 8.4 (Berkeley) 1/5/94
|
|
*/
|
|
|
|
#ifndef _HP300_CPU_H_
|
|
#define _HP300_CPU_H_
|
|
|
|
#if defined(_KERNEL_OPT)
|
|
#include "opt_lockdebug.h"
|
|
#endif
|
|
|
|
/*
|
|
* Exported definitions unique to hp300/68k cpu support.
|
|
*/
|
|
|
|
/*
|
|
* Get common m68k CPU definitions.
|
|
*/
|
|
#include <m68k/cpu.h>
|
|
#include <machine/hp300spu.h>
|
|
|
|
/*
|
|
* Get interrupt glue.
|
|
*/
|
|
#include <machine/intr.h>
|
|
|
|
#include <sys/sched.h>
|
|
struct cpu_info {
|
|
struct schedstate_percpu ci_schedstate; /* scheduler state */
|
|
#if defined(DIAGNOSTIC) || defined(LOCKDEBUG)
|
|
u_long ci_spin_locks; /* # of spin locks held */
|
|
u_long ci_simple_locks; /* # of simple locks held */
|
|
#endif
|
|
};
|
|
|
|
#ifdef _KERNEL
|
|
extern struct cpu_info cpu_info_store;
|
|
|
|
#define curcpu() (&cpu_info_store)
|
|
|
|
/*
|
|
* definitions of cpu-dependent requirements
|
|
* referenced in generic code
|
|
*/
|
|
#define cpu_swapin(p) /* nothing */
|
|
#define cpu_wait(p) /* nothing */
|
|
#define cpu_swapout(p) /* nothing */
|
|
#define cpu_number() 0
|
|
|
|
/*
|
|
* Arguments to hardclock and gatherstats encapsulate the previous
|
|
* machine state in an opaque clockframe. One the hp300, we use
|
|
* what the hardware pushes on an interrupt (frame format 0).
|
|
*/
|
|
struct clockframe {
|
|
u_short sr; /* sr at time of interrupt */
|
|
u_long pc; /* pc at time of interrupt */
|
|
u_short vo; /* vector offset (4-word frame) */
|
|
};
|
|
|
|
#define CLKF_USERMODE(framep) (((framep)->sr & PSL_S) == 0)
|
|
#define CLKF_BASEPRI(framep) (((framep)->sr & PSL_IPL) == 0)
|
|
#define CLKF_PC(framep) ((framep)->pc)
|
|
#if 0
|
|
/* We would like to do it this way... */
|
|
#define CLKF_INTR(framep) (((framep)->sr & PSL_M) == 0)
|
|
#else
|
|
/* but until we start using PSL_M, we have to do this instead */
|
|
#define CLKF_INTR(framep) (0) /* XXX */
|
|
#endif
|
|
|
|
|
|
/*
|
|
* Preempt the current process if in interrupt from user mode,
|
|
* or after the current trap/syscall if in system mode.
|
|
*/
|
|
extern int want_resched; /* resched() was called */
|
|
#define need_resched(ci) { want_resched++; aston(); }
|
|
|
|
/*
|
|
* Give a profiling tick to the current process when the user profiling
|
|
* buffer pages are invalid. On the hp300, request an ast to send us
|
|
* through trap, marking the proc as needing a profiling tick.
|
|
*/
|
|
#define need_proftick(p) { (p)->p_flag |= P_OWEUPC; aston(); }
|
|
|
|
/*
|
|
* Notify the current process (p) that it has a signal pending,
|
|
* process as soon as possible.
|
|
*/
|
|
#define signotify(p) aston()
|
|
|
|
extern int astpending; /* need to trap before returning to user mode */
|
|
#define aston() (astpending++)
|
|
|
|
#endif /* _KERNEL */
|
|
|
|
/*
|
|
* CTL_MACHDEP definitions.
|
|
*/
|
|
#define CPU_CONSDEV 1 /* dev_t: console terminal device */
|
|
#define CPU_MAXID 2 /* number of valid machdep ids */
|
|
|
|
#define CTL_MACHDEP_NAMES { \
|
|
{ 0, 0 }, \
|
|
{ "console_device", CTLTYPE_STRUCT }, \
|
|
}
|
|
|
|
/*
|
|
* The rest of this should probably be moved to <machine/hp300spu.h>,
|
|
* although some of it could probably be put into generic 68k headers.
|
|
*/
|
|
|
|
#ifdef _KERNEL
|
|
extern char *intiobase, *intiolimit;
|
|
extern void (*vectab[]) __P((void));
|
|
|
|
struct frame;
|
|
struct fpframe;
|
|
struct pcb;
|
|
|
|
/* locore.s functions */
|
|
void m68881_save __P((struct fpframe *));
|
|
void m68881_restore __P((struct fpframe *));
|
|
int suline __P((caddr_t, caddr_t));
|
|
void savectx __P((struct pcb *));
|
|
void switch_exit __P((struct proc *));
|
|
void proc_trampoline __P((void));
|
|
void loadustp __P((int));
|
|
|
|
void doboot __P((void))
|
|
__attribute__((__noreturn__));
|
|
void ecacheon __P((void));
|
|
void ecacheoff __P((void));
|
|
|
|
/* clock.c functions */
|
|
void hp300_calibrate_delay __P((void));
|
|
|
|
/* machdep.c functions */
|
|
int badaddr __P((caddr_t));
|
|
int badbaddr __P((caddr_t));
|
|
|
|
/* sys_machdep.c functions */
|
|
int cachectl1 __P((unsigned long, vaddr_t, size_t, struct proc *));
|
|
|
|
/* vm_machdep.c functions */
|
|
void physaccess __P((caddr_t, caddr_t, int, int));
|
|
void physunaccess __P((caddr_t, int));
|
|
int kvtop __P((caddr_t));
|
|
|
|
/* what is this supposed to do? i.e. how is it different than startrtclock? */
|
|
#define enablertclock()
|
|
|
|
#endif
|
|
|
|
/* physical memory sections */
|
|
#define ROMBASE (0x00000000)
|
|
#define INTIOBASE (0x00400000)
|
|
#define INTIOTOP (0x00600000)
|
|
#define EXTIOBASE (0x00600000)
|
|
#define EXTIOTOP (0x20000000)
|
|
#define MAXADDR (0xFFFFF000)
|
|
|
|
/*
|
|
* Internal IO space:
|
|
*
|
|
* Ranges from 0x400000 to 0x600000 (IIOMAPSIZE).
|
|
*
|
|
* Internal IO space is mapped in the kernel from ``intiobase'' to
|
|
* ``intiolimit'' (defined in locore.s). Since it is always mapped,
|
|
* conversion between physical and kernel virtual addresses is easy.
|
|
*/
|
|
#define ISIIOVA(va) \
|
|
((char *)(va) >= intiobase && (char *)(va) < intiolimit)
|
|
#define IIOV(pa) ((int)(pa)-INTIOBASE+(int)intiobase)
|
|
#define IIOP(va) ((int)(va)-(int)intiobase+INTIOBASE)
|
|
#define IIOPOFF(pa) ((int)(pa)-INTIOBASE)
|
|
#define IIOMAPSIZE btoc(INTIOTOP-INTIOBASE) /* 2mb */
|
|
|
|
/*
|
|
* External IO space:
|
|
*
|
|
* DIO ranges from select codes 0-63 at physical addresses given by:
|
|
* 0x600000 + (sc - 32) * 0x10000
|
|
* DIO cards are addressed in the range 0-31 [0x600000-0x800000) for
|
|
* their control space and the remaining areas, [0x200000-0x400000) and
|
|
* [0x800000-0x1000000), are for additional space required by a card;
|
|
* e.g. a display framebuffer.
|
|
*
|
|
* DIO-II ranges from select codes 132-255 at physical addresses given by:
|
|
* 0x1000000 + (sc - 132) * 0x400000
|
|
* The address range of DIO-II space is thus [0x1000000-0x20000000).
|
|
*
|
|
* DIO/DIO-II space is too large to map in its entirety, instead devices
|
|
* are mapped into kernel virtual address space allocated from a range
|
|
* of EIOMAPSIZE pages (vmparam.h) starting at ``extiobase''.
|
|
*/
|
|
#define DIOBASE (0x600000)
|
|
#define DIOTOP (0x1000000)
|
|
#define DIOCSIZE (0x10000)
|
|
#define DIOIIBASE (0x01000000)
|
|
#define DIOIITOP (0x20000000)
|
|
#define DIOIICSIZE (0x00400000)
|
|
|
|
/*
|
|
* HP MMU
|
|
*/
|
|
#define MMUBASE IIOPOFF(0x5F4000)
|
|
#define MMUSSTP 0x0
|
|
#define MMUUSTP 0x4
|
|
#define MMUTBINVAL 0x8
|
|
#define MMUSTAT 0xC
|
|
#define MMUCMD MMUSTAT
|
|
|
|
#define MMU_UMEN 0x0001 /* enable user mapping */
|
|
#define MMU_SMEN 0x0002 /* enable supervisor mapping */
|
|
#define MMU_CEN 0x0004 /* enable data cache */
|
|
#define MMU_BERR 0x0008 /* bus error */
|
|
#define MMU_IEN 0x0020 /* enable instruction cache */
|
|
#define MMU_FPE 0x0040 /* enable 68881 FP coprocessor */
|
|
#define MMU_WPF 0x2000 /* write protect fault */
|
|
#define MMU_PF 0x4000 /* page fault */
|
|
#define MMU_PTF 0x8000 /* page table fault */
|
|
|
|
#define MMU_FAULT (MMU_PTF|MMU_PF|MMU_WPF|MMU_BERR)
|
|
#define MMU_ENAB (MMU_UMEN|MMU_SMEN|MMU_IEN|MMU_FPE)
|
|
|
|
#endif /* _HP300_CPU_H_ */
|